NOx Abatement by a TiO2-Based Coating under Real-Life Conditions and Laboratory-Scale Durability Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments for Air Depollution Assessment
2.1.1. Experimental Site
2.1.2. Coating Application
2.1.3. On-Site Air Depollution Experiment
2.2. Laboratory Experiments for Durability Assessment
2.2.1. Preparation of Coated Mortar Samples
2.2.2. Reactor-Scale Air Depollution Experiment
2.2.3. Abrasion, Accelerated Weathering, and Immersion/Drying Experiments
3. Results
3.1. NOx Depollution in Field Conditions
3.1.1. NOx Concentrations
3.1.2. Weather Conditions
3.2. Coating Durability Assessment
4. Discussion
4.1. NOx Depollution under Field Conditions
4.2. Laboratory-Scale Durability Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. 9 out of 10 People Worldwide Breathe Polluted Air. Available online: http://www.emro.who.int/media/news/9-out-of-10-people-worldwide-breathe-polluted-air.html (accessed on 30 May 2024).
- Pearson, R.L.; Wachtel, H.; Ebi, K.L. Distance-Weighted Traffic Density in Proximity to a Home Is a Risk Factor for Leukemia and Other Childhood Cancers. J. Air Waste Manag. Assoc. 2000, 50, 175–180. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Brunekreef, B.; van Vliet, P.; Aarts, F.; Meliefste, K.; Harssema, H.; Fischer, P. The Relationship between Air Pollution from Heavy Traffic and Allergic Sensitization, Bronchial Hyperresponsiveness, and Respiratory Symptoms in Dutch Schoolchildren. Environ. Health Perspect. 2003, 111, 1512–1518. [Google Scholar] [CrossRef] [PubMed]
- McConnell, R.; Berhane, K.; Yao, L.; Jerrett, M.; Lurmann, F.; Gilliland, F.; Künzli, N.; Gauderman, J.; Avol, E.; Thomas, D.; et al. Traffic, Susceptibility, and Childhood Asthma. Environ. Health Perspect. 2006, 114, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Harm to Human Health from Air Pollution in Europe: Burden of Disease 2023—European Environment Agency. Available online: https://www.eea.europa.eu/publications/harm-to-human-health-from-air-pollution (accessed on 30 April 2024).
- Bai, L.; Shin, S.; Burnett, R.T.; Kwong, J.C.; Hystad, P.; van Donkelaar, A.; Goldberg, M.S.; Lavigne, E.; Weichenthal, S.; Martin, R.V.; et al. Exposure to Ambient Air Pollution and the Incidence of Lung Cancer and Breast Cancer in the Ontario Population Health and Environment Cohort. Int. J. Cancer 2020, 146, 2450–2459. [Google Scholar] [CrossRef]
- Liang, H.; Zhou, X.; Zhu, Y.; Li, D.; Jing, D.; Su, X.; Pan, P.; Liu, H.; Zhang, Y. Association of Outdoor Air Pollution, Lifestyle, Genetic Factors with the Risk of Lung Cancer: A Prospective Cohort Study. Environ. Res. 2023, 218, 114996. [Google Scholar] [CrossRef]
- Air Pollution in Europe: 2023 Reporting Status under the National Emission Reduction Commitments Directive—European Environment Agency. Available online: https://www.eea.europa.eu/publications/national-emission-reduction-commitments-directive-2023 (accessed on 30 April 2024).
- Pandey, J.S.; Kumar, R.; Devotta, S. Health Risks of NO2, SPM and SO2 in Delhi (India). Atmos. Environ. 2005, 39, 6868–6874. [Google Scholar] [CrossRef]
- Ryan, R.G.; Rhodes, S.; Tully, M.; Schofield, R. Surface Ozone Exceedances in Melbourne, Australia Are Shown to Be under NOx Control, as Demonstrated Using Formaldehyde: NO2 and Glyoxal:Formaldehyde Ratios. Sci. Total Environ. 2020, 749, 141460. [Google Scholar] [CrossRef]
- Stavrakou, T.; Müller, J.-F.; Bauwens, M.; Boersma, K.F.; van Geffen, J. Satellite Evidence for Changes in the NO2 Weekly Cycle over Large Cities. Sci. Rep. 2020, 10, 10066. [Google Scholar] [CrossRef] [PubMed]
- Vohra, K.; Marais, E.A.; Bloss, W.J.; Schwartz, J.; Mickley, L.J.; Van Damme, M.; Clarisse, L.; Coheur, P.-F. Rapid Rise in Premature Mortality Due to Anthropogenic Air Pollution in Fast-Growing Tropical Cities from 2005 to 2018. Sci. Adv. 2022, 8, eabm4435. [Google Scholar] [CrossRef]
- Sayegh, A.; Tate, J.E.; Ropkins, K. Understanding How Roadside Concentrations of NOx Are Influenced by the Background Levels, Traffic Density, and Meteorological Conditions Using Boosted Regression Trees. Atmos. Environ. 2016, 127, 163–175. [Google Scholar] [CrossRef]
- Ehrnsperger, L.; Klemm, O. Air Pollution in an Urban Street Canyon: Novel Insights from Highly Resolved Traffic Information and Meteorology. Atmos. Environ. X 2022, 13, 100151. [Google Scholar] [CrossRef]
- Ghazali, N.A.; Ramli, N.A.; Yahaya, A.S.; Yusof, N.F.F.M.D.; Sansuddin, N.; Al Madhoun, W.A. Transformation of Nitrogen Dioxide into Ozone and Prediction of Ozone Concentrations Using Multiple Linear Regression Techniques. Environ. Monit Assess 2010, 165, 475–489. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Bian, H.; Feng, Y.; Liu, A.; Li, X.; Zeng, F.; Zhang, X. Analysis of the Relationship between O3, NO and NO2 in Tianjin, China. Aerosol. Air Qual. Res. 2011, 11, 128–139. [Google Scholar] [CrossRef]
- Shukla, J.B.; Sundar, S.; Sharma, S.D.; Naresh, R. Modeling and Analysis of the Acid Rain Formation Due to Precipitation and Its Effect on Plant Species. Nat. Resour. Model. 2013, 26, 53–65. [Google Scholar] [CrossRef]
- World Health Organization. What Are the WHO Air Quality Guidelines? Available online: https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guidelines (accessed on 30 May 2024).
- Managing Air Quality in Europe—European Environment Agency. Available online: https://www.eea.europa.eu/publications/managing-air-quality-in-europe/managing-air-quality-in-europe (accessed on 30 April 2024).
- Europe’s Air Quality Status 2023—European Environment Agency. Available online: https://www.eea.europa.eu/publications/europes-air-quality-status-2023/europes-air-quality-status2023/#fn1 (accessed on 30 April 2024).
- Shelef, M.; Otto, K.; Gandhi, H. The Oxidation of CO by O2 and by NO on Supported Chromium Oxide and Other Metal Oxide Catalysts. J. Catal. 1968, 12, 361–375. [Google Scholar] [CrossRef]
- Solymosi, F.; Kiss, J. Adsorption and Reduction of NO on Tin(IV) Oxide Catalysts. J. Catal. 1976, 41, 202–211. [Google Scholar] [CrossRef]
- Solymosi, F.; Kiss, J. Adsorption and Reduction of NO on Tin(IV) Oxide Doped with Chromium(III) Oxide. J. Catal. 1978, 54, 42–51. [Google Scholar] [CrossRef]
- Lim, T.H.; Jeong, S.M.; Kim, S.D.; Gyenis, J. Photocatalytic Decomposition of NO by TiO2 Particles. J. Photochem. Photobiol. A Chem. 2000, 134, 209–217. [Google Scholar] [CrossRef]
- Ângelo, J.; Andrade, L.; Madeira, L.M.; Mendes, A. An Overview of Photocatalysis Phenomena Applied to NOx Abatement. J. Environ. Manag. 2013, 129, 522–539. [Google Scholar] [CrossRef]
- Nema, A.; Kaul, D.S.; Mukherjee, K.; Jeyaraman, J.D. Photo-Active Catalysts in Building and Construction Materials for Air Pollution Treatment: A Bibliometric Analysis. Mater. Today Proc. 2022, 62, 7297–7301. [Google Scholar] [CrossRef]
- Recent Progress and Current Status of Photocatalytic NO Removal|IntechOpen. Available online: https://www.intechopen.com/chapters/88123 (accessed on 30 July 2024).
- Castelló Lux, K.; Hot, J.; Fau, P.; Bertron, A.; Kahn, M.; Ringot, E.; Fajerwerg, K. Nano-gold decorated ZnO: An alternative photocatalyst promising for NOx degradation. Chem. Eng. Sci. 2023, 267, 118377. [Google Scholar] [CrossRef]
- Henderson, M.A. A Surface Science Perspective on TiO2 Photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium Dioxide Photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Kaja, A.M.; Brouwers, H.J.H.; Yu, Q.L. NOx Degradation by Photocatalytic Mortars: The Underlying Role of the CH and C-S-H Carbonation. Cem. Concr. Res. 2019, 125, 105805. [Google Scholar] [CrossRef]
- Chen, X.; Qiao, L.; Zhao, R.; Wu, J.; Gao, J.; Li, L.; Chen, J.; Wang, W.; Galloni, M.G.; Scesa, F.M.; et al. Recent Advances in Photocatalysis on Cement-Based Materials. J. Environ. Chem. Eng. 2023, 11, 109416. [Google Scholar] [CrossRef]
- Zouzelka, R.; Rathousky, J. Photocatalytic Abatement of NOx Pollutants in the Air Using Commercial Functional Coating with Porous Morphology. Appl. Catal. B Environ. 2017, 217, 466–476. [Google Scholar] [CrossRef]
- Hot, J.; Topalov, J.; Ringot, E.; Bertron, A. Investigation on Parameters Affecting the Effectiveness of Photocatalytic Functional Coatings to Degrade NO: TiO2 Amount on Surface, Illumination, and Substrate Roughness. Int. J. Photoenergy 2017, 2017, e6241615. [Google Scholar] [CrossRef]
- Hot, J.; Martinez, T.; Wayser, B.; Ringot, E.; Bertron, A. Photocatalytic Degradation of NO/NO2 Gas Injected into a 10-M3 Experimental Chamber. Environ. Sci. Pollut. Res. 2017, 24, 12562–12570. [Google Scholar] [CrossRef]
- Hot, J.; Bradley, P.; Cooper, J.; Wayser, B.; Ringot, E. In Situ Investigation of NOᵪ Photocatalytic Degradation: Case Study in an Open Space Office in Manchester, UK. Health Environ. 2020, 1, 28–37. [Google Scholar] [CrossRef]
- Xie, X.; Hao, C.; Huang, Y.; Huang, Z. Influence of TiO2-Based Photocatalytic Coating Road on Traffic-Related NOx Pollutants in Urban Street Canyon by CFD Modeling. Sci. Total Environ. 2020, 724, 138059. [Google Scholar] [CrossRef] [PubMed]
- Nosek, Š.; Ducháček, T.; Magyar, P.; Procházka, J. The Role of Flow Structures in the Effective Removal of NOx Pollutants by a TiO2-Based Coating in a Street Canyon. J. Environ. Chem. Eng. 2023, 11, 109758. [Google Scholar] [CrossRef]
- Maggos, T.; Plassais, A.; Bartzis, J.G.; Vasilakos, C.; Moussiopoulos, N.; Bonafous, L. Photocatalytic Degradation of NOx in a Pilot Street Canyon Configuration Using TiO2-Mortar Panels. Environ. Monit Assess 2008, 136, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Folli, A.; Strøm, M.; Madsen, T.P.; Henriksen, T.; Lang, J.; Emenius, J.; Klevebrant, T.; Nilsson, Å. Field Study of Air Purifying Paving Elements Containing TiO2. Atmos. Environ. 2015, 107, 44–51. [Google Scholar] [CrossRef]
- Brattich, E.; Barbano, F.; Pulvirenti, B.; Pilla, F.; Bacchetti, M.; Di Sabatino, S. The Effect of Photocatalytic Coatings on NOx Concentrations in Real-World Street Canyons. Build. Environ. 2021, 205, 108312. [Google Scholar] [CrossRef]
- Russell, H.S.; Frederickson, L.B.; Hertel, O.; Ellermann, T.; Jensen, S.S. A Review of Photocatalytic Materials for Urban NOx Remediation. Catalysts 2021, 11, 675. [Google Scholar] [CrossRef]
- Ellona WT1 Outdoor Offer. Available online: https://www.ellona.io/outdoor-offer/ (accessed on 7 June 2024).
- ISO 22197-1:2016; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 1: Removal of Nitric Oxide. ISO: Geneva, Switzerland, 2016.
- Hot, J.; Ringot, E.; Koufi, L.; Bertron, A. Modelling of NO Photocatalytic Degradation in an Experimental Chamber. Chem. Eng. J. 2020, 408, 127298. [Google Scholar] [CrossRef]
- Coppalle, A.; Delmas, V.; Bobbia, M. Variability of Nox and NO2 Concentrations Observed at Pedestrian Level in the City Centre of a Medium Sized Urban Area. Atmos. Environ. 2001, 35, 5361–5369. [Google Scholar] [CrossRef]
- Grundström, M.; Hak, C.; Chen, D.; Hallquist, M.; Pleijel, H. Variation and Co-Variation of PM10, Particle Number Concentration, NOx and NO2 in the Urban Air—Relationships with Wind Speed, Vertical Temperature Gradient and Weather Type. Atmos. Environ. 2015, 120, 317–327. [Google Scholar] [CrossRef]
- Liu, H.; Duan, Z.; Chen, C. A Hybrid Multi-Resolution Multi-Objective Ensemble Model and Its Application for Forecasting of Daily PM2.5 Concentrations. Inf. Sci. 2020, 516, 266–292. [Google Scholar] [CrossRef]
- Harpole, J.K.; Woods, C.M.; Rodebaugh, T.L.; Levinson, C.A.; Lenze, E.J. How Bandwidth Selection Algorithms Impact Exploratory Data Analysis Using Kernel Density Estimation. Psychol. Methods 2014, 19, 428–443. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Lyu, P.; Ko, S.; Min, J.; Song, J. Enhancing Broiler Weight Estimation through Gaussian Kernel Density Estimation Modeling. Agriculture 2024, 14, 809. [Google Scholar] [CrossRef]
- Cordero, J.M.; Hingorani, R.; Jimenez-Relinque, E.; Grande, M.; Borge, R.; Narros, A.; Castellote, M. NOx Removal Efficiency of Urban Photocatalytic Pavements at Pilot Scale. Sci. Total Environ. 2020, 719, 137459. [Google Scholar] [CrossRef] [PubMed]
- Ballari, M.M.; Brouwers, H.J.H. Full Scale Demonstration of Air-Purifying Pavement. J. Hazard. Mater. 2013, 254–255, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, G.L.; Peccati, E. Photocatalytic Cementitious Roads for Depollution. In Proceedings of the International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, Italy, 8–9 October 2007. [Google Scholar]
- Yang, L.; Hakki, A.; Wang, F.; Macphee, D.E. Photocatalyst Efficiencies in Concrete Technology: The Effect of Photocatalyst Placement. Appl. Catal. B Environ. 2018, 222, 200–208. [Google Scholar] [CrossRef]
- Feng, J.; Feng, Q.; Xin, J.; Liang, Q.; Li, X.; Chen, K.; Teng, J.; Wang, S.; Feng, L.; Liu, J. Fabrication of Durable Self-Cleaning Photocatalytic Coating with Long-Term Effective Natural Light Photocatalytic Degradation Performance. Chemosphere 2023, 336, 139316. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhao, T.; Fei, H.; Li, F.; Guo, W.; Yao, Z.; Feng, Z. A Review of Various Self-Cleaning Surfaces, Durability and Functional Applications on Building Exteriors. Constr. Build. Mater. 2023, 409, 134084. [Google Scholar] [CrossRef]
- Chen, M.; Chu, J.-W. NOx Photocatalytic Degradation on Active Concrete Road Surface—From Experiment to Real-Scale Application. J. Clean. Prod. 2011, 19, 1266–1272. [Google Scholar] [CrossRef]
- de Melo, J.V.S.; Trichês, G.; Gleize, P.J.P.; Villena, J. Development and Evaluation of the Efficiency of Photocatalytic Pavement Blocks in the Laboratory and after One Year in the Field. Constr. Build. Mater. 2012, 37, 310–319. [Google Scholar] [CrossRef]
- Wang, D.; Leng, Z.; Yu, H.; Hüben, M.; Kollmann, J.; Oeser, M. Durability of Epoxy-Bonded TiO2-Modified Aggregate as a Photocatalytic Coating Layer for Asphalt Pavement under Vehicle Tire Polishing. Wear 2017, 382–383, 1–7. [Google Scholar] [CrossRef]
- Mahy, J.G.; Paez, C.A.; Hollevoet, J.; Courard, L.; Boonen, E.; Lambert, S.D. Durable Photocatalytic Thin Coatings for Road Applications. Constr. Build. Mater. 2019, 215, 422–434. [Google Scholar] [CrossRef]
- Wu, Y.; Dong, L.; Shu, X.; Yang, Y.; She, W.; Ran, Q. A Review on Recent Advances in the Fabrication and Evaluation of Superhydrophobic Concrete. Compos. Part B Eng. 2022, 237, 109867. [Google Scholar] [CrossRef]
- Baudys, M.; Krýsa, J.; Mills, A. Smart Inks as Photocatalytic Activity Indicators of Self-Cleaning Paints. Catal. Today 2017, 280, 8–13. [Google Scholar] [CrossRef]
Sum of Concentrations (ppm) | ||||||
---|---|---|---|---|---|---|
Canyon | NO (1 m) | NO (4 m) | NO (9 m) | NO2 (1 m) | NO2 (4 m) | NO2 (9 m) |
TC | 6.6 | 3.1 | 0.8 | 7.0 | 3.2 | 1.1 |
UTC | 20.5 | 5.8 | 2.6 | 14.7 | 5.1 | 1.9 |
Average concentrations (ppb) | ||||||
Canyon | NO (1 m) | NO (4 m) | NO (9 m) | NO2 (1 m) | NO2 (4 m) | NO2 (9 m) |
TC | 52.6 | 24.5 | 5.7 | 55.8 | 24.9 | 8.6 |
UTC | 159.1 | 42.6 | 20.8 | 113.6 | 37.7 | 15.2 |
Canyon | Temperature (°C) | Relative Humidity (%) | Wind Speed (m/s) | Wind Direction (/) | Solar Irradiance (W/m2) |
---|---|---|---|---|---|
TC | 23.8 | 67.3 | 8.0 | South–East | 487 |
UTC | 24.8 | 61.7 | 8.0 | South–East | 671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hot, J.; Fériot, C.; Lenard, E.; Ringot, E. NOx Abatement by a TiO2-Based Coating under Real-Life Conditions and Laboratory-Scale Durability Assessment. Environments 2024, 11, 166. https://doi.org/10.3390/environments11080166
Hot J, Fériot C, Lenard E, Ringot E. NOx Abatement by a TiO2-Based Coating under Real-Life Conditions and Laboratory-Scale Durability Assessment. Environments. 2024; 11(8):166. https://doi.org/10.3390/environments11080166
Chicago/Turabian StyleHot, Julie, Clément Fériot, Emilie Lenard, and Erick Ringot. 2024. "NOx Abatement by a TiO2-Based Coating under Real-Life Conditions and Laboratory-Scale Durability Assessment" Environments 11, no. 8: 166. https://doi.org/10.3390/environments11080166
APA StyleHot, J., Fériot, C., Lenard, E., & Ringot, E. (2024). NOx Abatement by a TiO2-Based Coating under Real-Life Conditions and Laboratory-Scale Durability Assessment. Environments, 11(8), 166. https://doi.org/10.3390/environments11080166