Small Decentralized Technologies for High-Strength Wastewater Treatment and Reuse in Arid and Semi-Arid Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Technology Description
2.2.1. Moving Bed Biofilm Reactor (MBBR)
2.2.2. Sequencing Batch Reactor (SBR)
2.2.3. Membrane Bioreactor (MBR)
2.2.4. Aerated Vertical-Flow Constructed Wetland (AVFCW)
2.3. Modified Wastewater Preparation
2.4. Operational Conditions
2.5. Sampling and Analysis
2.6. Data and Statistical Analysis
3. Results and Discussion
3.1. Treatment Performance Assessment of the Four DWWT Technologies
3.1.1. pH, Eh, DO, EC and T
3.1.2. Removal of BOD5 and COD
3.1.3. TSS Removal
3.1.4. NH4-N, NO3-N and TN Removal
3.1.5. TP Removal
3.1.6. Removal of E. coli
3.2. Comparing the Effectiveness of the Selected DWWT Technologies
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdulla, F.A.; Alfarra, A.; Qdais, H.A.; Sonneveld, B. Evaluation of Wastewater Treatment Plants in Jordan and Suitability for Reuse. Acad. J. Environ. Sci. 2016, 4, 111–117. [Google Scholar]
- Garcia, X.; Pargament, D. Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making. Resour. Conserv. Recycl. 2015, 101, 154–166. [Google Scholar] [CrossRef]
- Garrick, D.; Stefano, L.D.; Yu, W.; Jorgensen, I.; O’Donnel, E.; Turley, L.; Aguilar-Barajas, I.; Dai, X.; de Souza Leão, R.; Punjabi, B. Rural water for thirsty cities: A systematic review of water reallocation from rural to urban regions. Environ. Res. Lett. 2019, 14, 043003. [Google Scholar] [CrossRef]
- Sowers, J.; Vengosh, A.; Weinthal, E. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim. Change 2011, 104, 599–627. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Z.; Li, J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J. Clean. Prod. 2019, 237, 117649. [Google Scholar] [CrossRef]
- Akhoundi, A.; Nazif, S. Sustainability assessment of wastewater reuse alternatives using the evidential reasoning approach. J. Clean. Prod. 2018, 195, 1350–1376. [Google Scholar] [CrossRef]
- Aleisa, E.; Al-Zubari, W. Wastewater reuse in the countries of the Gulf Cooperation Council (GCC): The lost opportunity. Env. Monitor. Assess. 2017, 189, 553. [Google Scholar] [CrossRef] [PubMed]
- Baawain, M.; Sana, A.; Al-Yahyai, R.; Amoatey, P. Sustainable reuse options of treated effluents: A case study from Muscat, Oman. J. Environ. Eng. Sci. 2019, 14, 195–202. [Google Scholar] [CrossRef]
- Berbel, J.; Expósito, A.; Gutiérrez-Martín, C. Effects of the Irrigation Modernization in Spain 2002–2015. Water Resour. Manag. 2019, 33, 1835–1849. [Google Scholar] [CrossRef]
- Matouq, M.; El Hasan, T.; Al Bilbisi, H.; Abdelhadi, M.; Hindiyeh, M.; Eslaiman, S.; Duheisat, S. The climate change implication on Jordan: A case study using GIS and artificial neural networks for weather casting. J. Sci. Taibah Univ. 2013, 7, 44–55. [Google Scholar] [CrossRef]
- Odhiambo, G.O. Water scarcity in the Arabian Peninsula and socio-economic implications. Appl. Water Sci. 2017, 7, 2479–2492. [Google Scholar] [CrossRef]
- European Environment Agency (EEA): Water Scarcity Conditions in Europe (Water Exploitation Index Plus), 13 January 2023. Available online: https://www.eea.europa.eu/en/analysis/indicators/use-of-freshwater-resources-in-europe-1 (accessed on 27 May 2024).
- Nivala, J.; Abdallat, G.; Aubron, T.; Al-Zreiqat, I.; Abbassi, B.; Wu, G.M.; van Afferden, M.; Müller, R.A. Vertical flow constructed wetlands for decentralized wastewater treatment in Jordan: Optimization of total nitrogen removal. Sci. Total Environ. 2019, 671, 495–504. [Google Scholar] [CrossRef]
- Salas, E.B. Statista. Average Residential Drinking Water Daily Consumption Per Capita in Selected European Countries in 2021. In Drinking Water Daily Consumption Per Capita in Europe 2021, by Country; Erick Burgueño Salas, Statista GmbH: Berlin, Germany, 2023; Available online: https://www.statista.com/statistics/1393712/drinking-water-consumption-per-capita-daily-europe/ (accessed on 26 June 2024).
- Uleimat, A. Wastewater Production, Treatment, and Use in Jordan. Ministry of Water & Irrigation Water Authority of Jordan. In Proceedings of the Second Regional Workshop ‘Safe Use of Wastewater in Agriculture’, New Delhi, India, 16–18 May 2012; Available online: https://www.ais.unwater.org/ais/pluginfile.php/356/mod_page/content/111/Jordan_ULIMAT_ICID_AHMA_2012-1.pdf (accessed on 10 May 2024).
- Salameh, E.; Shteiwi, M.; Al Raggad, M. Chapter 3: Patterns of water use. In Water Resources of Jordan: Political, Social and Economic Implications of Scarce Water Resources; Springer International Publishing AG: Cham, Switzerland, 2018; Volume 1, pp. 61–66. [Google Scholar]
- MWI. National Water Strategy 2016–2025; Ministry of Water and Irrigation: Amman, Jordan, 2016. Available online: https://faolex.fao.org/docs/pdf/jor156264E.pdf (accessed on 15 May 2024).
- Metcalf and Eddy Inc. Wastewater Engineering: Treatment, Disposal, and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Ammary, B.Y. Wastewater reuse in Jordan: Present status and future plans. Desalination 2007, 211, 164–176. [Google Scholar] [CrossRef]
- Baawain, M.S.; Al-Omairi, A.; Choudri, B.S. Characterization of domestic wastewater treatment in Oman from three different regions and current implications of treated effluents. Environ. Monit. Assess. 2014, 186, 2701–2716. [Google Scholar] [CrossRef]
- van Afferden, M.; Cardona, J.A.; Rahman, K.Z.; Daoud, R.; Headley, T.; Kilani, Z.; Subah, A.; Mueller, R.A. A step towards Decentralized Wastewater Management in the Lower Jordan Rift Valley. Water Sci. Technol. Water Supply 2010, 61, 3117–3128. [Google Scholar] [CrossRef]
- Al-Mulqui, H.; Bataineh, F.; Malkawi, S. Wastewater Reuse—The Hashemite Kingdom of Jordan. Water Demand Management Forum on Wastewater Reuse, 26–27 March 2002, Rabat, Morocco. In Managing Water Demand: Policies, Practices and Lessons from the Middle East and North Africa; Baroudy, E., Lahlou, A.A., Attia, B., Eds.; IWA Publishing: London, UK, 2005; Available online: https://idrc-crdi.ca/sites/default/files/openebooks/187-6/index.html (accessed on 4 June 2024).
- Mutamim, N.S.A.; Noor, Z.Z.; Abu Hassan, M.A.; Olsson, G. Application of membrane bioreactor technology in treating high strength industrial wastewater: A performance review. Desalination 2012, 305, 1–11. [Google Scholar] [CrossRef]
- Liew, Y.X.; Chan, Y.J.; Manickam, S.; Chong, M.F.; Chong, S.; Tiong, T.J.; Lim, J.W.; Pan, G.T. Enzymatic pretreatment to enhance anaerobic bioconversion of high strength wastewater to biogas: A review. Sci. Total Environ. 2020, 713, 136373. [Google Scholar] [CrossRef]
- Musa, M.A.; Idrus, S.; Man, H.C.; Daud, N.N.N. Performance Comparison of Conventional and Modified Upflow Anaerobic Sludge Blanket (UASB) Reactors Treating High-Strength Cattle Slaughterhouse Wastewater. Water 2019, 11, 806. [Google Scholar] [CrossRef]
- Bustillo-Lecompte, C.F.; Mehrvar, M.; Quiñones-Bolaños, E. Cost-Effectiveness Analysis of TOC Removal from Slaughter-house Wastewater Using Combined Anaerobic-Aerobic and UV/H2O2 Processes. J. Environ. Manag. 2014, 134, 145–152. [Google Scholar] [CrossRef]
- Ozturk, D.; Yilmaz, A.E. Treatment of Slaughter house Wastewater with the Electrochemical Oxidation Process: Role of Operating Parameters on Treatment Efficiency and Energy Consumption. J. Water Process Eng. 2019, 31, 100834. [Google Scholar] [CrossRef]
- Scherer, L.; Pfster, S. Global Biodiversity loss by freshwater consumption and eutrophication from swiss food consumption. Environ. Sci. Technol. 2016, 50, 7019–7028. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Integrated, Decentralized Wastewater Management for Resource Recovery in Rural and Peri-Urban Areas. Resources 2017, 6, 22. [Google Scholar] [CrossRef]
- Khurelbaatar, G.; Al Marzuqi, B.; van Afferden, M.; Müller, R.A.; Friesen, J. Data reduced method for cost comparison of wastewater management scenarios—Case study for two settlements in Jordan and Oman. Front. Environ. Sci. 2021, 9, 626634. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A.; Cecconet, D.; Molognoni, D. Sustainability of decentralized wastewater treatment technologies. Water Pract. Technol. 2017, 12, 463–477. [Google Scholar] [CrossRef]
- Reynaud, N.; Buckley, C. Field-data on parameters relevant for design, operation and monitoring of communal decentralized wastewater treatment systems (DEWATS). Water Pract. Technol. 2015, 10, 787–798. [Google Scholar] [CrossRef]
- Pabbati, R.; Jhansi, V.; Reddy, K.V. Conventional Wastewater Treatment Processes. In Advances in the Domain of Environmental Biotechnology; Springer: Singapore, 2021; pp. 455–479. ISSN 2662-1681. [Google Scholar] [CrossRef]
- Thomas, B.D.; Uludag-Demirer, S.; Frost, H.; Liu, Y.; Dusenbury, J.S.; Liao, W. Decentralized high-strength wastewater treatment using a compact aerobic baffled bioreactor. J. Environ. Manag. 2022, 305, 114281. [Google Scholar] [CrossRef]
- Rahman, K.Z.; Al Saadi, S.; Al Rawahi, M.; Knappe, J.; van Afferden, M.; Moeller, L.; Bernhard, K.; Müller, R.A. A multi-functional nature-based solution (NBS) for greywater treatment and reuse at the same plot. Ecol. Eng. 2023, 191, 106952. [Google Scholar] [CrossRef]
- DIN EN 12556-3; Small Wastewater Treatment Systems for up to 50 PT—Part 3: Packaged and/or Site Assembled Domestic Wastewater Treatment Plants. European Committee for Standardization: Brussels, Belgium, 2005. (In English)
- PIA GmbH. Testing Institute for Wastewater Technology GmbH at RWTH Aachen University e.V., CE tests according to EN 12566. Available online: https://www.pia-gmbh.com/en/services/wastewater-treatment-plants#part-6-prefabricated-treatment-units-for-septic-tank-effluent (accessed on 27 May 2024).
- Hirooka, K.; Asano, R.; Yokoyama, A.; Okazaki, M.; Sakamoto, A.; Nakai, Y. Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: Case study of an on-farm wastewater treatment plant. Bioresour. Technol. 2009, 100, 3161–3166. [Google Scholar] [CrossRef]
- Nguyen, A.V.; Pham, N.T.; Nguyen, T.H.; Morel, A.; Tonderski, K. Improved septic tank with constructed wetland, a promising decentralized wastewater treatment alternative in Vietnam. In Proceedings of the Paper XI-RCS-07-30 NOWRA 16th Annual Technical Education Conference & Exposition, Baltimore, MD, USA, 10–14 March 2007. [Google Scholar]
- Villegas-Gómez, J.D.; Jhonniers-Guerrero, E.; Castaño-Rojas, J.M.; Paredes-Cuervo, D. Septic Tank (ST)-Up Flow Anaerobic Filter (UAF)-Subsurface Flow Constructed Wetland (SSF-CW) systems aimed at wastewater treatment in small localities in Colombia. Rev. Téc. Fac. Ing. Univ. Zulia 2006, 29, 269–281. [Google Scholar]
- de Anda, J.; López-López, A.; Villegas-García, E.; Valdivia-Aviña, K. High-Strength Domestic Wastewater Treatment and Reuse with Onsite Passive Methods. Water 2018, 10, 99. [Google Scholar] [CrossRef]
- Standard DWA-A 262E; Principles for Dimensioning, Construction and Operation of Wastewater Treatment Plants with Planted and Unplanted Filters for Treatment of Domestic and Municipal Wastewater. The German Association for Water, Wastewater and Waste (DWA): Hennef, Germany, 2017; ISBN 978-3-88721-641-2.
- Ødegaard, H. Innovations in wastewater treatment: The moving bed bioflm process. Water Sci. Technol. 2006, 53, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Díaz, J.C.; Martín-Pascual, J.; Poyatos, J.M. Moving bed bioflm reactor to treat wastewater. Int. J. Environ. Sci. Technol. 2017, 14, 881–910. [Google Scholar] [CrossRef]
- Dutta, A.; Sudipta Sarkar, S. Sequencing Batch Reactor for Wastewater Treatment: Recent Advances. Curr. Pollut. Rep. 2015, 1, 177–190. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for wastewater treatment: Five decades of experience. Environ. Sci. Technol. 2010, 45, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Carvalho, P.N.; Muller, J.A.; Manoj, V.R.; Dong, R. Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Sci. Total Environ. 2016, 541, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Takala, J.; Hiltunen, E.; Li, Z.; Kristianto, Y. Comparison of vertical-flow constructed wetlands with and without supplementary aeration treating decentralized domestic wastewater. Environ. Technol. 2013, 34, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef]
- Zhang, D.; Gersberg, R.M.; Keat, T.S. Constructed wetlands in China. Ecol. Eng. 2009, 35, 1367–1378. [Google Scholar] [CrossRef]
- Dong, H.; Qiang, Z.; Li, T.; Jin, H.; Chen, W. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water. J. Environ. Sci. 2012, 24, 596–601. [Google Scholar] [CrossRef]
- Nivala, J.; Wallace, S.; Headley, T.; Kassa, K.; Brix, H.; van Afferden, M.; Müller, R.A. Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecol. Eng. 2013, 61(Part B), 544–554. [Google Scholar] [CrossRef]
- Maisonnave, V.; Lepimpec, P.; Cauchi, A.; Vignoles, C.; Deleris, S. Eaux usées artificielles: Une voie nouvelle pour les essais. Tech. Sci. Méthodes 2011, 6, 18–30. (In French) [Google Scholar] [CrossRef]
- Bertanza, G.; Boiocchi, R. Interpreting per capita loads of organic matter and nutrients in municipal wastewater: A study on 168 Italian agglomerations. Sci. Total Environ. 2022, 819, 153236. [Google Scholar] [CrossRef]
- EN ISO 11732; Water Quality—Determination of Ammonium Nitrogen—Method by Flow Analysis (CFA and FIA) and Spectrometric Detection. ISO: London, UK, 2005.
- EN ISO 10304-1; Water Quality—Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate. ISO: London, UK, 2007.
- EN ISO 15681-1; Water Quality—Determination of Orthophosphate and Total Phosphorus Contents by Flow Analysis (FIA and CFA)—Part 1: Method by Flow Injection Analysis (FIA). ISO: London, UK, 2003.
- ISO 9308-2; Water Quality—Enumeration of Escherichia coli and Coliform Bacteria—Part 2: Most Probable Number Method. ISO: London, UK, 2012.
- Abdallat, G.A.; Salameh, E.; Shteiwi, M.; Bardaweel, S. Pharmaceuticals as Emerging Pollutants in the Reclaimed Wastewater Used in Irrigation and Their Effects on Plants, Soils, and Groundwater. Water 2022, 14, 1560. [Google Scholar] [CrossRef]
- Ministry of Regional Municipalities and Environment (MRME). Sultanate of Oman. Regulations for Wastewater Reuse and Discharge. Ministerial Decision 145/1993, 13 June 1993. Available online: https://www.pdo.co.om/hseforcontractors/Environment/Documents/Oman%20Laws/Misterial%20Decision%20-%20Guidelines/Wastewater%20Reuse%20and%20Discharge.pdf (accessed on 14 May 2024).
- European Union. Regulation (EU) 2020/741 of the European Parliament and of the council 25 May 2020 on Minimum Requirements for Water Reuse. Off. J. Eur. Union 2020, OJ L 177, 32–55. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741&from=EN (accessed on 14 May 2024).
- Mozia, S.; Janus, M.; Bering, S.; Tarnowski, K.; Mazur, J.; Szymański, K.; Morawski, A.W. Hybrid System Coupling Moving Bed Bioreactor with UV/O3 Oxidation and Membrane Separation Units for Treatment of Industrial Laundry Wastewater. Materials 2020, 13, 2648. [Google Scholar] [CrossRef]
- Bustamante, M.; Liao, W. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation. Bioresour. Technol. 2017, 234, 415–423. [Google Scholar] [CrossRef]
- Bezbaruah, A.N.; Zhang, T.C. Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland. Biotechnol. Bioeng. 2005, 89, 308–318. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, G.; Xu, X.; Yang, Y.; Yang, F. Long-term operation of oxygen-limiting membrane bioreactor (MBR) for the development of simultaneous partial nitrification, anammox and denitrification (SNAD) process. Environ. Technol. 2018, 39, 2193–2202. [Google Scholar] [CrossRef]
- Sklarz, M.Y.; Gross, A.; Yakirevich, A.; Soares, M.I.M. A Recirculating Vertical Flow Constructed Wetland for the Treatment of Domestic Wastewater. Desalination 2009, 246, 617–624. [Google Scholar] [CrossRef]
- Dotro, G.; Jefferson, B.; Jones, M.; Vale, P.; Cartmell, E.; Stephenson, T. A review of the impact and potential of intermittent aeration on continuous flow nitrifying activated sludge. Environ. Technol. 2011, 32, 1685–1697. [Google Scholar] [CrossRef]
- Li, J.; Meng, J.; Li, J.; Wang, C.; Deng, K.; Sun, K.; Buelna, G. The effect and biological mechanism of COD/TN ratio on nitrogen removal in a novel upflow microaerobic sludge reactor treating manure-free piggery wastewater. Bioresour. Technol. 2016, 209, 360–368. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Maranger, R.; Brissona, J. Effect of artificial aeration and macrophyte species on nitrogen cycling and gas flux in constructed wetlands. Ecol. Eng. 2009, 35, 221–229. [Google Scholar] [CrossRef]
- Butterworth, E.; Dotro, G.; Jones, M.; Richards, A.; Onunkwo, P.; Narroway, Y.; Jefferson, B. Effect of artificial aeration on tertiary nitrification in a full-scale subsurface horizontal flow constructed wetland. Ecol. Eng. 2013, 54, 236–244. [Google Scholar] [CrossRef]
- Colliver, B.B.; Stephenson, T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol. Adv. 2000, 18, 219–232. [Google Scholar] [CrossRef]
- Dotro, G.; Langergraber, G.; Molle, P.; Nivala, J.; Puigagut, J.; Stein, O.; von Sperling, M. Biological Wastewater Treatment. In Treatment Wetlands; IWA Publishing: London, UK, 2017; Volume 7. [Google Scholar]
- Headley, T.; Nivala, J.; Kassa, K.; Olsson, L.; Wallace, S.; Brix, H.; van Afferden, M.; Müller, R. Escherichia coli removal and internal dynamics in subsurface flow ecotechnologies: Effects of design and plants. Ecol. Eng. 2013, 61, 564–574. [Google Scholar] [CrossRef]
- Al Hamedi, F.H.; Kandhan, K.; Liu, Y.; Ren, M.; Jaleel, A.; Alyafei, M.A.M. Wastewater Irrigation: A Promising Way for Future Sustainable Agriculture and Food Security in the United Arab Emirates. Water 2023, 15, 2284. [Google Scholar] [CrossRef]
- Bérubé, P. Chapter 9 Membrane Bioreactors: Theory and Applications to Wastewater Reuse. Sustain. Sci. Eng. 2010, 2, 255–292. [Google Scholar]
- Hamza, R.A.; Iorhemen, O.T.; Tay, J.H. Advances in biological systems for the treatment of high-strength wastewater. J. Water Process. Eng. 2016, 10, 128–142. [Google Scholar] [CrossRef]
- Shoushtarian, F.; Negahban-Azar, M. Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review. Water 2020, 12, 971. [Google Scholar] [CrossRef]
Experimental Phase | Wastewater Type | Wastewater Discharge [L/(PE × d)] | BOD5 Load [g/(PE × d)] c | TN Load [g/(PE × d)] c | TP Load [g/(PE × d)] c | BOD5 (mg/L) | TN (mg/L) | TP (mg/L) |
---|---|---|---|---|---|---|---|---|
Phase I | real a | 150 | 45 | 9 | 1.5 | 300 | 60 | 10 |
Phase II | modified b | 75 | 45 | 9 | 1.5 | 600 | 120 | 20 |
Phase III | modified b | 37.5 | 45 | 9 | 1.5 | 1200 | 240 | 40 |
Parameters | Unit | Concentration (Range) | |||
---|---|---|---|---|---|
EU Practical Test DIN EN 12566-3 [34] | Phase I a (Real Wastewater) | Phase II b (Modified Wastewater) | Phase III c (Modified Wastewater) | ||
BOD5 | mg/L | 150–500 | 250–400 | 500–800 | 1000–1900 |
COD | mg/L | 300–1000 | 460–980 | 980–1550 | 1550–3400 |
TSS | mg/L | 200–700 | 100–280 | 200–450 | 400–750 |
NH4-N | mg/L | 22–80 | 20–80 | 60–130 | 140–420 |
TP | mg/L | 5–20 | 3–10 | 10–25 | 25–60 |
System | Design Capacity (PE) | Influent Flow Rates (L/d) | ||
---|---|---|---|---|
Phase I (Real Wastewater) | Phase II (Modified Wastewater) | Phase III (Modified Wastewater) | ||
MBBR | 4 | 600 | 300 | 150 |
SBR | 6 | 900 | 450 | 225 |
MBR | 4 | 600 | 300 | 150 |
AVFCW | 8 | 1200 | 600 | 300 |
Parameter | Unit | Allowable Limits for Reuse in Jordan | Maximum Wastewater Quality Limits in Oman | Minimum Reclaimed Water Quality Requirements According to the EU | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Class A a | Class B b | Class C c | Class A d | Class B e | Class A f | Class B g | Class C h | Class D i | ||
BOD5 | mg/L | 30 | 200 | 300 | 15 | 20 | 10 | 25 | 25 | 25 |
COD | mg/L | 100 | 500 | 500 | 150 | 200 | n.p. | n.p. | n.p. | n.p. |
TSS | mg/L | 50 | 150 | 150 | 15 | 30 | 10 | 35 | 35 | 35 |
DO | mg/L | >2 | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. |
pH | – | 6–9 | 6–9 | 6–9 | 6–9 | 6–9 | n.p. | n.p. | n.p. | n.p. |
EC | μS/cm | n.p. | n.p. | n.p. | 2000 | 2700 | n.p. | n.p. | n.p. | n.p. |
NH4-N | mg/L | n.p. | n.p. | n.p. | 5 | 10 | n.p. | n.p. | n.p. | n.p. |
NO3-N | mg/L | 30 | 45 | 45 | 50 | 50 | n.p. | n.p. | n.p. | n.p. |
TN | mg/L | 45 | 70 | 70 | n.p. | n.p. | n.p. | n.p. | n.p. | n.p. |
TP | mg/L | n.p. | n.p. | n.p. | 30 | 30 | n.p. | n.p. | n.p. | n.p. |
E. coli | MPN/100 mL (log10 E.coli) | 100 (2.0) | 1000 (3.0) | n.p. | 200 (2.3) | 1000 (3.0) | 10 (1.0) | 100 (2.0) | 1000 (3.0) | 10,000 (4.0) |
Experimental Phase | Sampling Point/System | pH (-) | Eh (mV) | DO (mg/L) | EC (µS/cm) | T (°C) | Number of Samples |
---|---|---|---|---|---|---|---|
I | Inflow | 7.7 ± 0.4 | −100 ± 53 | 0.4 ± 0.2 | 1240 ± 550 | 11.3 ± 2.6 | 8 |
Outflow | |||||||
MBBR | 7.4 ± 0.2 | 295 ± 130 | 9.4 ± 1.3 | 1062 ± 438 | 9.9 ± 2.9 | 8 | |
SBR | 7.2 ± 0.3 | 299 ± 116 | 10.7 ± 0.8 | 1090 ± 442 | 9.9 ± 2.7 | 8 | |
MBR | 7.0 ± 0.3 | 294 ± 130 | 5.8 ± 2.3 | 1044 ± 440 | 13.8 ± 2.0 | 8 | |
AVFCW | 6.9 ± 0.5 | 286 ± 103 | 10.5 ± 1.5 | 1116 ± 455 | 8.2 ± 3.5 | 8 | |
II | Inflow | 7.0 ± 0.5 | −224 ± 61 | 1.1 ± 1.0 | 1815 ± 281 | 19.6 ± 3.1 | 12 |
Outflow | |||||||
MBBR | 6.8 ± 0.4 | 180 ± 25 | 8.2 ± 1.4 | 1377 ± 268 | 17.1 ± 4.3 | 12 | |
SBR | 6.6 ± 0.7 | 186 ± 22 | 7.8 ± 1.8 | 1300 ± 184 | 17.7 ± 3.7 | 12 | |
MBR | 7.8 ± 0.3 | 98 ± 92 | 3.9 ± 2.2 | 1478 ± 182 | 19.9 ± 2.4 | 12 | |
AVFCW | 7.2 ± 0.4 | 180 ± 32 | 7.7 ± 2.1 | 1276 ± 292 | 13.2 ± 4.8 | 12 | |
III | Inflow | 7.2 ± 0.5 | −227 ± 49 | 0.2 ± 0.1 | 3474 ± 858 | 20.3 ± 4.1 | 12 |
Outflow | |||||||
MBBR | 6.9 ± 0.8 | 209 ± 22 | 7.3 ± 3.1 | 1915 ± 427 | 16.1 ± 3.7 | 12 | |
SBR | 5.8 ± 0.5 | 222 ± 29 | 9.1 ± 1.1 | 2170 ± 523 | 15.5 ± 3.4 | 12 | |
MBR | 5.9 ± 1.0 | 243 ± 33 | 8.0 ± 1.4 | 2263 ± 831 | 18.4 ± 3.3 | 12 | |
AVFCW | 6.2 ± 0.5 | 230 ± 46 | 8.6 ± 2.8 | 2599 ± 833 | 11.6 ± 3.8 | 12 |
Experimental Phase | Sampling Point/ System | BOD5 (mg/L) | COD (mg/L) | TSS (mg/L) | NH4-N (mg/L) | NO3-N (mg/L) | TN (mg/L) | TP (mg/L) | log10 E. coli (MPN/100 mL) | Number of Samples |
---|---|---|---|---|---|---|---|---|---|---|
I | Inflow | 292 ± 60 | 608 ± 152 | 207 ± 64 | 44.2 ± 19 | 0.5 ± 0.1 | 60 ± 19 | 7.9 ± 3 | 7.1 ± 0.3 | 11 |
Outflow | ||||||||||
MBBR | 4 ± 3 (99 a) | 41 ± 9 (93 a) | 7 ± 3 (97 a) | 2.8 ± 2 (94 a) | 21 ± 4 | 28 ± 7 (54 a) | 6.2 ± 1 (22 a) | 4.8 ± 0.5 (2.3 b) | 10 | |
SBR | 4 ± 3 (99) | 35 ± 14 (94) | 6 ± 5 (97) | 0.6 ± 0.5 (99) | 33 ± 9 | 38 ± 9 (37) | 6.6 ± 2 (17) | 3.9 ± 0.4 (3.2) | 10 | |
MBR | 1 ± 0.8 (99) | 20 ± 4 (97) | 1.2 ± 1 (99) | 0.8 ± 0.7 (98) | 27 ± 10 | 29 ± 12 (52) | 5.4 ± 2 (32) | 0.2 ± 0.1 (6.9) | 10 | |
AVFCW | 2 ± 1.7 (99) | 34 ± 6 (94) | 3 ± 1 (99) | 3.9 ± 3.8 (91) | 40 ± 9 | 44 ± 9 (27) | 4.2 ± 1 (48) | 4.7 ± 0.6 (2.4) | 11 | |
II | Inflow | 664 ± 107 | 1288 ± 277 | 310 ± 85 | 88.4 ± 27 | 0.5 ± 0.1 | 123 ± 23 | 18.8 ± 5 | 6.9 ± 0.4 | 12 |
Outflow | ||||||||||
MBBR | 5 ± 3 (99 a) | 41 ± 6 (97 a) | 4 ± 1 (99 a) | 3.8 ± 3 (96 a) | 41 ± 7 | 47 ± 12 (62 a) | 13 ± 3 (29 a) | 3.6 ± 0.6 (3.3 b) | 12 | |
SBR | 7 ± 6 (99) | 57 ± 23 (96) | 13 ± 9 (96) | 1.1 ± 0.7 (99) | 43 ± 20 | 51 ± 23 (59) | 14 ± 3 (27) | 4.1 ± 1.0 (2.8) | 12 | |
MBR | 4 ± 3 (99) | 33 ± 14 (97) | 2.1 ± 2 (99) | 49 ± 38 (45) | 3.8 ± 3 | 46 ± 32 (63) | 8 ± 6 (58) | 0.1 ± 0.1 (6.8) | 12 | |
AVFCW | 3 ± 2 (99) | 36 ± 4 (97) | 3 ± 1 (99) | 1.0 ± 0.5 (99) | 31 ± 14 | 33 ± 13 (73) | 11 ± 2 (44) | 4.2 ± 0.8 (2.7) | 12 | |
III | Inflow | 1532 ± 478 | 2547 ± 830 | 546 ± 176 | 267 ± 110 | 0.5 ± 0.1 | 367 ± 133 | 45.3 ± 12 | 6.2 ± 0.6 | 12 |
Outflow | ||||||||||
MBBR | 10 ± 9 (99 a) | 70 ± 39 (97 a) | 13 ± 9 (98 a) | 33 ± 30 (87 a) | 46 ± 13 | 89 ± 35 (76 a) | 20 ± 3 (56 a) | 3.8 ± 0.6 (2.4 b) | 12 | |
SBR | 4 ± 2 (99) | 70 ± 30 (97) | 15 ± 7 (97) | 53 ± 38 (80) | 83 ± 34 | 190 ± 71 (48) | 24 ± 5 (48) | 2.8 ± 0.8 (3.4) | 11 | |
MBR | 9 ± 7 (99) | 62 ± 46 (98) | 4.5 ± 2 (99) | 60 ± 36 (78) | 66 ± 31 | 143 ± 59 (61) | 37 ± 15 (18) | 0.1 ± 0.1 (6.1) | 12 | |
AVFCW | 6 ± 5 (99) | 64 ± 18 (97) | 8 ± 3 (98) | 46 ± 33 (83) | 101 ± 33 | 166 ± 75 (55) | 14 ± 5 (69) | 3.6 ± 0.5 (2.6) | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, K.Z.; Al Saadi, S.; Al Rawahi, M.; van Afferden, M.; Bernhard, K.; Friesen, J.; Müller, R.A. Small Decentralized Technologies for High-Strength Wastewater Treatment and Reuse in Arid and Semi-Arid Regions. Environments 2024, 11, 142. https://doi.org/10.3390/environments11070142
Rahman KZ, Al Saadi S, Al Rawahi M, van Afferden M, Bernhard K, Friesen J, Müller RA. Small Decentralized Technologies for High-Strength Wastewater Treatment and Reuse in Arid and Semi-Arid Regions. Environments. 2024; 11(7):142. https://doi.org/10.3390/environments11070142
Chicago/Turabian StyleRahman, Khaja Zillur, Shamsa Al Saadi, Mohamed Al Rawahi, Manfred van Afferden, Katy Bernhard, Jan Friesen, and Roland A. Müller. 2024. "Small Decentralized Technologies for High-Strength Wastewater Treatment and Reuse in Arid and Semi-Arid Regions" Environments 11, no. 7: 142. https://doi.org/10.3390/environments11070142
APA StyleRahman, K. Z., Al Saadi, S., Al Rawahi, M., van Afferden, M., Bernhard, K., Friesen, J., & Müller, R. A. (2024). Small Decentralized Technologies for High-Strength Wastewater Treatment and Reuse in Arid and Semi-Arid Regions. Environments, 11(7), 142. https://doi.org/10.3390/environments11070142