Navigating Environmental Concerns: Assessing the Ecological Footprint of Photovoltaic-Produced Energy
Abstract
:1. Introduction
2. Cadmium and Lead Emissions from Various Types of Photovoltaic Panels
2.1. Cd Emission
2.2. Lead Emission
Cd | Ref | Pb | Ref | |
---|---|---|---|---|
Concentration | 0.1% of the CdTe absorber layer 8 g·m−2 78 mg·W−1 (0.4 µm) | [17] [18] [22] | MAPbI3—4.09 g·cm−3 MAPbBr3—3.83 g·cm−3 FAPbI3—4.10 g·cm−3 CsPbI3 5.39 g·cm−3 Perovskite (0.3 µm)—0.4 g·m−2 Perovskite (0.6 µm)—0.8 g·m−2 c-Si—6.1 g·m−2 | [37] [37] [37] [37] [38] [13] [37] |
Direct emission | 0.02 g·GWh−1 due to accidental release 76.66 tons·GW−1 ∙ y−1 | [16] [22] | 7 to 20 g·GWh−1 | [16] |
Indirect emission | 0.015 g Cd·GWh−1 | [16] | ND | |
Metal intensity, per U electricity produced | ND | 38 μg·kWh−1 | [39] | |
Diffusion coefficient | 3 × 10−17 cm2·s−1 (pH 4) | [22] | 3 × 10−15 m2·s−1 | [49] |
Leaching/ leakage rate | Up to 73% (pH < 7) 62% (pH < 7) | [23] [22] | >5 mg·L−1 30 mg h−1m−2 | [36] [50] |
3. Potential Adverse Outcomes of Cadmium and Lead Exposure in Living Organisms
4. Methods to Minimize the Release of Toxic Metals from Solar Panels
4.1. Physical Encapsulation and Chemical Absorption
4.2. Cd and Pb-Free Alternatives and Their Challenges
4.2.1. Pb-Free Thin-Film Solar Panels
4.2.2. Cd-Free Thin-Film Solar Panels
4.3. Recycling Technologies
4.4. Bioremediation as a Valuable Technique to Attenuate Adverse Outcomes of Released Metals
5. Conclusions and Future Perspectives
Funding
Data Availability Statement
Conflicts of Interest
References
- The European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 18 May 2024).
- International Energy Agency. Available online: www.iea.org (accessed on 18 May 2024).
- European Commission. REPowerEU. Available online: https://ec.europa.eu/commission/presscorner/detail/en/IP_22_3131 (accessed on 18 May 2024).
- Solar, P.V. Available online: https://www.iea.org/energy-system/renewables/solar-pv (accessed on 18 May 2024).
- RENA. Installed Renewable Electricity Capacity (MW) by Region/Country/Area, Technology and Year. Available online: https://pxweb.irena.org/pxweb/en/IRENASTAT/IRENASTAT__Power%20Capacity%20and%20Generation/RECAP_2023_cycle2.px/ (accessed on 18 May 2024).
- End-of-Life Solar Panels: Regulations and Management. Available online: https://www.epa.gov/hw/end-life-solar-panels-regulations-and-management (accessed on 18 May 2024).
- Mirletz, H.; Hieslmair, H.; Ovaitt, S.; Curtis, T.L.; Barnes, T.M. Unfounded concerns about photovoltaic module toxicity and waste are slowing decarbonization. Nat. Phys. 2023, 19, 1376–1378. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Galović, M.; Kuprešak, J.; Bošnjaković, T. The End of Life of PV Systems: Is Europe Ready for It? Sustainability 2023, 15, 16466. [Google Scholar] [CrossRef]
- Kettle, J.; Aghaei, M.; Ahmad, S.; Fairbrother, A.; Irvine, S.; Jacobsson, J.J.; Kazim, S.; Kazukauskas, V.; Lamb, D.; Lobato, K.; et al. Review of technology specific degradation in crystalline silicon, cadmium telluride, copper indium gallium selenide, dye sensitised, organic and perovskite solar cells in photovoltaic modules: Understanding how reliability improvements in mature technologies can enhance emerging technologies. Progress. Photovolt. Res. Appl. 2022, 30, 1365–1392. [Google Scholar]
- Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report. Freiburg. 2018. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf (accessed on 18 May 2024).
- Maalouf, A.; Okoroafor, T.; Jehl, Z.; Babu, V.; Resalati, S. A comprehensive review on life cycle assessment of commercial and emerging thin-film solar cell systems. Renew. Sustain. Energy Rev. 2023, 186, 113652. [Google Scholar] [CrossRef]
- European Commission. Waste from Electrical and Electronic Equipment. Available online: https://environment.ec.europa.eu/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en (accessed on 18 May 2024).
- Li, J.; Cao, H.L.; Jiao, W.B.; Wang, Q.; Wei, M.; Cantone, I.; Lu, J.; Abate, A. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 2020, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- Su, L.C.; Ruan, H.D.; Ballantine, D.J.; Lee, C.H.; Cai, Z.W. Release of metal pollutants from corroded and degraded thin-film solar panels extracted by acids and buried in soils. Appl. Geochem. 2019, 108, 104381. [Google Scholar] [CrossRef]
- Babayigit, A.; Duy Thanh, D.; Ethirajan, A.; Manca, J.; Muller, M.; Boyen, H.G.; Conings, B. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 2016, 6, 18721. [Google Scholar] [CrossRef] [PubMed]
- Fthenakis, V.M. Life cycle impact analysis of cadmium in CdTe PV production, Renew. Sustain. Energy Rev. 2004, 8, 303–334. [Google Scholar] [CrossRef]
- Maani, T.; Celik, I.; Heben, M.J.; Ellingson, R.J.; Apul, D. Environmental impacts of recycling crystalline silicon (c-SI) and cadmium telluride (CDTE) solar panels. Sci. Total Environ. 2020, 735, 138827. [Google Scholar] [CrossRef]
- Scarpulla, M.A.; McCandless, B.; Phillips, A.B.; Yan, Y.; Heben, M.J.; Wolden, C.; Xiong, G.; Metzger, W.K.; Mao, D.; Krasikov, D.; et al. CdTe-based thin film photovoltaics: Recent advances, current challenges and future prospects. Sol. Energy Mater. Sol. Cells 2023, 255, 112289. [Google Scholar] [CrossRef]
- Study on Photovoltaic Panels Supplementing the Impact Assessment for a Recast of the WEEE Directive. Available online: https://ec.europa.eu/environment/pdf/waste/weee/Study%20on%20PVs%20Bio%20final.pdf (accessed on 18 May 2024).
- Future of Solar Photovoltaic. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Nov/IRENA_Future_of_Solar_PV_2019.pdf (accessed on 18 May 2024).
- Level of Cadmium in the Environment. Available online: https://www.cadmium.org/level-of-cadmium-in-the-environmen (accessed on 18 May 2024).
- Nover, J.; Zapf-Gottwick, R.; Feifel, C.; Koch, M.; Metzger, J.W.; Werner, J.H. Long-Term Leaching of Photovoltaic Modules. Jpn. J. Appl. Phys. 2017, 56, 08MD02. [Google Scholar] [CrossRef]
- Ramos-Ruiz, A.; Wilkening, J.V.; Field, J.A.; Sierra-Alvarez, R. Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions. J. Hazard. Mater. 2017, 336, 57–64. [Google Scholar] [CrossRef]
- Okkenhaug, G. Norway: 2010. Environmental Risks Regarding the Use and End-of-Life Disposal of CdTe PV Modules. Available online: https://www.dtsc.ca.gov/LawsRegsPolicies/upload/Norwegian-Geotechnical-Institute-Study.pdf (accessed on 18 May 2024).
- Steinberger, H. Health, safety and environmental risks from the operation of CdTe and CIS thin-film modules. Prog. Photovolt. 1998, 6, 99–103. [Google Scholar] [CrossRef]
- Deng, S.; Shi, Y.; Liu, Y.; Zhang, C.; Wang, X.; Cao, Q.; Li, S.; Zhang, F. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Process. Technol. 2014, 126, 469–475. [Google Scholar] [CrossRef]
- How Much Coal, Natural Gas, or Petroleum Is Used to Generate a Kilowatthour of Electricity? Available online: https://www.eia.gov/tools/faqs/faq.php?id=667&t=2 (accessed on 18 May 2024).
- Chatzipanagi, A.; Jaeger-Waldau, A.; Cleret de Langavant, C.; Letout, S.; Latunussa, C.; Mountraki, A.; Georgakaki, A.; Ince, E.; Kuokkanen, A.; Shtjefni, D. Clean Energy Technology Observatory: Photovoltaics in the European Union. In 2022 Status Report on Technology Development, Trends, Value Chains and Markets; Publications Office of the European Union: Luxembourg, 2022; p. JRC130720. [Google Scholar] [CrossRef]
- Sengül, H.; Theis, T.L. An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. J. Clean. Prod. 2011, 19, 21–31. [Google Scholar] [CrossRef]
- Utility Solar Photovoltaic Capacity Is Dominated by Crystalline Silicon Panel Technology. Available online: https://www.eia.gov/todayinenergy/detail.php?id=34112 (accessed on 18 May 2024).
- Thin-Film Photovoltaic Market by Material, Amorphous Silicon, Perovskite, Copper Indium Gallium Selenide, Organic PV, Copper Zinc Tin Sulfide, Component—Global Forecast to 2028. Available online: https://www.reportlinker.com/p06473800/Thin-Film-Photovoltaic-Market-by-Material-Amorphous-Silicon-Perovskite-Copper-Indium-Gallium-Selenide-Organic-PV-Copper-Zinc-Tin-Sulfide-Component-Global-Forecast-to.html?utm_source=GNW (accessed on 18 May 2024).
- Global Crystalline Silicon PV Market. Available online: https://www.maximizemarketresearch.com/market-report/global-crystalline-silicon-pv-market/20613/ (accessed on 18 May 2024).
- The Thin-Film Photovoltaic Market Is Projected to Grow from USD 5.3 Billion in 2023 to USD 11.2 Billion by 2028, Registering a CAGR of 16.0%. Available online: https://finance.yahoo.com/news/thin-film-photovoltaic-market-projected-182300452.html?guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_sig=AQAAAI54wVDshmWzcyce4RKBJv2Mw2AeHA5eywTjsYKHWInku8B9J0RZTZvZpYRkZ1f3cC26xi9W3GVhRCFudjQLnjXTLZjTCImrdamtNleTseaaJ8ND5UNzs8speS33wv9Oy3rBdlmyroZk2OYC5HnNBhXBah5LG7KujoHRef34u5AA (accessed on 18 May 2024).
- WHO. Lead. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/3511 (accessed on 18 May 2024).
- Lu, X.; Yan, D.; Feng, J.; Li, M.; Hou, B.; Li, Z.; Wang, F. Ecotoxicity and sustainability of emerging Pb-based photovoltaics. Sol. RRL 2022, 6, 2200699. [Google Scholar]
- Su, P.; Liu, Y.; Zhang, J.; Chen, C.; Yang, B.; Zhang, C.; Zhao, X. Pb-Based Perovskite Solar Cells and the Underlying Pollution behind Clean Energy: Dynamic Leaching of Toxic Substances from Discarded Perovskite Solar Cells. J. Phys. Chem. Lett. 2020, 11, 2812–2817. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wang, S.; Li, X.; Zhang, F. Beyond efficiency fever: Preventing lead leakage for perovskite solar cells. Matter 2022, 5, 1137–1161. [Google Scholar]
- Hailegnaw, B.; Kirmayer, S.; Edri, E.; Hodes, G.; Cahen, D. Rain on methylammonium lead iodide based perovskites: Possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 2015, 6, 1543–1547. [Google Scholar] [CrossRef]
- Fabini, D. Quantifying the Potential for Lead Pollution from Halide Perovskite Photovoltaics. J. Phys. Chem. Lett. 2015, 6, 3546–3548. [Google Scholar] [CrossRef]
- Soil Lead Fact Sheet. Available online: https://ag.umass.edu/soil-plant-nutrient-testing-laboratory/fact-sheets/soil-lead-fact-sheet (accessed on 18 May 2024).
- Chen, B.; Fei, C.; Chen, S.; Gu, H.; Xiao, X.; Huang, J. Recycling lead and transparent conductors from perovskite solar modules. Nat. Commun. 2021, 12, 5859. [Google Scholar] [CrossRef] [PubMed]
- Rethink Energy Pegs Global Perovskite Manufacturing to Grow to 100 GW by 2030. Available online: https://taiyangnews.info/future-bright-for-perovskite-solar-technology (accessed on 18 May 2024).
- Al Mahdi, H.; Leahy, P.G.; Alghoul, M.; Morrison, A.P. A Review of Photovoltaic Module Failure and Degradation Mechanisms: Causes and Detection Techniques. Solar 2024, 4, 43–82. [Google Scholar] [CrossRef]
- Nain, P.; Kumar, A. Understanding the possibility of material release from end-of-life solar modules: A study based on literature review and survey analysis. Renew. Energy 2020, 160, 903–918. [Google Scholar] [CrossRef]
- Nain, P.; Kumar, A. Metal dissolution from end-of-life solar photovoltaics in real landfill leachate versus synthetic solutions: One-year study. Waste Manag. 2020, 114, 351–361. [Google Scholar] [CrossRef]
- Annual Lead Emissions in the United Kingdom (UK) from 1990 to 2018 (in Metric Tons). Available online: https://www.statista.com/statistics/489992/lead-emissions-uk/ (accessed on 18 May 2024).
- Latunussa, C.; Mancini, L.; Blengini, G.; Ardente, F.; Pennington, D. Analysis of Material Recovery from Photovoltaic Panels; EUR 27797; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Billen, P.; Leccisi, E.; Dastidar, S.; Li, S.; Lobaton, L.; Spatari, S.; Fafarman, A.T.; Fthenakis, V.M.; Baxter, J.B. Comparative evaluation of lead emissions and toxicity potential in the life cycle of lead halide perovskite photovoltaics. Energy 2019, 166, 1089–1096. [Google Scholar] [CrossRef]
- Alvar, M.S.; Blom, P.W.M.; Wetzelaer, G.-J.A.H. Device Model for Methylammonium Lead Iodide Perovskite with Experimentally Validated Ion Dynamics. Adv. Electron. Mater. 2020, 6, 1900935. [Google Scholar] [CrossRef]
- Ma, K.; Li, X.; Yang, F.; Liu, H. Lead Leakage of Pb-Based Perovskite Solar Cells. Coatings 2023, 13, 1009. [Google Scholar] [CrossRef]
- Hu, Y.; French, R.H. Degradation and Failure Mechanisms of PV Module Interconnects. In Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules. Plast. Des. Libr. 2019, 2019, 119–134. [Google Scholar]
- Crystalline Silicon Photovoltaics Research. Available online: https://www.energy.gov/eere/solar/crystalline-silicon-photovoltaics-research (accessed on 18 May 2024).
- Restriction on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment. Available online: https://eur-lex.europa.eu/EN/legal-content/summary/restriction-on-the-use-of-certain-hazardous-substances-in-electrical-and-electronic-equipment.html (accessed on 18 May 2024).
- Ohta, H.; Ohba, K. Involvement of metal transporters in the intestinal uptake of cadmium. J. Toxicol. Sci. 2020, 45, 539–548. [Google Scholar] [CrossRef]
- McGeer, J.C.; Niyogi, S.; Smith, D.S. Cadmium. In homeostasis and toxicology of non-essential metals. In Fish Physiology; Wood, C.M., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: London, UK, 2012; pp. 125–184. [Google Scholar]
- Jung, H.-C.; Kim, J.-H.; Kang, J.-C. Toxic Impact of Dietary Cadmium on Bioaccumulation, Growth, Hematological Parameters, Plasma Components, and Antioxidant Responses in Starry Flounder (Platichthys stellatus). Fishes 2024, 9, 59. [Google Scholar] [CrossRef]
- Kurochkin, I.O.; Etzkorn, M.; Buchwalter, D.; Leamy, L.; Sokolova, I.M. Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R21–R31. [Google Scholar] [CrossRef] [PubMed]
- Marigómez, I.; Izagirre, U.; Lekube, X. Lysosomal enlargement in digestive cells of mussels exposed to cadmium, benzo[a]pyrene and their combination. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2005, 141, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Gnatyshyna, L.; Falfushynska, H.; Stoliar, O.; Dallinger, R. Preliminary Study of Multiple Stress Response Reactions in the Pond Snail Lymnaea stagnalis Exposed to Trace Metals and a Thiocarbamate Fungicide at Environmentally Relevant Concentrations. Arch. Environ. Contam. Toxicol. 2020, 79, 89–100. [Google Scholar] [CrossRef]
- Lu, Z.; Xiao, Z.; Wu, S.; Song, J.; Peng, X. Proteomic and metabolomic analysis on cadmium-induced mitochondrial toxicity in liver tissues of juvenile olive flounder Paralichthys olivaceus. Front. Mar. Sci. 2022, 9, 1041705. [Google Scholar] [CrossRef]
- Jiaxin, S.; Shengchen, W.; Yirong, C.; Shuting, W.; Shu, L. Cadmium exposure induces apoptosis, inflammation and immunosuppression through CYPs activation and antioxidant dysfunction in common carp neutrophils. Fish. Shellfish. Immunol. 2020, 99, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-B.; Wang, M.-M.; Dai, L.-Y.; Dong, S.-H.; Yuan, X.-D.; Yuan, S.-l.; Tang, Y.; Liu, J.-H.; Peng, L.-Y.; Xiao, Y.-M. Enhanced Immune Response Improves Resistance to Cadmium Stress in Triploid Crucian Carp. Front. Physiol. 2021, 12, 666363. [Google Scholar] [CrossRef] [PubMed]
- Albergoni, V.; Viola, A. Effects of cadmium on lymphocyte proliferation and macrophage activation in catfish, Ictalurus melas. Fish. Shellfish. Immunol. 1995, 5, 301–311. [Google Scholar] [CrossRef]
- Tan, X.-Y.; Luo, Z.; Zhang, G.-Y.; Liu, X.-J.; Jiang, M. Effect of dietary cadmium level on the growth, body composition and several hepatic enzymatic activities of juvenile yellow catfish, Pelteobagrus fulvidraco. Aquat. Res. 2010, 41, 1022–1029. [Google Scholar] [CrossRef]
- Falfushynska, H.; Dellwig, O.; Köhler, A.; Sokolova, I.M. Adverse outcome pathways as a tool for optimization of the biomarker-based assessment of pollutant toxicity: A case study of cadmium in the blue mussels Mytilus edulis. Ecol. Indic. 2024, 158, 111431. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, X.; Li, H.; Li, C.; Huo, X.J.; Hou, L.P.; Gong, Z. Immune response induced by major environmental pollutants through altering neutrophils in zebrafish larvae. Aquat. Toxicol. 2018, 201, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Branca, J.J.V.; Pacini, A.; Gulisano, M.; Taddei, N.; Fiorillo, C.; Becatti, M. Cadmium-Induced Cytotoxicity: Effects on Mitochondrial Electron Transport Chain. Front. Cell Dev. Biol. 2020, 8, 604377. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, Y.; Yao, W.; Ba, Q.; Wang, H. Effects of Cadmium Exposure on the Immune System and Immunoregulation. Front. Immunol. 2021, 12, 695484. [Google Scholar] [CrossRef]
- Mao, W.P.; Zhang, N.N.; Zhou, F.Y.; Li, W.X.; Liu, H.Y.; Feng, J.; Zhou, L.; Wei, C.J.; Pan, Y.B.; He, Z.J. Cadmium directly induced mitochondrial dysfunction of human embryonic kidney cells. Hum. Exp. Toxicol. 2011, 30, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Liu, S.; Fu, L.; Du, H.; Xu, Z. Lead (Pb) accumulation, oxidative stress and DNA damage induced by dietary Pb in tilapia (Oreochromis niloticus). Aquac. Res. 2012, 43, 208–214. [Google Scholar] [CrossRef]
- Martinez, C.B.R.; Nagae, M.Y.; Zaia, C.T.B.V.; Zaia, D.A.M. Acute morphological and physiological effects of lead in the neotropical fish Prochilodus lineatus. Braz. J. Biol. 2004, 64, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Choi, H.; Hwang, U.K.; Kang, J.C.; Kang, Y.J.; Kim, K.I.; Kim, J.H. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environ. Toxicol. Pharmacol. 2019, 68, 101–108. [Google Scholar] [CrossRef]
- Mahi, T.F.; Chowdhury, G.; Hossain, M.A.; Baishnab, A.K.; Schneider, P.; Iqbal, M.M. Assessment of Lead (Pb) Toxicity in Juvenile Nile Tilapia, Oreochromis niloticus-Growth, Behaviour, Erythrocytes Abnormalities, and Histological Alterations in Vital Organs. Toxics 2022, 10, 793. [Google Scholar] [CrossRef]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Bandaru, L.J.M.; Murumulla, L.; Challa, S. Exposure of combination of environmental pollutant, lead (Pb) and β-amyloid peptides causes mitochondrial dysfunction and oxidative stress in human neuronal cells. J. Bioenerg. Biomembr. 2023, 55, 79–89. [Google Scholar] [CrossRef]
- Shafiq-ur-Rehman, S.U.R. Effect of lead on lipid peroxidation, phospholipids composition, and methylation in erythrocyte of human. Biol. Trace Elem. Res. 2013, 154, 433–439. [Google Scholar] [CrossRef]
- Wang, Y.; Ahmad, I.; Leung, T.; Lin, J.; Chen, W.; Liu, F.; Ng, A.M.C.; Zhang, Y.; Djurišić, A.B. Encapsulation and Stability Testing of Perovskite Solar Cells for Real Life Applications. ACS Mater. 2022, 2, 215–236. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, H.K.; Meshram, A.; Gupta, R. Removal of encapsulant Ethylene-vinyl acetate (EVA) from solar cells of photovoltaic modules (PVMs). Mater. Today Proc. 2023, in press. [Google Scholar]
- Thornton, S.T.; Abdelmageed, G.; Kahwagi, R.F.; Koleilat, G.I. Progress towards lead-free, efficient, and stable perovskite solar cells. J. Chem. Technol. Biotechnol. 2022, 97, 810–829. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, F. Recent Advances in Lead Chemisorption for Perovskite Solar Cells. Trans. Tianjin Univ. 2022, 28, 341–357. [Google Scholar] [CrossRef]
- Torrence, C.E.; Libby, C.S.; Nie, W.; Stein, J.S. Environmental and health risks of perovskite solar modules: Case for better test standards and risk mitigation solutions. iScience 2022, 26, 105807. [Google Scholar] [CrossRef]
- Ahmad, N.; Zhao, Y.; Ye, F.; Zhao, J.; Chen, S.; Zheng, Z.; Fan, P.; Yan, C.; Li, Y.; Su, Z.; et al. Cadmium-Free Kesterite Thin-Film Solar Cells with High Efficiency Approaching. Adv. Sci. 2023, 10, e2302869. [Google Scholar] [CrossRef]
- Li, D.-B.; Bista, S.S.; Awni, R.A.; Neupane, S.; Abudulimu, A.; Wang, X.; Subedi, K.K.; Jamarkattel, M.K.; Phillips, A.B.; Heben, M.J.; et al. 20%-efficient polycrystalline Cd(Se,Te) thin-film solar cells with compositional gradient near the front junction. Nat. Commun. 2022, 13, 7849. [Google Scholar] [CrossRef]
- Preet, S.; Smith, S.T. A comprehensive review on the recycling technology of silicon-based photovoltaic solar panels: Challenges and future outlook. J. Clean. Prod. 2024, 448, 141661. [Google Scholar] [CrossRef]
- Azeumo, M.F.; Germana, C.; Ippolito, N.M.; Franco, M.; Piga, L.; Santilli, S. Photovoltaic module recycling, a physical and a chemical recovery process. Sol. Energy Mater. Sol. Cells 2019, 193, 314–319. [Google Scholar] [CrossRef]
- Pagnanelli, F.; Moscardini, E.; Granata, G.; Abo Atia, T.; Altimari, P.; Havlik, T.; Toro, L. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Manag. 2017, 59, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Fthenakis, V.M.; Wang, W. Extraction and separation of Cd and Te from cadmium telluride photovoltaic manufacturing scrap. Progress. Photovolt. Res. Appl. 2006, 14, 363–371. [Google Scholar] [CrossRef]
- Song, B.P.; Zhang, M.Y.; Fan, Y.; Jiang, L.; Kang, J.; Gou, T.T.; Zhang, C.L.; Yang, N.; Zhang, G.J.; Zhou, X. Recycling experimental investigation on end of life photovoltaic panels by application of high voltage fragmentation. Waste Manag. 2020, 101, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, F.; Zhou, Z.; Jiang, L.; Jia, M.; Lai, Y.; Li, J.; Zhang, Z. A comprehensive hydrometallurgical recycling approach for the environmental impact mitigation of EoL solar cells. J. Environ. Chem. Eng. 2021, 9, 106830. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Li, X.; Qu, J.; Xie, H.; Gao, S.; Wang, D.; Yin, H. Recovery of lead and iodine from spent perovskite solar cells in molten salt. Chem. Eng. J. 2022, 447, 137498. [Google Scholar] [CrossRef]
- Schmidt, F.; Amrein, M.; Hedwig, S.; Kober-Czerny, M.; Paracchino, A.; Holappa, V.; Suhonen, R.; Schäffer, A.; Constable, E.C.; Snaith, H.J.; et al. Organic solvent free PbI2 recycling from perovskite solar cells using hot water. J. Hazard. Mater. 2023, 447, 130829. [Google Scholar] [CrossRef]
- Process for Recycling CdTe/Cds Thin Film Solar Cell Modules. Available online: https://patents.google.com/patent/US6572782B2/en (accessed on 18 May 2024).
- Marchetti, B.; Corvaro, F.; Giacchetta, G.; Polonara, F.; Cocci Grifoni, R.; Leporini, M. Double Green Process: A low environmental impact method for recycling of CdTe, a-Si and CIS/CIGS thin-film photovoltaic modules. Int. J. Sustain. Eng. 2018, 11, 173–185. [Google Scholar] [CrossRef]
- Dias, P.R.; Schmidt, L.; Chang, N.L.; Lunardi, M.M.; Deng, R.; Trigger, B.; Gomes, L.B.; Egan, R.; Veit, H. High yield, low cost, environmentally friendly process to recycle silicon solar panels: Technical, economic and environmental feasibility assessment. Renew. Sustain. Energy Rev. 2022, 169, 112900. [Google Scholar] [CrossRef]
- Raza, A.; Habib, M.; Kakavand, S.N.; Zahid, Z.; Zahra, N.; Sharif, R.; Hasanuzzaman, M. Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. Biology 2020, 9, 177. [Google Scholar] [CrossRef]
- Kumar, A.; Subrahmanyam, G.; Mondal, R.; Cabral-Pinto, M.M.S.; Shabnam, A.A.; Jigyasu, D.K.; Malyan, S.K.; Fagodiya, R.K.; Khan, S.A.; Kumar, A.; et al. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 2021, 268, 128855. [Google Scholar] [CrossRef]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Haider, F.U.; Maqsood, M.F.; Mohy-Ud-Din, W.; Shabaan, M.; Ahmad, M.; Kaleem, M.; Ishfaq, M.; Aslam, Z.; Shahzad, B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. Plants 2023, 12, 3147. [Google Scholar] [CrossRef] [PubMed]
- Falfushynska, H.I.; Gnatyshyna, L.L.; Stoliar, O.B. Population-related molecular responses on the effect of pesticides in Carassius auratus gibelio. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2012, 155, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Falfushynska, H.I.; Delahaut, L.; Stolyar, O.B.; Geffard, A.; Biagianti-Risbourg, S. Multi-biomarkers approach in different organs of Anodonta cygnea from the Dnister Basin (Ukraine). Arch. Environ. Contam. Toxicol. 2009, 57, 86–95. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, S.; Pandey, A. Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review. J. Environ. Chem. Eng. 2021, 9, 105684. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falfushynska, H. Navigating Environmental Concerns: Assessing the Ecological Footprint of Photovoltaic-Produced Energy. Environments 2024, 11, 140. https://doi.org/10.3390/environments11070140
Falfushynska H. Navigating Environmental Concerns: Assessing the Ecological Footprint of Photovoltaic-Produced Energy. Environments. 2024; 11(7):140. https://doi.org/10.3390/environments11070140
Chicago/Turabian StyleFalfushynska, Halina. 2024. "Navigating Environmental Concerns: Assessing the Ecological Footprint of Photovoltaic-Produced Energy" Environments 11, no. 7: 140. https://doi.org/10.3390/environments11070140
APA StyleFalfushynska, H. (2024). Navigating Environmental Concerns: Assessing the Ecological Footprint of Photovoltaic-Produced Energy. Environments, 11(7), 140. https://doi.org/10.3390/environments11070140