Adaptive Degenerate Space-Based Method for Pollutant Source Term Estimation Using a Backward Lagrangian Stochastic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Lagrangian Stochastic Model
2.2. The Degenerate Space
2.3. Adaptive Degeneracy Reduction
3. Results
3.1. Numerical Details
3.2. Testing the Adaptive Source Algorithm
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of the Probability of Reduction Factor Estimation
References
- Fattal, E.; David-Saroussi, H.; Klausner, Z.; Buchman, O. An urban lagrangian stochastic dispersion model for simulating traffic particulate-matter concentration fields. Atmosphere 2021, 12, 580. [Google Scholar] [CrossRef]
- Fattal, E.; David-Saroussi, H.; Buchman, O.; Tas, E.; Klausner, Z. Heterogenous Canopy in a Lagrangian-Stochastic Dispersion Model for Particulate Matter from Multiple Sources over the Haifa Bay Area. Atmosphere 2023, 14, 144. [Google Scholar] [CrossRef]
- Meier-Girard, D.; Delgado-Eckert, E.; Schaffner, E.; Schindler, C.; Künzli, N.; Adam, M.; Pichot, V.; Kronenberg, F.; Imboden, M.; Frey, U.; et al. Association of long-term exposure to traffic-related PM10 with heart rate variability and heart rate dynamics in healthy subjects. Environ. Int. 2019, 125, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Khreis, H.; Kelly, C.; Tate, J.; Parslow, R.; Lucas, K.; Nieuwenhuijsen, M. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environ. Int. 2017, 100, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Eitan, O.; Barchana, M.; Dubnov, J.; Linn, S.; Carmel, Y.; Broday, D.M. Spatial analysis of air pollution and cancer incidence rates in Haifa Bay, Israel. Sci. Total Environ. 2010, 408, 4429–4439. [Google Scholar] [CrossRef]
- Sasaki, K.; Sakamoto, K. Vertical differences in the composition of PM10 and PM2. 5 in the urban atmosphere of Osaka, Japan. Atmos. Environ. 2005, 39, 7240–7250. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Xu, H.; Tian, Y.Z.; Shi, G.L.; Zeng, F.; Wu, J.H.; Zhang, X.Y.; Li, X.; Zhu, T.; Feng, Y.C. The study on vertical variability of PM10 and the possible sources on a 220 m tower, in Tianjin, China. Atmos. Environ. 2011, 45, 6133–6140. [Google Scholar] [CrossRef]
- Chan, C.; Xu, X.; Li, Y.S.; Wong, K.; Ding, G.; Chan, L.; Cheng, X. Characteristics of vertical profiles and sources of PM2. 5, PM10 and carbonaceous species in Beijing. Atmos. Environ. 2005, 39, 5113–5124. [Google Scholar] [CrossRef]
- Manousakas, M.; Bairachtari, K.; Kantarelou, V.; Eleftheriadis, K.; Vasilakos, C.; Assimakopoulos, V.; Maggos, T. The traffic signature on the vertical PM profile: Environmental and health risks within an urban roadside environment. Sci. Total Environ. 2019, 646, 448–459. [Google Scholar]
- Roth, M. Review of atmospheric turbulence over cities. Q. J. R. Meteorol. Soc. 2000, 126, 941–990. [Google Scholar] [CrossRef]
- Finnigan, J. Turbulence in plant canopies. Annu. Rev. Fluid Mech. 2000, 32, 519–571. [Google Scholar] [CrossRef]
- Raupach, M.R.; Finnigan, J.J.; Brunet, Y. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. In Boundary-Layer Meteorology; In 25th Anniversary Volume, 1970–1995: Invited Reviews and Selected Contributions to Recognise Ted Munn’s Contribution as Editor over the Past 25 Years; Springer: Dordrecht, The Netherlands, 1996; pp. 351–382. [Google Scholar]
- Castro, I.P.; Cheng, H.; Reynolds, R. Turbulence over urban-type roughness: Deductions from wind-tunnel measurements. Bound.-Layer Meteorol. 2006, 118, 109–131. [Google Scholar] [CrossRef]
- Coceal, O.; Dobre, A.; Thomas, T.G.; Belcher, S.E. Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 2007, 589, 375–409. [Google Scholar] [CrossRef]
- Hanna, S.R.; Brown, M.J.; Camelli, F.E.; Chan, S.T.; Coirier, W.J.; Hansen, O.R.; Huber, A.H.; Kim, S.; Reynolds, R.M. Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: An application of five computational fluid dynamics models. Bull. Am. Meteorol. Soc. 2006, 87, 1713–1726. [Google Scholar] [CrossRef]
- Wilson, J.; Yee, E.; Ek, N.; d’Amours, R. Lagrangian simulation of wind transport in the urban environment. Q. J. R. Meteorol. Soc. 2009, 135, 1586–1602. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Wang, Z.H. Quantifying the impact of urban trees on passive pollutant dispersion using a coupled large-eddy simulation–Lagrangian stochastic model. Build. Environ. 2018, 145, 33–49. [Google Scholar] [CrossRef]
- Finnigan, J.J.; Shaw, R.H.; Patton, E.G. Turbulence structure above a vegetation canopy. J. Fluid Mech. 2009, 637, 387–424. [Google Scholar] [CrossRef]
- Christen, A.; Rotach, M.W.; Vogt, R. The budget of turbulent kinetic energy in the urban roughness sublayer. Bound.-Layer Meteorol. 2009, 131, 193–222. [Google Scholar] [CrossRef]
- Shig, L.; Babin, V.; Shnapp, R.; Fattal, E.; Liberzon, A.; Raviv, Y. Quadrant Analysis of the Reynolds Shear Stress in a Two-Height Canopy. Flow Turbul. Combust. 2023, 111, 35–57. [Google Scholar] [CrossRef]
- Shnapp, R.; Bohbot-Raviv, Y.; Liberzon, A.; Fattal, E. Turbulence-obstacle interactions in the Lagrangian framework: Applications for stochastic modeling in canopy flows. Phys. Rev. Fluids 2020, 5, 094601. [Google Scholar] [CrossRef]
- Shnapp, R. On small-scale and large-scale intermittency of Lagrangian statistics in canopy flow. J. Fluid Mech. 2021, 913, R2. [Google Scholar] [CrossRef]
- Shnapp, R.; Liberzon, A.; Raviv-Bohbot, Y.; Fattal, E. On local isotropy and scale dependence of pair dispersion in turbulent canopy flows. J. Fluid Mech. 2024, 978, A3. [Google Scholar] [CrossRef]
- Charuchittipan, D.; Wilson, J. Turbulent kinetic energy dissipation in the surface layer. Bound.-Layer Meteorol. 2009, 132, 193–204. [Google Scholar] [CrossRef]
- Wilson, J. Monin-Obukhov functions for standard deviations of velocity. Bound.-Layer Meteorol. 2008, 129, 353–369. [Google Scholar] [CrossRef]
- Klausner, Z.; Ben-Efraim, M.; Arav, Y.; Tas, E.; Fattal, E. The Micrometeorology of the Haifa Bay Area and Mount Carmel during the summer. Atmosphere 2021, 12, 354. [Google Scholar] [CrossRef]
- Klausner, Z.; Kaplan, H.; Fattal, E. The Similar Days Method for Predicting Near Surface Wind Vectors. Meteorol. Appl. 2009, 16, 569–579. [Google Scholar] [CrossRef]
- Klausner, Z.; Fattal, E. An objective and automatic method for identification of pattern changes in wind direction time series. Int. J. Climatol. 2011, 31, 783–790. [Google Scholar] [CrossRef]
- Wilson, J.; Thurtell, G.; Kidd, G.; Beauchamp, E. Estimation of the rate of gaseous mass transfer from a surface source plot to the atmosphere. Atmos. Environ. 1982, 16, 1861–1867. [Google Scholar] [CrossRef]
- Oxoli, D.; Gianquintieri, L.; Borghi, F.; Fanti, G.; Spinazzè, A. Non-Conventional Data for Farming-Related Air Pollution: Contributions to Modelling and Risk Assessment in the Lombardy Region, Italy. Environments 2024, 11, 229. [Google Scholar] [CrossRef]
- Gallego, E.; Perales, J.F.; Aguasca, N.; Domínguez, R. Determination of emission factors from a landfill through an inverse methodology: Experimental determination of ambient air concentrations and use of numerical modelling. Environ. Pollut. 2024, 351, 124047. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, M.; Oh, H.; Chen, W.H. A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors. Inf. Fusion 2017, 36, 130–148. [Google Scholar] [CrossRef]
- Issartel, J. Rebuilding sources of linear tracers after atmospheric concentration measurements. Atmos. Chem. Phys. 2003, 3, 2111–2125. [Google Scholar] [CrossRef]
- Keats, A.; Yee, E.; Lien, F.S. Bayesian inference for source determination with applications to a complex urban environment. Atmos. Environ. 2007, 41, 465–479. [Google Scholar] [CrossRef]
- Johannesson, G.; Hanley, B.; Nitao, J. Dynamic Bayesian Models via Monte Carlo-An Introduction with Examples; Technical Report; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2004. [Google Scholar]
- Yee, E.; Biltoft, C.A. Concentration fluctuation measurements in a plume dispersing through a regular array of obstacles. Bound.-Layer Meteorol. 2004, 111, 363–415. [Google Scholar] [CrossRef]
- Ko, C.W.; Lee, J.; Queyranne, M. An Exact Algorithm for Maximum Entropy Sampling. Oper. Res. 1995, 43, 684–691. [Google Scholar] [CrossRef]
- Vergassola, M.; Villermaux, E.; Shraiman, B.I. ’Infotaxis’ as a strategy for searching without gradients. Nature 2007, 445, 406–409. [Google Scholar] [CrossRef]
- Hutchinson, M.; Oh, H.; Chen, W.H. Entrotaxis as a strategy for autonomous search and source reconstruction in turbulent conditions. Inf. Fusion 2018, 42, 179–189. [Google Scholar] [CrossRef]
- Sebastiani, P.; Wynn, H.P. Maximum entropy sampling and optimal Bayesian experimental design. J. R. Stat. Society. Ser. B Stat. Methodol. 2000, 62, 145–157. [Google Scholar] [CrossRef]
- Ristic, B.; Skvortsov, A.; Gunatilaka, A. A study of cognitive strategies for an autonomous search. Inf. Fusion 2016, 28, 1–9. [Google Scholar] [CrossRef]
- Keats, A.; Yee, E.; Lien, F.S. Information-driven receptor placement for contaminant source determination. Environ. Model. Softw. 2010, 25, 1000–1013. [Google Scholar] [CrossRef]
- Lindley, D.V. On a Measure of the Information Provided by an Experiment. Ann. Math. Stat. 1956, 27, 986–1005. [Google Scholar] [CrossRef]
- Loredo, T.J. Bayesian Adaptive Exploration. In AIP Conference Proceedings 707; Cornell University: Ithaca, NY, USA, 2004; pp. 330–346. [Google Scholar] [CrossRef]
- Fattal, E. A non-homogeneous non-Gaussian Lagrangian-stochastic model for pollutant dispersion in complex terrain, and its comparison to Haifa 2009 tracer campaign. IIBR Sci. Rep. 2014, 56, 5614. [Google Scholar] [CrossRef]
- Wilson, J.D.; Sawford, B.L. Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Bound.-Layer Meteorol. 1996, 78, 191–210. [Google Scholar] [CrossRef]
- Cassiani, M.; Stohl, A.; Brioude, J. Lagrangian stochastic modelling of dispersion in the convective boundary layer with skewed turbulence conditions and a vertical density gradient: Formulation and implementation in the FLEXPART model. Bound.-Layer Meteorol. 2015, 154, 367–390. [Google Scholar] [CrossRef]
- Mooney, C.J.; Wilson, J.D. Disagreements between gradient-diffusion and Lagrangian stochastic dispersion models, even for sources near the ground. Bound.-Layer Meteorol. 1993, 64, 291–296. [Google Scholar] [CrossRef]
- Weil, J.C. Linking a Lagrangian particle dispersion model with three-dimensional Eulerian wind field models. J. Appl. Meteorol. Climatol. 2008, 47, 2463–2467. [Google Scholar] [CrossRef]
- Thomson, D.J. Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 1987, 180, 529–556. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar] [CrossRef]
- Obukhov, A.M. Description of Turbulence in Terms of Lagrangian Variables. Adv. Geophys. 1959, 6, 113–116. [Google Scholar]
- Flesch, T.K.; Wilson, J.D.; Yee, E. Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions. J. Appl. Meteorol. Climatol. 1995, 34, 1320–1332. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P.; Sharpe, R.R. Deducing ground-to-air emissions from observed trace gas concentrations: A field trial. J. Appl. Meteorol. 2004, 43, 487–502. [Google Scholar] [CrossRef]
- Sawford, B.L. Lagrangian statistical simulation of concentration mean and fluctuation fields. J. Clim. Appl. Meteorol. 1985, 24, 1152–1166. [Google Scholar] [CrossRef]
- Issartel, J.P. Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation. Atmos. Chem. Phys. 2005, 5, 249–273. [Google Scholar] [CrossRef]
- Keats, W.A. Bayesian Inference for Source Determination in the Atmospheric Environment; University of Waterloo: Waterloo, ON, Canada, 2009. [Google Scholar]
- Kumar, P.; Feiz, A.A.; Singh, S.K.; Ngae, P.; Turbelin, G. Reconstruction of an atmospheric tracer source in an urban-like environment. J. Geophys. Res. 2015, 120, 12589–12604. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer: Berlin/Heidelberg, Germany, 1988; p. 684. [Google Scholar]
- Rudd, A.C.; Robins, A.G.; Lepley, J.J.; Belcher, S.E. An Inverse Method for Determining Source Characteristics for Emergency Response Applications. Bound.-Layer Meteorol. 2012, 144, 1–20. [Google Scholar] [CrossRef]
Cycle | ||||||||
---|---|---|---|---|---|---|---|---|
CASE 1 | ||||||||
2 | 8704 | 231 | 0 | 3.76 | 400 | 210 | 4.24 | |
1 | 3 | 460 | 130 | 32 | 0.68 | 296 | 72 | 0.92 |
2 | 4 | 32 | 32 | 0 | 0.12 | 45 | 0 | 0.19 |
CASE 2 | ||||||||
2 | 2583 | 896 | 0 | 3.53 | 1062 | 22 | 3 | |
1 | 3 | 235 | 87 | 0.6 | 0.75 | 394 | 11 | 1.2 |
2 | 4 | 12 | 45 | 0 | 0.18 | 27 | 0.0 | 0.12 |
CASE 3 | ||||||||
2 | 2183 | 30 | 30 | 3.9 | 630 | 139 | 3.1 | |
1 | 3 | 73 | 39 | 11 | 0.21 | 74 | 12 | 0.25 |
2 | 4 | 31 | 30 | 12 | 0.06 | 40 | 12 | 0.15 |
CASE 4 | ||||||||
2 | 3762 | 451 | 87 | 3.5 | 604 | 171 | 3.9 | |
1 | 3 | 441 | 56 | 24 | 0.35 | 186 | 53 | 0.45 |
2 | 4 | 43 | 13 | 5 | 0.12 | 60 | 8 | 0.18 |
CASE 5 | ||||||||
2 | 2743 | 428 | 2 | 3.5 | 771 | 102 | 3.22 | |
1 | 3 | 245 | 120 | 4 | 0.21 | 188 | 19 | 0.25 |
2 | 4 | 24 | 70 | 5 | 0.08 | 94 | 13 | 0.14 |
CASE 6 | ||||||||
2 | 3060 | 2 | 50 | 5.3 | 575 | 117 | 3.3 | |
1 | 3 | 158 | 49 | 10 | 0.46 | 78 | 12 | 0.49 |
2 | 4 | 63 | 28.5 | 11 | 0.19 | 39 | 12 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buchman, O.; Fattal, E. Adaptive Degenerate Space-Based Method for Pollutant Source Term Estimation Using a Backward Lagrangian Stochastic Model. Environments 2025, 12, 18. https://doi.org/10.3390/environments12010018
Buchman O, Fattal E. Adaptive Degenerate Space-Based Method for Pollutant Source Term Estimation Using a Backward Lagrangian Stochastic Model. Environments. 2025; 12(1):18. https://doi.org/10.3390/environments12010018
Chicago/Turabian StyleBuchman, Omri, and Eyal Fattal. 2025. "Adaptive Degenerate Space-Based Method for Pollutant Source Term Estimation Using a Backward Lagrangian Stochastic Model" Environments 12, no. 1: 18. https://doi.org/10.3390/environments12010018
APA StyleBuchman, O., & Fattal, E. (2025). Adaptive Degenerate Space-Based Method for Pollutant Source Term Estimation Using a Backward Lagrangian Stochastic Model. Environments, 12(1), 18. https://doi.org/10.3390/environments12010018