Advancements on Ultrasonic Degradation of Per- and Polyfluoroalkyl Substances (PFAS): Toward Hybrid Approaches
Abstract
:1. Introduction
2. PFAS Properties and Contamination
3. Remediation and Degradation
3.1. Degradation Challenges
3.2. Degradation Option: Non−AOP
3.2.1. Thermal Degradation
3.2.2. Ball Milling
3.2.3. E-Beam
3.3. AOP
4. Ultrasonic Degradation of PFAS
4.1. Degradation Pathway
4.2. Affecting Factors
4.2.1. Frequency
4.2.2. Power Density
4.2.3. Structural Effect of PFAS (Terminal Head) and pH
4.2.4. PFAS Concentration
4.2.5. Solution Volume and Treatment Time
4.2.6. Additives
4.2.7. Co-Existent Inorganic Constituents and Co-Existent Contaminants
4.2.8. Dissolved Gas
4.2.9. Other Factors: Configuration, Reactor Geometry, and Co-Occurring PFAS
4.3. Ultrasonication Combined with Other Techniques as the Hybrid Method
4.3.1. Ultrasonication/Electrochemistry
4.3.2. Ultrasonication/UV
4.3.3. Ultrasonication/Oxidant
4.3.4. Multiple Ultrasonication
4.3.5. Ultrasonication/Foam Fractionation
5. Prospects and Future Directions
- (i)
- The refinement and optimization of ultrasonication equipment and techniques to enhance its efficiency and effectiveness for scale-up or on-site applications.
- (ii)
- The development of cost-effective and scalable ultrasonication solutions for PFAS remediation in various matrices and contamination scenarios. Currently, its widespread implementation may be hindered by a liquid-based matrix only.
- (iii)
- The integration of ultrasonication with other remediation methods and technologies to form hybrid systems. However, the complexity of the hybrid system and the extra input of energy should be considered.
- (iv)
- The challenges and limitations associated with ultrasonication-based PFAS degradation, including a better understanding of PFAS degradation mechanisms, the optimization of operating parameters, and the assessment of potential by-products towards mass balance. Collaborative interdisciplinary research involving experts from chemistry, engineering, environmental science, and toxicology will be essential in advancing our knowledge and capabilities in this field.
- (v)
- Addressing regulatory and safety concerns regarding field applications of ultrasonication technology for PFAS degradation will be paramount. Compliance with environmental regulations and safety standards is crucial to ensure the responsible use of ultrasonic treatment methods. This includes the careful consideration of the generation of by-products, potential impacts on surrounding ecosystems, and the effective management of treated effluents.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, C.; Megharaj, M.; Naidu, R. Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs). J. Adv. Oxid. Technol. 2017, 20, 20170014. [Google Scholar] [CrossRef]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Liu, G.R.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.J.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
- Yang, L.; He, L.; Xue, J.; Ma, Y.; Xie, Z.; Wu, L.; Huang, M.; Zhang, Z. Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective. J. Hazard. Mater. 2020, 393, 122405. [Google Scholar] [CrossRef] [PubMed]
- Meegoda, J.N.; Kewalramani, J.A.; Li, B.; Marsh, R.W. A Review of the Applications, Environmental Release, and Remediation Technologies of Per- and Polyfluoroalkyl Substances. Int. J. Environ. Res. Public Health 2020, 17, 8117. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.-J.; Tian, Y.; Sobhani, Z.; Naidu, R.; Fang, C. Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate. Chem. Eng. J. 2020, 388, 124215. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Hua, I.; Höchemer, R. Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrason. Sonochem. 1996, 3, S163–S172. [Google Scholar] [CrossRef]
- Fernandez, N.A.; Rodriguez-Freire, L.; Keswani, M.; Sierra-Alvarez, R. Effect of chemical structure on the sonochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs). Environ. Sci. Water Res. Technol. 2016, 2, 975–983. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, W.; Wang, C.; Liang, Y. Sonochemical degradation of poly- and perfluoroalkyl substances—A review. Ultrason. Sonochem. 2020, 69, 105245. [Google Scholar] [CrossRef]
- Sidnell, T.; Wood, R.J.; Hurst, J.; Lee, J.; Bussemaker, M.J. Sonolysis of per- and poly fluoroalkyl substances (PFAS): A meta-analysis. Ultrason. Sonochem. 2022, 87, 105944. [Google Scholar] [CrossRef]
- Al Amin, M.; Luo, Y.; Shi, F.; Yu, L.; Liu, Y.; Nolan, A.; Awoyemi, O.S.; Megharaj, M.; Naidu, R.; Fang, C. A modified TOP assay to detect per- and polyfluoroalkyl substances in aqueous film-forming foams (AFFF) and soil. Front. Chem. 2023, 11, 1141182. [Google Scholar] [CrossRef] [PubMed]
- Wiredchemist. Common Bond Energies (D) and Bond Lengths (r). 2023. Available online: https://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html (accessed on 25 May 2023).
- ITRC PFAS Team. PFAS—Per- and Polyfluoroalkyl Substances. Available online: https://pfas-1.itrcweb.org/ (accessed on 1 December 2023).
- Hartz, W.F.; Björnsdotter, M.K.; Yeung, L.W.Y.; Hodson, A.; Thomas, E.R.; Humby, J.D.; Day, C.; Jogsten, I.E.; Kärrman, A.; Kallenborn, R. Levels and distribution profiles of Per- and Polyfluoroalkyl Substances (PFAS) in a high Arctic Svalbard ice core. Sci. Total Environ. 2023, 871, 161830. [Google Scholar] [CrossRef]
- Wang, X.; Halsall, C.; Codling, G.; Xie, Z.; Xu, B.; Zhao, Z.; Xue, Y.; Ebinghaus, R.; Jones, K.C. Accumulation of Perfluoroalkyl Compounds in Tibetan Mountain Snow: Temporal Patterns from 1980 to 2010. Environ. Sci. Technol. 2014, 48, 173–181. [Google Scholar] [CrossRef]
- Taylor, S.; Terkildsen, M.; Stevenson, G.; de Araujo, J.; Yu, C.; Yates, A.; McIntosh, R.R.; Gray, R. Per and polyfluoroalkyl substances (PFAS) at high concentrations in neonatal Australian pinnipeds. Sci. Total Environ. 2021, 786, 147446. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.J.; Munoz, G.; Woo, V.; Sauvé, S.; Rand, A.A. Targeted and Suspect Screening of Per- and Polyfluoroalkyl Substances in Cosmetics and Personal Care Products. Environ. Sci. Technol. 2022, 56, 14594–14604. [Google Scholar] [CrossRef] [PubMed]
- Place, B.J.; Field, J.A. Identification of Novel Fluorochemicals in Aqueous Film-Forming Foams Used by the US Military. Environ. Sci. Technol. 2012, 46, 7120–7127. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef]
- USEPA. EPA Proposes Designating Certain PFAS Chemicals as Hazardous Substances Under Superfund to Protect People’s Health. 2022. Available online: https://www.epa.gov/newsreleases/epa-proposes-designating-certain-pfas-chemicals-hazardous-substances-under-superfund (accessed on 15 December 2022).
- USEPA. Questions and Answers: Drinking Water Health Advisories for PFOA, PFOS, GenX Chemicals and PFBS. 2023. Available online: https://www.epa.gov/sdwa/questions-and-answers-drinking-water-health-advisories-pfoa-pfos-genx-chemicals-and-pfbs (accessed on 27 June 2023).
- Ertekin, A.; Kausch, C.M.; Kim, Y.; Thomas, R.R. Synthesis, Characterization, Adsorption, and Interfacial Rheological Properties of Four-Arm Anionic Fluorosurfactants. Langmuir 2008, 24, 2412–2420. [Google Scholar] [CrossRef]
- Awoyemi, O.S.; Luo, Y.; Niu, J.; Naidu, R.; Fang, C. Ultrasonic degradation of per-and polyfluoroalkyl substances (PFAS), aqueous film-forming foam (AFFF) and foam fractionate (FF). Chemosphere 2024, 360, 142420. [Google Scholar] [CrossRef]
- Singh Kalra, S.; Cranmer, B.; Dooley, G.; Hanson, A.J.; Maraviov, S.; Mohanty, S.K.; Blotevogel, J.; Mahendra, S. Sonolytic destruction of Per- and polyfluoroalkyl substances in groundwater, aqueous Film-Forming Foams, and investigation derived waste. Chem. Eng. J. 2021, 425, 131778. [Google Scholar] [CrossRef]
- Cui, D.; Abdullah, A.M.; Peller, J.R.; Mezyk, S.P.; Mebel, A.; O’Shea, K. Effectiveness of Photocatalysis, Radiolysis, and Ultrasonic Irradiation in the Remediation of GenX: Computational Study of the Ultrasonically Induced Mineralization. J. Environ. Eng. 2022, 148, 04022073. [Google Scholar] [CrossRef]
- Franke, V.; Schäfers, M.D.; Joos Lindberg, J.; Ahrens, L. Removal of per- and polyfluoroalkyl substances (PFASs) from tap water using heterogeneously catalyzed ozonation. Environ. Sci. Water Res. Technol. 2019, 5, 1887–1896. [Google Scholar] [CrossRef]
- Leung, S.C.E.; Shukla, P.; Chen, D.; Eftekhari, E.; An, H.; Zare, F.; Ghasemi, N.; Zhang, D.; Nguyen, N.-T.; Li, Q. Emerging technologies for PFOS/PFOA degradation and removal: A review. Sci. Total Environ. 2022, 827, 153669. [Google Scholar] [CrossRef] [PubMed]
- Meegoda, J.N.; Bezerra de Souza, B.; Casarini, M.M.; Kewalramani, J.A. A review of PFAS destruction technologies. Int. J. Environ. Res. Public Health 2022, 19, 16397. [Google Scholar] [CrossRef] [PubMed]
- Nzeribe, B.N.; Crimi, M.; Mededovic Thagard, S.; Holsen, T.M. Physico-Chemical Processes for the Treatment of Per- And Polyfluoroalkyl Substances (PFAS): A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 866–915. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- Yamada, T.; Taylor, P.H.; Buck, R.C.; Kaiser, M.A.; Giraud, R.J. Thermal degradation of fluorotelomer treated articles and related materials. Chemosphere 2005, 61, 974–984. [Google Scholar] [CrossRef]
- Bulmău, C.; Mărculescu, C.; Lu, S.; Qi, Z. Analysis of thermal processing applied to contaminated soil for organic pollutants removal. J. Geochem. Explor. 2014, 147, 298–305. [Google Scholar] [CrossRef]
- Sorengard, M.; Lindh, A.S.; Ahrens, L.; DeWitt, J.C. Thermal desorption as a high removal remediation technique for soils contaminated with per- and polyfluoroalkyl substances (PFASs). PLoS ONE 2020, 15, e0234476. [Google Scholar] [CrossRef]
- Trang, B.; Li, Y.; Xue, X.-S.; Ateia, M.; Houk, K.N.; Dichtel, W.R. Low-temperature mineralization of perfluorocarboxylic acids. Sci. Am. Assoc. Adv. Sci. 2022, 377, 839–845. [Google Scholar] [CrossRef]
- Al Amin, M.; Luo, Y.; Nolan, A.; Mallavarapu, M.; Naidu, R.; Fang, C. Thermal kinetics of PFAS and precursors in soil: Experiment and surface simulation in temperature-time plane. Chemosphere 2023, 318, 138012. [Google Scholar] [CrossRef] [PubMed]
- Solares-Briones, M.; Coyote-Dotor, G.; Páez-Franco, J.C.; Zermeño-Ortega, M.R.; de la O Contreras, C.M.; Canseco-González, D.; Avila-Sorrosa, A.; Morales-Morales, D.; Germán-Acacio, J.M. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021, 13, 790. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Lv, H.; Zhou, Y.; Zhu, L.; Hu, Y.; Majima, T.; Tang, H. Complete Defluorination and Mineralization of Perfluorooctanoic Acid by a Mechanochemical Method Using Alumina and Persulfate. Environ. Sci. Technol. 2019, 53, 8302–8313. [Google Scholar] [CrossRef]
- Turner, L.P.; Kueper, B.H.; Jaansalu, K.M.; Patch, D.J.; Battye, N.; El-Sharnouby, O.; Mumford, K.G.; Weber, K.P. Mechanochemical remediation of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) amended sand and aqueous film-forming foam (AFFF) impacted soil by planetary ball milling. Sci. Total Environ. 2021, 765, 142722. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Batchelor, B.; Pillai, S.D.; Botlaguduru, V.S.V. Electron beam treatment for potable water reuse: Removal of bromate and perfluorooctanoic acid. Chem. Eng. J. 2016, 302, 58–68. [Google Scholar] [CrossRef]
- Lassalle, J.; Gao, R.; Rodi, R.; Kowald, C.; Feng, M.; Sharma, V.K.; Hoelen, T.; Bireta, P.; Houtz, E.F.; Staack, D.; et al. Degradation of PFOS and PFOA in soil and groundwater samples by high dose Electron Beam Technology. Radiat. Phys. Chem. 2021, 189, 109705. [Google Scholar] [CrossRef]
- Nidheesh, P.V. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: A review. Environ. Sci. Pollut. Res. Int. 2017, 24, 27047–27069. [Google Scholar] [CrossRef]
- Londhe, K.; Lee, C.-S.; Zhang, Y.; Grdanovska, S.; Kroc, T.; Cooper, C.A.; Venkatesan, A.K. Energy Evaluation of Electron Beam Treatment of Perfluoroalkyl Substances in Water: A Critical Review. ACS EST Eng. 2021, 1, 827–841. [Google Scholar] [CrossRef]
- Luo, Y.; Awoyemi, O.S.; Gopalan, S.; Nolan, A.; Robinson, F.; Fenstermacher, J.; Xu, L.; Niu, J.; Megharaj, M.; Naidu, R.; et al. Investigating the effect of polarity reversal of the applied current on electrochemical degradation of per-and polyfluoroalkyl substances. J. Clean. Prod. 2023, 433, 139691. [Google Scholar] [CrossRef]
- Ilić, N.; Andalib, A.; Lippert, T.; Knoop, O.; Franke, M.; Bräutigam, P.; Drewes, J.E.; Hübner, U. Ultrasonic degradation of GenX (HFPO-DA)—Performance comparison to PFOA and PFOS at high frequencies. Chem. Eng. J. 2023, 472, 144630. [Google Scholar] [CrossRef]
- Lewis, A.J.; Joyce, T.; Hadaya, M.; Ebrahimi, F.; Dragiev, I.; Giardetti, N.; Yang, J.; Fridman, G.; Rabinovich, A.; Fridman, A.A.; et al. Rapid degradation of PFAS in aqueous solutions by reverse vortex flow gliding arc plasma. Environ. Sci. Water Res. Technol. 2020, 6, 1044–1057. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Z.; Gao, J.; Yu, Y.; Men, Y.; Gu, C.; Liu, J. Accelerated Degradation of Perfluorosulfonates and Perfluorocarboxylates by UV/Sulfite + Iodide: Reaction Mechanisms and System Efficiencies. Environ. Sci. Technol. 2022, 56, 3699–3709. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Lo, S.-L.; Chiueh, P.-T.; Liou, Y.-H.; Chen, M.-L. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation. Water Res. 2010, 44, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Ameta, S.; Ameta, R. Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology; Academic Press (An Imprint of Elsevier): London, UK, 2018. [Google Scholar]
- Moriwaki, H.; Takagi, Y.; Tanaka, M.; Tsuruho, K.; Okitsu, K.; Maeda, Y. Sonochemical Decomposition of Perfluorooctane Sulfonate and Perfluorooctanoic Acid. Environ. Sci. Technol. 2005, 39, 3388–3392. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, X.; Mamadiev, M.; Wang, Z. Sorption of perfluorooctane sulfonate and perfluorooctanoate on polyacrylonitrile fiber-derived activated carbon fibers: In comparison with activated carbon. RSC Adv. 2017, 7, 927–938. [Google Scholar] [CrossRef]
- Yasui, K.; Tuziuti, T.; Lee, J.; Kozuka, T.; Towata, A.; Iida, Y. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J. Chem. Phys. 2008, 128, 184705. [Google Scholar] [CrossRef]
- Shende, T.; Andaluri, G.; Suri, R. Power density modulated ultrasonic degradation of perfluoroalkyl substances with and without sparging Argon. Ultrason. Sonochem. 2021, 76, 105639. [Google Scholar] [CrossRef]
- Brotchie, A.; Grieser, F.; Ashokkumar, M. Effect of power and frequency on bubble-size distributions in acoustic cavitation. Phys. Rev. Lett. 2009, 102, 084302. [Google Scholar] [CrossRef]
- Thompson, L.H.; Doraiswamy, L.K. Sonochemistry: Science and Engineering. Ind. Eng. Chem. Res. 1999, 38, 1215–1249. [Google Scholar] [CrossRef]
- Beckett, M.A.; Hua, I. Impact of Ultrasonic Frequency on Aqueous Sonoluminescence and Sonochemistry. J. Phys. Chem. A Mol. Spectrosc. Kinet. Environ. Gen. Theory 2001, 105, 3796–3802. [Google Scholar] [CrossRef]
- Panchangam, S.C.; Lin, A.Y.-C.; Tsai, J.-H.; Lin, C.-F. Sonication-assisted photocatalytic decomposition of perfluorooctanoic acid. Chemosphere 2009, 75, 654–660. [Google Scholar] [CrossRef]
- Hori, H.; Nagano, Y.; Murayama, M.; Koike, K.; Kutsuna, S. Efficient decomposition of perfluoroether carboxylic acids in water with a combination of persulfate oxidant and ultrasonic irradiation. J. Fluor. Chem. 2012, 141, 5–10. [Google Scholar] [CrossRef]
- Campbell, T.; Hoffmann, M.R. Sonochemical degradation of perfluorinated surfactants: Power and multiple frequency effects. Sep. Purif. Technol. 2015, 156, 1019–1027. [Google Scholar] [CrossRef]
- James Wood, R.; Sidnell, T.; Ross, I.; McDonough, J.; Lee, J.; Bussemaker, M.J. Ultrasonic degradation of perfluorooctane sulfonic acid (PFOS) correlated with sonochemical and sonoluminescence characterisation. Ultrason. Sonochem. 2020, 68, 105196. [Google Scholar] [CrossRef] [PubMed]
- Shende, T.; Andaluri, G.; Suri, R. Frequency-dependent sonochemical degradation of perfluoroalkyl substances and numerical analysis of cavity dynamics. Sep. Purif. Technol. 2021, 261, 118250. [Google Scholar] [CrossRef]
- Kanthale, P.; Ashokkumar, M.; Grieser, F. Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: Frequency and power effects. Ultrason. Sonochem. 2008, 15, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.-M.; Ling, F.H.; Hoffmann, M.R. Kinetics and Mechanism of the Enhanced Reductive Degradation of Nitrobenzene by Elemental Iron in the Presence of Ultrasound. Environ. Sci. Technol. 2000, 34, 1758–1763. [Google Scholar] [CrossRef]
- Chirikona, F.; Quinete, N.; Gonzalez, J.; Mutua, G.; Kimosop, S.; Orata, F. Occurrence and Distribution of Per- and Polyfluoroalkyl Substances from Multi-Industry Sources to Water, Sediments and Plants along Nairobi River Basin, Kenya. Int. J. Environ. Res. Public Health 2022, 19, 8980. [Google Scholar] [CrossRef]
- Vecitis, C.D.; Park, H.; Cheng, J.; Mader, B.T.; Hoffmann, M.R. Kinetics and Mechanism of the Sonolytic Conversion of the Aqueous Perfluorinated Surfactants, Perfluorooctanoate (PFOA), and Perfluorooctane Sulfonate (PFOS) into Inorganic Products. J. Phys. Chem. A Mol. Spectrosc. Kinet. Environ. Gen. Theory 2008, 112, 4261–4270. [Google Scholar] [CrossRef]
- Shende, T.; Andaluri, G.; Suri, R.P.S. Kinetic model for sonolytic degradation of non-volatile surfactants: Perfluoroalkyl substances. Ultrason. Sonochem. 2019, 51, 359–368. [Google Scholar] [CrossRef]
- Gole, V.L.; Fishgold, A.; Sierra-Alvarez, R.; Deymier, P.; Keswani, M. Treatment of perfluorooctane sulfonic acid (PFOS) using a large-scale sonochemical reactor. Sep. Purif. Technol. 2018, 194, 104–110. [Google Scholar] [CrossRef]
- Lin, J.-C.; Lo, S.-L.; Hu, C.-Y.; Lee, Y.-C.; Kuo, J. Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions. Ultrason. Sonochem. 2015, 22, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Chen, M.-J.; Huang, C.-P.; Kuo, J.; Lo, S.-L. Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrason. Sonochem. 2016, 31, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Vecitis, C.D.; Park, H.; Cheng, J.; Mader, B.T.; Hoffmann, M.R. Enhancement of Perfluorooctanoate and Perfluorooctanesulfonate Activity at Acoustic Cavitation Bubble Interfaces. J. Phys. Chem. C 2008, 112, 16850–16857. [Google Scholar] [CrossRef]
- Costanza, J.; Arshadi, M.; Abriola, L.M.; Pennell, K.D. Accumulation of PFOA and PFOS at the Air–Water Interface. Environ. Sci. Technol. Lett. 2019, 6, 487–491. [Google Scholar] [CrossRef]
- Panda, D.; Sethu, V.; Manickam, S. Kinetics and mechanism of low-frequency ultrasound driven elimination of trace level aqueous perfluorooctanesulfonic acid and perfluorooctanoic acid. Chem. Eng. Process. 2019, 142, 107542. [Google Scholar] [CrossRef]
- Asakura, Y.; Nishida, T.; Matsuoka, T.; Koda, S. Effects of ultrasonic frequency and liquid height on sonochemical efficiency of large-scale sonochemical reactors. Ultrason. Sonochem. 2008, 15, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Gogate, P.R.; Sutkar, V.S.; Pandit, A.B. Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems. Chem. Eng. J. 2011, 166, 1066–1082. [Google Scholar] [CrossRef]
- Hu, Y.-B.; Lo, S.-L.; Li, Y.-F.; Lee, Y.-C.; Chen, M.-J.; Lin, J.-C. Autocatalytic degradation of perfluorooctanoic acid in a permanganate-ultrasonic system. Water Res. 2018, 140, 148–157. [Google Scholar] [CrossRef]
- Luo, Y.; Khoshyan, A.; Al Amin, M.; Nolan, A.; Robinson, F.; Fenstermacher, J.; Niu, J.; Megharaj, M.; Naidu, R.; Fang, C. Ultrasound-enhanced Magnéli phase Ti(4)O(7) anodic oxidation of per- and polyfluoroalkyl substances (PFAS) towards remediation of aqueous film forming foams (AFFF). Sci. Total Environ. 2023, 862, 160836. [Google Scholar] [CrossRef] [PubMed]
- Pétrier, C.; Torres-Palma, R.; Combet, E.; Sarantakos, G.; Baup, S.; Pulgarin, C. Enhanced sonochemical degradation of bisphenol-A by bicarbonate ions. Ultrason. Sonochem. 2010, 17, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Vecitis, C.D.; Park, H.; Mader, B.T.; Hoffmann, M.R. Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Groundwater: Kinetic Effects of Matrix Inorganics. Environ. Sci. Technol. 2010, 44, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Yasui, K. Effect of volatile solutes on sonoluminescence. J. Chem. Phys. 2002, 116, 2945–2954. [Google Scholar] [CrossRef]
- Merouani, S.; Hamdaoui, O.; Saoudi, F.; Chiha, M. Sonochemical degradation of Rhodamine B in aqueous phase: Effects of additives. Chem. Eng. J. 2010, 158, 550–557. [Google Scholar] [CrossRef]
- Hua, I.; Hoffmann, M.R. Optimization of Ultrasonic Irradiation as an Advanced Oxidation Technology. Environ. Sci. Technol. 1997, 31, 2237–2243. [Google Scholar] [CrossRef]
- Kewalramani, J.A.; Bezerra de Souza, B.; Marsh, R.W.; Meegoda, J.N. Contributions of reactor geometry and ultrasound frequency on the efficiency of sonochemical reactor. Ultrason. Sonochem. 2023, 98, 106529. [Google Scholar] [CrossRef]
- Marsh, R.W.; Kewalramani, J.A.; Bezerra de Souza, B.; Meegoda, J.N. The use of a fluorine mass balance to demonstrate the mineralization of PFAS by high frequency and high power ultrasound. Chemosphere 2024, 352, 141270. [Google Scholar] [CrossRef]
- Shende, T.; Andaluri, G.; Suri, R. Chain-length dependent ultrasonic degradation of perfluoroalkyl substances. Chem. Eng. J. Adv. 2023, 15, 100509. [Google Scholar] [CrossRef]
- Yang, S.-W.; Sun, J.; Hu, Y.-Y.; Cheng, J.-H.; Liang, X.-Y. Effect of vacuum ultraviolet on ultrasonic defluorination of aqueous perfluorooctanesulfonate. Chem. Eng. J. 2013, 234, 106–114. [Google Scholar] [CrossRef]
- Sekiguchi, K.; Kudo, T.; Sankoda, K. Combined sonochemical and short-wavelength UV degradation of hydrophobic perfluorinated compounds. Ultrason. Sonochem. 2017, 39, 87–92. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, L.; Fang, C.; Naidu, R.; Tian, D.; Zhao, L.; Huang, M.; He, J.; Cheng, Z.; Zeng, Z.; et al. A novel enhanced defluorination of perfluorooctanoic acids by surfactant-assisted ultrasound coupling persulfate. Sep. Purif. Technol. 2023, 317, 123906. [Google Scholar] [CrossRef]
- Lei, Y.; Pu, R.; Tian, Y.; Wang, R.; Naidu, R.; Deng, S.; Shen, F. Novel enhanced defluorination of perfluorooctanoic acids by biochar-assisted ultrasound coupling ferrate: Performance and mechanism. Bioresour. Technol. 2024, 402, 130790. [Google Scholar] [CrossRef]
- Gole, V.L.; Sierra-Alvarez, R.; Peng, H.; Giesy, J.P.; Deymier, P.; Keswani, M. Sono-chemical treatment of per- and poly-fluoroalkyl compounds in aqueous film-forming foams by use of a large-scale multi-transducer dual-frequency based acoustic reactor. Ultrason. Sonochem. 2018, 45, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Kewalramani, J.A.; Wang, B.; Marsh, R.W.; Meegoda, J.N.; Rodriguez Freire, L. Coupled high and low-frequency ultrasound remediation of PFAS-contaminated soils. Ultrason. Sonochem. 2022, 88, 106063. [Google Scholar] [CrossRef]
- Kulkarni Poonam, R.; Richardson Stephen, D.; Nzeribe Blossom, N.; Adamson David, T.; Kalra Shashank, S.; Mahendra, S.; Blotevogel, J.; Hanson, A.; Dooley, G.; Maraviov, S.; et al. Field Demonstration of a Sonolysis Reactor for Treatment of PFAS-Contaminated Groundwater. J. Environ. Eng. 2022, 11, 06022005. [Google Scholar] [CrossRef]
- Laramay, F.; Crimi, M. Theoretical evaluation of chemical and physical feasibility of an in situ ultrasonic reactor for remediation of groundwater contaminated with per- and polyfluoroalkyl substances. Remediation 2020, 1, 45–58. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Liang, Y. Ineffectiveness of ultrasound at low frequency for treating per- and polyfluoroalkyl substances in sewage sludge. Chemosphere 2022, 286, 131748. [Google Scholar] [CrossRef]
Process | Energy Consumption (kWh/m3/Order) | Volume (mL) | Time (h) | PFAS | Highlights | Degradation Efficiency | Reference | |
---|---|---|---|---|---|---|---|---|
Non-AOP | E-beam | 31–176 | 10–100 | PFOA PFOS | Efficient for concentrated streams Production of reducing species | 52–88 | [42] | |
Electrochemical oxidation | 64–98 | 80 | 6 | PFOA PFOS 6:2FTS | Polarity reversal can reduce energy consumption Polarity reversal effectively mitigates fouling and aging | 40–71 | [43] | |
Ultrasonication | 502–1644 | 500 | 1.5 | GenX PFOA PFOS | No by-products in the samples Effective PFAS degradation | 70–90 | [44] | |
AOP | Plasma | 23.2–213.4 | 35–45 | 1 | PFOS PFOA PFNA 8:2FTS | Small conversion to quantifiable PFAS Non-thermal air plasma is promising | >90 | [45] |
Photochemical (UV/Sulfite + Iodide) | 1.5 | 600 | 24 | PFCAs PFSAs | Enhanced degradation Increased sulfate utilization | >90 >99.7 | [46] | |
Microwave and iron-activated persulfate (PS) | 5714 | 50 | 8 | PFOA | Synergetic effect with zero-valent iron (ZVI) to degrade PFOA ZVI lowers the activation energy of PS | 68 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awoyemi, O.S.; Naidu, R.; Fang, C. Advancements on Ultrasonic Degradation of Per- and Polyfluoroalkyl Substances (PFAS): Toward Hybrid Approaches. Environments 2024, 11, 187. https://doi.org/10.3390/environments11090187
Awoyemi OS, Naidu R, Fang C. Advancements on Ultrasonic Degradation of Per- and Polyfluoroalkyl Substances (PFAS): Toward Hybrid Approaches. Environments. 2024; 11(9):187. https://doi.org/10.3390/environments11090187
Chicago/Turabian StyleAwoyemi, Olalekan Simon, Ravi Naidu, and Cheng Fang. 2024. "Advancements on Ultrasonic Degradation of Per- and Polyfluoroalkyl Substances (PFAS): Toward Hybrid Approaches" Environments 11, no. 9: 187. https://doi.org/10.3390/environments11090187
APA StyleAwoyemi, O. S., Naidu, R., & Fang, C. (2024). Advancements on Ultrasonic Degradation of Per- and Polyfluoroalkyl Substances (PFAS): Toward Hybrid Approaches. Environments, 11(9), 187. https://doi.org/10.3390/environments11090187