Microplastics in the Mississippi River System during Flash Drought Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Sample Collection
2.2. Sample Preparation
2.3. µ-FTIR Analysis
2.4. Size and Morphology Analysis Using ImageJ v 1.54h
2.5. Statistics
2.6. Contamination Control and Blank Subtraction
3. Results
3.1. Characteristics of MPs in the MS River System
3.1.1. Chemical Composition of MPs
3.1.2. Physical Characteristics of MPs
3.2. MPs in Flash Drought vs. Normal Conditions
3.3. Temporal Variation in MPs at the Memphis Site
4. Discussion
4.1. Characteristics of MPs in the MS River System
4.2. MPs in Flash Drought vs. Normal Conditions
4.3. Temporal Variation in MPs at the Memphis Site
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mississippi River Facts. Available online: https://www.nps.gov/miss/riverfacts.htm (accessed on 13 March 2023).
- Ritter, J.; Clark, W.; McGinnis, K. Mississippi River Restoration and Resilience Initiative. Available online: https://www.confedmo.org/wp-content/uploads/2020/12/MRRRI-one-pager_9-10-20.pdf (accessed on 30 March 2023).
- Mississippi Flyway. Available online: https://www.audubon.org/mississippi-flyway (accessed on 4 April 2023).
- Booth, M.S.; Campbell, C. Spring Nitrate Flux in the Mississippi River Basin: A Landscape Model with Conservation Applications. Environ. Sci. Technol. 2007, 41, 5410–5418. [Google Scholar] [CrossRef] [PubMed]
- Evenson, G.R.; Golden, H.E.; Christensen, J.R.; Lane, C.R.; Rajib, A.; D’Amico, E.; Mahoney, D.T.; White, E.; Wu, Q. Wetland Restoration Yields Dynamic Nitrate Responses across the Upper Mississippi River Basin. Environ. Res. Commun. 2021, 3, 095002. [Google Scholar] [CrossRef] [PubMed]
- Marinos, R.E.; Van Meter, K.J.; Basu, N.B. Is the River a Chemostat?: Scale Versus Land Use Controls on Nitrate Concentration-Discharge Dynamics in the Upper Mississippi River Basin. Geophys. Res. Lett. 2020, 47, e2020GL087051. [Google Scholar] [CrossRef]
- Bobori, D.C.; Dimitriadi, A.; Feidantsis, K.; Samiotaki, A.; Fafouti, D.; Sampsonidis, I.; Kalogiannis, S.; Kastrinaki, G.; Lambropoulou, D.A.; Kyzas, G.Z.; et al. Differentiation in the Expression of Toxic Effects of Polyethylene-Microplastics on Two Freshwater Fish Species: Size Matters. Sci. Total Environ. 2022, 830, 154603. [Google Scholar] [CrossRef] [PubMed]
- Mallik, A.; Xavier, K.A.M.; Naidu, B.C.; Nayak, B.B. Ecotoxicological and Physiological Risks of Microplastics on Fish and Their Possible Mitigation Measures. Sci. Total Environ. 2021, 779, 146433. [Google Scholar] [CrossRef] [PubMed]
- Cormier, B.; Cachot, J.; Blanc, M.; Cabar, M.; Clérandeau, C.; Dubocq, F.; Le Bihanic, F.; Morin, B.; Zapata, S.; Bégout, M.-L.; et al. Environmental Microplastics Disrupt Swimming Activity in Acute Exposure in Danio Rerio Larvae and Reduce Growth and Reproduction Success in Chronic Exposure in D. Rerio and Oryzias Melastigma. Environ. Pollut. 2022, 308, 119721. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Jon, B.; Craig, S.; Edward, R.; Ruth, H.; John, B.; Dick, V.A.; Heather, L.A.; Matthew, S. The World Is Your Oyster: Low-Dose, Long-Term Microplastic Exposure of Juvenile Oysters. Heliyon 2019, 6, e03103. [Google Scholar] [CrossRef]
- Scircle, A.; Cizdziel, J.V.; Missling, K.; Li, L.; Vianello, A. Single-Pot Method for the Collection and Preparation of Natural Water for Microplastic Analyses: Microplastics in the Mississippi River System during and after Historic Flooding. Environ. Toxicol. Chem. 2020, 39, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Scircle, A.; Cizdziel, J.V.; Tisinger, L.; Anumol, T.; Robey, D. Occurrence of Microplastic Pollution at Oyster Reefs and Other Coastal Sites in the Mississippi Sound, USA: Impacts of Freshwater Inflows from Flooding. Toxics 2020, 8, 35. [Google Scholar] [CrossRef]
- Lahon, J.; Handique, S. Impact of Flooding on Microplastic Abundance and Distribution in Freshwater Environment: A Review. Environ. Sci. Pollut. Res. Int. 2023, 30, 118175–118191. [Google Scholar] [CrossRef]
- Wolff, E.; van Vliet, M.T.H. Impact of the 2018 Drought on Pharmaceutical Concentrations and General Water Quality of the Rhine and Meuse Rivers. Sci. Total Environ. 2021, 778, 146182. [Google Scholar] [CrossRef] [PubMed]
- Mosley, L.M. Drought Impacts on the Water Quality of Freshwater Systems; Review and Integration. Earth-Sci. Rev. 2015, 140, 203–214. [Google Scholar] [CrossRef]
- Otkin, J.A.; Woloszyn, M.; Wang, H.; Svoboda, M.; Skumanich, M.; Pulwarty, R.; Lisonbee, J.; Hoell, A.; Hobbins, M.; Haigh, T.; et al. Getting Ahead of Flash Drought: From Early Warning to Early Action. Bull. Am. Meteorol. Soc. 2022, 103, E2188–E2202. [Google Scholar] [CrossRef]
- Lisonbee, J.; Woloszyn, M.; Skumanich, M. Making Sense of Flash Drought: Definitions, Indicators, and Where We Go from Here. J. Appl. Serv. Climatol. 2021, 2021, 1. [Google Scholar] [CrossRef]
- Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of Anthropogenic Impacts on Global Drought Frequency, Duration, and Intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar] [CrossRef]
- Thornton Hampton, L.M.; Brander, S.M.; Coffin, S.; Cole, M.; Hermabessiere, L.; Koelmans, A.A.; Rochman, C.M. Characterizing Microplastic Hazards: Which Concentration Metrics and Particle Characteristics Are Most Informative for Understanding Toxicity in Aquatic Organisms? Microplastics Nanoplastics 2022, 2, 20. [Google Scholar] [CrossRef]
- Data Tables|U.S. Drought Monitor. Available online: https://droughtmonitor.unl.edu/DmData/DataTables.aspx (accessed on 20 February 2024).
- What is the USDM?|U.S. Drought Monitor. Available online: https://droughtmonitor.unl.edu/About/WhatistheUSDM.aspx (accessed on 1 June 2024).
- USGS National Water Dashboard. Available online: https://dashboard.waterdata.usgs.gov (accessed on 20 February 2024).
- De Frond, H.; Rubinovitz, R.; Rochman, C.M. μATR-FTIR Spectral Libraries of Plastic Particles (FLOPP and FLOPP-e) for the Analysis of Microplastics. Anal. Chem. 2021, 93, 15878–15885. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. R Package Version 1.1.3. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 17 November 2023).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Smith, B. Infrared Spectroscopy of Polymers, VIII: Polyesters and the Rule of Three. Spectroscopy 2022, 37, 25–28. [Google Scholar] [CrossRef]
- Bhattacharya, S.S.; Chaudhari, S.B. Study on Structural, Mechanical and Functional Properties of Polyester Silica Nanocomposite Fabric. Int. J. Pure Appl. Sci. Technol. 2014, 2, 43–52. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Landini, G. Advanced Shape Analysis with ImageJ. In Proceedings of the Second ImageJ User and Developer Conference, Luxembourg, 6 November 2008; pp. 116–121. [Google Scholar]
- Schnepf, U.; von Moers-Meßmer, M.A.L.; Brümmer, F. A Practical Primer for Image-Based Particle Measurements in Microplastic Research. Microplastics Nanoplastics 2023, 3, 16. [Google Scholar] [CrossRef]
- Anderson, M.J.; Gorley, R.N.; Clarke, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Primer-E Ltd.: Plymouth, UK, 2008. [Google Scholar]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.6-2. Available online: https://CRAN.R-project.org/package=vegan (accessed on 11 October 2022).
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.; Hassan, A. Recent Advances in Epoxy Resin, Natural Fiber-Reinforced Epoxy Composites and Their Applications. J. Reinf. Plast. Compos. 2016, 35, 447–470. [Google Scholar] [CrossRef]
- Berdnikova, P.V.; Zhizhina, E.G.; Pai, Z.P. Phenol-Formaldehyde Resins: Properties, Fields of Application, and Methods of Synthesis. Catal. Ind. 2021, 13, 119–124. [Google Scholar] [CrossRef]
- Turner, A. Paint Particles in the Marine Environment: An Overlooked Component of Microplastics. Water Res. X 2021, 12, 100110. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Pérez-Guevara, F.; Elizalde-Martínez, I.; Kutralam-Muniasamy, G. Current Trends and Analytical Methods for Evaluation of Microplastics in Stormwater. Trends Environ. Anal. Chem. 2021, 30, e00123. [Google Scholar] [CrossRef]
- Danopoulos, E.; Twiddy, M.; West, R.; Rotchell, J.M. A Rapid Review and Meta-Regression Analyses of the Toxicological Impacts of Microplastic Exposure in Human Cells. J. Hazard. Mater. 2022, 427, 127861. [Google Scholar] [CrossRef]
- Bucci, K.; Tulio, M.; Rochman, C.M. What Is Known and Unknown about the Effects of Plastic Pollution: A Meta-Analysis and Systematic Review. Ecol. Appl. 2020, 30, e02044. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Yue, Q.; Chen, G.; Wang, J. Microplastics in Rainwater/Stormwater Environments: Influencing Factors, Sources, Transport, Fate, and Removal Techniques. TrAC Trends Anal. Chem. 2023, 165, 117147. [Google Scholar] [CrossRef]
- Horton, A.A.; Dixon, S.J. Microplastics: An Introduction to Environmental Transport Processes-Horton-2018-WIREs Water-Wiley Online Library. WIREs Water 2018, 5, 1268. [Google Scholar] [CrossRef]
- Korzeniowski, S.H.; Buck, R.C.; Newkold, R.M.; Kassmi, A.E.; Laganis, E.; Matsuoka, Y.; Dinelli, B.; Beauchet, S.; Adamsky, F.; Weilandt, K.; et al. A Critical Review of the Application of Polymer of Low Concern Regulatory Criteria to Fluoropolymers II: Fluoroplastics and Fluoroelastomers. Integr. Environ. Assess. Manag. 2023, 19, 326–354. [Google Scholar] [CrossRef]
- Ameduri, B. Fluoropolymers: A Special Class of per- and Polyfluoroalkyl Substances (PFASs) Essential for Our Daily Life. J. Fluor. Chem. 2023, 267, 110117. [Google Scholar] [CrossRef]
- Lohmann, R.; Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lindstrom, A.B.; Miller, M.F.; Ng, C.A.; Patton, S.; et al. Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS? Environ. Sci. Technol. 2020, 54, 12820–12828. [Google Scholar] [CrossRef] [PubMed]
Site Number | Closest City | River | Latitude | Longitude | Sampling Date | |
---|---|---|---|---|---|---|
Flash Drought | Normal Condition | |||||
1 | Grafton, IL | Illinois | 38.968 | −90.544 | 22 Nov 2022 | 8 June 2023 |
2 | Florissant, MO | Missouri | 38.861 | −90.272 | 22 Nov 2022 | 8 June 2023 |
3 | St. Louis, MO | Mississippi | 38.757 | −90.171 | 22 Nov 2022 | 8 June 2023 |
4 | Jackson, MO | Mississippi | 37.455 | −89.462 | 22 Nov 2022 | 9 June 2023 |
5 | Metropolis, IL | Ohio | 37.142 | −88.711 | 22 Nov 2022 | 9 June 2023 |
6 | Gilbertsville, KY | Tennessee | 37.019 | −88.279 | 21 Nov 2022 | 9 June 2023 |
7 | Memphis, TN | Mississippi | 35.180 | −90.057 | 16 Nov 2022 | 8 June 2023 |
Condition | Sampling Date | Stage Height (m) | Discharge (m3/s) |
---|---|---|---|
Flooding | 20 May 2019 | 10.2 | 37,095 |
Normal | 2 Nov 2019 | 5.36 | 19,255 |
Flash Drought | 16 Nov 2022 | −0.677 | 6881 |
Normal | 8 June 2023 | −0.177 | 8410 |
Drought | 28 Oct 2023 | −2.68 | 4870 |
Polymer | dbRDA Score | |
---|---|---|
Flash Drought | 0.7051 1 | |
Ethylene Tetrafluoroethylene (ETFE) | 0.700 | |
Polycarbonate (PC) | 0.712 | |
Fluorinated Ethylene Propylene Copolymer (EFEP) | 0.712 | |
Tetrafluoroethylene Perfluoromethylvinylether (MFA) | 0.726 | |
Normal Flow | −0.7051 1 | |
Polymethylmethacrylate (acrylic) | −0.738 | |
Polyethylene/Ethylene Vinyl Acetate Blend (PE/EVA) | −0.659 | |
Styrene Acrylonitrile (SAN) | −0.779 | |
Styrene Maleic Anhydride Copolymer (SMA) | −0.781 |
Polymer | dbRDA Score | |
---|---|---|
Flooding | −0.986 1 | |
Polycarbonate (PC) | −0.911 | |
Polycarbonate/ acrylonitrile butadiene styrene (PC/ABS) | −0.929 | |
Normal Flow 2019 | −0.679 1 | |
None | ||
Flash Drought | 0.555 1 | |
Thermoplastic copolyester (TPC) | 0.574 | |
Polybutylene terephthalate (PBT) | 0.550 | |
Normal Flow 2023 | 1.003 1 | |
Polyurethane (PU) | 1.021 | |
Polyethylene/ethylene vinyl acetate (PE/EVA) | 0.986 | |
Drought | 0.108 1 | |
Modified polytetrafluoroethylene (TFM) | 0.143 | |
Tetrafluoroethylene perfluoromethylvinylether (MFA) | −0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wontor, K.; Olubusoye, B.S.; Cizdziel, J.V. Microplastics in the Mississippi River System during Flash Drought Conditions. Environments 2024, 11, 141. https://doi.org/10.3390/environments11070141
Wontor K, Olubusoye BS, Cizdziel JV. Microplastics in the Mississippi River System during Flash Drought Conditions. Environments. 2024; 11(7):141. https://doi.org/10.3390/environments11070141
Chicago/Turabian StyleWontor, Kendall, Boluwatife S. Olubusoye, and James V. Cizdziel. 2024. "Microplastics in the Mississippi River System during Flash Drought Conditions" Environments 11, no. 7: 141. https://doi.org/10.3390/environments11070141
APA StyleWontor, K., Olubusoye, B. S., & Cizdziel, J. V. (2024). Microplastics in the Mississippi River System during Flash Drought Conditions. Environments, 11(7), 141. https://doi.org/10.3390/environments11070141