Advances in Graphene-Based Materials for Metal Ion Sensing and Wastewater Treatment: A Review
Abstract
:1. Introduction
1.1. Heavy Metal Detection
1.1.1. Graphene-Based Sensors
1.1.2. Mechanistic and Bonding Insights into Sensing of Heavy Metals
1.2. Heavy Metal Removal
1.2.1. Common Graphene Composite Synthesis Methods
1.2.2. Advancements in Graphene-Incorporated Membrane Technologies in Water Treatments
1.2.3. Advancements in Heavy Metal Removal by Graphene-Incorporated Composites
1.3. Surface Functionalization of Graphene for Heavy Metal Detection and Removal
2. MD Techniques
3. Graphene for Filtration Separations
3.1. Effects of External Conditions
3.2. Effects of Pore Sizes and Shapes
3.3. Effects of Functional Groups
3.4. Effects of Layer Arrangements
3.5. Mechanistic and Bonding Insights into Heavy Metal
3.6. Environmental Impact and Life-Cycle Assessments and Recovery and Reutilization of Graphene-Based Materials
3.7. Economic Analysis
3.8. Challenges
4. Conclusions and Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geim, A.K. Graphene: Status and Prospects. Logo 2009, 324, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Kommu, A.; Namsani, S.; Singh, J.K. Removal of heavy metal ions using functionalized graphene membranes: A molecular dynamics study. RSC Adv. 2016, 6, 63190–63199. [Google Scholar] [CrossRef]
- Katsnelson, M.I. Graphene: Carbon in two dimensions A two-dimensional form of carbon. Materialtoday 2007, 10, 20–28. [Google Scholar]
- Liu, G.; Ye, H.; Li, A.; Zhu, C.; Jiang, H.; Liu, Y.; Han, K.; Zhou, Y. Graphene oxide for high-efficiency separation membranes: Role of electrostatic interactions. Carbon N. Y. 2016, 110, 56–61. [Google Scholar] [CrossRef]
- Azamat, J.; Sardroodi, J.J.; Poursoltani, L.; Jahanshahi, D. Functionalized boron nitride nanosheet as a membrane for removal of Pb2+ and Cd2+ ions from aqueous solution. J. Mol. Liq. 2021, 321, 1149–1158. [Google Scholar] [CrossRef]
- Spanos, T.; Karadjova, I.; Ene, A.; Karadjova, I. Assessment of Toxic Elements Cu, Cr, Ni, Pb, Cd, Hg, Zn, As and Hexavalent Chromium in Sewage Sludge from Municipal Wastewater Treatment Plants by Combined Spectroscopic Techniques and Hexavalent Chromium in Sewage Sludge from Municipal Wastewater Treatment Plants by Combined Spectroscopic Techniques. Artic. Rom. J. Phys. 2015, 60, 237–240. [Google Scholar]
- Abrham, F.; Gholap, A.V. Analysis of heavy metal concentration in some vegetables using atomic absorption spectroscopy. Pollution 2021, 7, 205–216. [Google Scholar]
- Kopru, S.; Soylak, M. Inductively coupled plasma-mass spectrometry (ICP-MS) detection of trace metal contents of children cosmetics. Opt. Quantum. Electron. 2024, 56, 399–419. [Google Scholar] [CrossRef]
- O’Neil, G.D.; Newton, M.E.; Macpherson, J.V. Direct identification and analysis of heavy metals in solution (Hg, Cu, Pb, Zn, Ni) by use of in situ electrochemical X-ray fluorescence. Anal. Chem. 2015, 87, 4933–4940. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. J. Hazard. Mater. 2023, 441, 129889. [Google Scholar] [CrossRef]
- Wu, J.; Li, M.; Tang, H.; Su, J.; He, M.; Chen, G.; Guan, L.; Tian, J. Portable paper sensors for the detection of heavy metals based on light transmission-improved quantification of colorimetric assays. Analyst 2019, 144, 6382–6390. [Google Scholar] [CrossRef] [PubMed]
- Das, D.D.; Sharma, N.; Chawla, P.A. Neutron Activation Analysis: An Excellent Nondestructive Analytical Technique for Trace Metal Analysis. Crit. Rev. Anal. Chem. 2023, 54, 2450–2466. [Google Scholar] [CrossRef] [PubMed]
- José Barreto, W.; Regina Giancoli Barreto, S. Determination of ni(ii) in Metal Alloys by Spectrophotometry Uv-Vis Using Dopasemiquinone. Quim. Nova 2010, 33, 109–113. [Google Scholar] [CrossRef]
- Heffron, J.; Samsami, M.; Juedemann, S.; Lavin, J.; Tavakoli Nick, S.; Kieke, B.; Mayer, B. Mitigation of viruses of concern and bacteriophage surrogates via common unit processes for water reuse: A meta-analysis. Water Res. 2024, 252, 121242. [Google Scholar] [CrossRef] [PubMed]
- Prestel, H.; Gahr, A.; Niessner, R. Detection of heavy metals in water by fluorescence spectroscopy: On the way to a suitable sensor system. Fresenius J. Anal. Chem. 2000, 368, 182–191. [Google Scholar] [CrossRef]
- Verma, N.; Singh, M. Biosensors for heavy metals. BioMetals 2005, 18, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef] [PubMed]
- Ekrami, E.; Pouresmaieli, M.; Shariati, P.; Mahmoudifard, M. A review on designing biosensors for the detection of trace metals. Appl. Geochem. 2021, 127, 104902. [Google Scholar] [CrossRef]
- Chang, J.; Zhou, G.; Christensen, E.R.; Heideman, R.; Chen, J. Graphene-based sensors for detection of heavy metals in water: A review Chemosensors and Chemoreception. Anal. Bioanal. Chem. 2014, 406, 3957–3975. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guo, S.; Zhai, Y.; Wang, E. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal. Chim. Acta 2009, 649, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, H.; Aldalbahi, A.; Zuo, X.; Fan, C.; Mi, X. Fluorescent biosensors enabled by graphene and graphene oxide. Biosens. Bioelectron. 2017, 89, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Yakub, I.; Baini, R.; Hu, W.; Wang, L. Ag+ colorimetric sensor based on graphene oxide/nano-platinum composite. J. Anal. Sci. Technol. 2023, 14, 35. [Google Scholar] [CrossRef]
- Pathak, P.; Cho, H.J. Graphene Oxide-Chitosan Composite-Based Flexible Electrochemical Sensors for Lead ION Detection. In Proceedings of the 21st International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2021, Orlando, FL, USA, 20–24 June 2021; pp. 254–258. [Google Scholar]
- Wang, Z.; Yao, B.; Xiao, Y.; Tian, X.; Wang, Y. Fluorescent Quantum Dots and Its Composites for Highly Sensitive Detection of Heavy Metal Ions and Pesticide Residues: A Review. Chemosensors 2023, 11, 405. [Google Scholar] [CrossRef]
- Li, X.; Wang, G.; Ding, X.; Chen, Y.; Gou, Y.; Lu, Y. A ‘turn-on’ fluorescent sensor for detection of Pb2+ based on graphene oxide and G-quadruplex DNA. Phys. Chem. Chem. Phys. 2013, 15, 12800–12804. [Google Scholar] [CrossRef]
- Barzegarzadeh, M.; Amini-Fazl, M.S.; Yazdi-Amirkhiz, S.Y. Polymethacrylamide-functionalized graphene oxide via the RAFT method: An efficient fluorescent nanosensor for heavy metals detection in aqueous media. Chem. Pap. 2022, 76, 4523–4530. [Google Scholar] [CrossRef]
- Şenol, A.M.; Onganer, Y.; Meral, K. An unusual “off-on” fluorescence sensor for iron(III) detection based on fluorescein–reduced graphene oxide functionalized with polyethyleneimine. Sens. Actuators B Chem. 2017, 239, 343–351. [Google Scholar] [CrossRef]
- Yu, H.; Zhao, Q. Competitive fluorescence assay for Cd2+ based on aptamer structure-switching. Microchem. J. 2023, 194, 109348. [Google Scholar] [CrossRef]
- Park, H.; Hwang, S.J.; Kim, K. An electrochemical detection of Hg2+ ion using graphene oxide as an electrochemically active indicator. ElectroChem. Commun. 2012, 24, 100–103. [Google Scholar] [CrossRef]
- Liu, F.M.; Zhang, Y.; Yin, W.; Hou, C.; Huo, D.; He, B.; Qian, L.; Fa, H. A high–selectivity electrochemical sensor for ultra-trace lead (II) detection based on a nanocomposite consisting of nitrogen-doped graphene/gold nanoparticles functionalized with ETBD and Fe3O4@TiO2 core–shell nanoparticles. Sens. Actuators B Chem. 2017, 242, 889–896. [Google Scholar]
- Tao, L.; Lou, Y.; Zhao, Y.; Hao, M.; Yang, Y.; Xiao, Y.; Tsang, Y.; Li, J. Silver nanoparticle-decorated graphene oxide for surface-enhanced Raman scattering detection and optical limiting applications. J. Mater. Sci. 2018, 53, 573–580. [Google Scholar] [CrossRef]
- Wang, F.; Gu, Z.; Lei, W.; Wang, W.; Xia, X.; Hao, Q. Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(II) ions. Sens. Actuators B Chem. 2014, 190, 516–522. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Yang, J.; Xia, X.; Yi, R.; Jiang, J.; Liu, W.; Chen, J.; Chen, L.; Xu, J. “On-off-on” fluorescence switch of graphene quantum dots: A cationic control strategy. Appl. Surf. Sci. 2021, 546, 149110. [Google Scholar] [CrossRef]
- Zhu, S.; Tang, S.; Zhang, J.; Yang, B. Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 2012, 48, 4527–4539. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Ren, X.; Chen, C.; Wang, X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011, 45, 10454–10462. [Google Scholar] [CrossRef]
- Chen, D.; Feng, H.; Li, J. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012, 112, 6027–6053. [Google Scholar] [CrossRef]
- Coroş, M.; Pruneanu, S.; Stefan-van Staden, R.-I. Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. J. ElectroChem. Soc. 2020, 167, 037528. [Google Scholar] [CrossRef]
- Jose, J.; Prakash, P.; Jeyaprabha, B.; Abraham, R.; Mathew, R.; Zacharia, E.; Thomas, V.; Thomas, J. Principle, design, strategies, and future perspectives of heavy metal ion detection using carbon nanomaterial-based electrochemical sensors: A review. J. Iran. Chem. Soc. 2023, 20, 775–791. [Google Scholar] [CrossRef]
- Yang, J.; Maulik, G.; He, S.; Nag, A.; Deng, S.; Afsarimanesh, N.; Gao, J. Graphene allotropes-based electrochemical sensors to detect catechol molecules. Sens. Actuators A Phys. 2024, 368, 115088. [Google Scholar] [CrossRef]
- Kumunda, C.; Adekunle, A.S.; Mamba, B.B.; Hlongwa, N.; Nkambule, T. Electrochemical Detection of Environmental Pollutants Based on Graphene Derivatives: A Review. Front. Mater. 2021, 7, 616787. [Google Scholar] [CrossRef]
- Zuo, Y.; Xu, J.; Zhu, X.; Duan, X.; Lu, L.; Yu, Y. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: A review. Microchim. Acta 2019, 186, 171–186. [Google Scholar] [CrossRef]
- Ali, Z.; Ullah, R.; Tuzen, M.; Ullah, S.; Rahim, A.; Saleh, T. Colorimetric sensing of heavy metals on metal doped metal oxide nanocomposites: A review. Trends Environ. Anal. Chem. 2023, 37, e00187. [Google Scholar] [CrossRef]
- Fu, Q.; Bao, X. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874. [Google Scholar] [CrossRef] [PubMed]
- Falina, S.; Syamsul, M.; Rhaffor, N.A.; Sal Hamid, S.; Mohamed Zain, K.; Abd Manaf, A.; Kawarada, H. Ten years progress of electrical detection of heavy metal ions (Hmis) using various field-effect transistor (fet) nanosensors: A review. Biosensors 2021, 11, 478. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Chang, H.; Wu, H. Graphene-based nanocomposites: Preparation, functionalization, and energy and environmental applications. Energy Environ. Sci. 2013, 6, 3483–3507. [Google Scholar] [CrossRef]
- Gahrouei, A.E.; Rezapour, A.; Pirooz, M.; Pourebrahimi, S. From classic to cutting-edge solutions: A comprehensive review of materials and methods for heavy metal removal from water environments. Desalination Water Treat. 2024, 319, 100446. [Google Scholar] [CrossRef]
- Peng, H.; Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020, 18, 2055–2068. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Min, X.; Tang, C.J.; Sillanpää, M.; Zhao, F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process Eng. 2022, 49, 103–127. [Google Scholar] [CrossRef]
- Zheng, B.; Tian, Y.; Jia, S.; Zhao, X.; Li, H. Molecular dynamics study on applying layered graphene oxide membranes for separating cadmium ions from water. J. Membr. Sci. 2020, 603, 1179–1196. [Google Scholar] [CrossRef]
- Kim, I.S.; Hwang, M.; Choi, C. Membrane-Based Desalination Technology for Energy Efficiency and Cost Reduction. In Desalination Sustainability: A Technical, Socioeconomic, and Environmental Approach; Elsevier: Amsterdam, The Netherlands, 2017; pp. 31–74. [Google Scholar]
- Li, Y.; Xu, Z.; Liu, S.; Zhang, J.; Yang, X. Molecular simulation of reverse osmosis for heavy metal ions using functionalized nanoporous graphenes. Comput. Mater. Sci. 2017, 139, 65–74. [Google Scholar] [CrossRef]
- Cohen-Tanugi, D. Nanoporous Graphene as a Water Desalination Membrane. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012. [Google Scholar]
- Yang, F.; Du, M.; Yin, K.; Qiu, Z.; Zhao, J.; Liu, C.; Zhang, G.; Gao, Y.; Pang, H. Applications of Metal-Organic Frameworks in Water Treatment: A Review. Small 2022, 18, 2105715. [Google Scholar] [CrossRef]
- Velarde, L.; Nabavi, M.S.; Escalera, E.; Antti, M.; Akhtar, F. Adsorption of heavy metals on natural zeolites: A review. Chemosphere 2023, 328, 138508. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ahmed, A.; Gad, A. Chemical and microstructural analyses for heavy metals removal from water media by ceramic membrane filtration. Water Sci. Technol. 2017, 75, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives. Chemosphere 2021, 263, 128005. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zhang, T.; Lin, Y.C.; Granzier-Nakajima, T.; Bepete, G.; Kowalczyk, D.; Lin, Z.; Zhou, D.; Schranghamer, T.; Dodda, A. Graphene and Beyond: Recent Advances in Two-Dimensional Materials Synthesis, Properties, and Devices. ACS Nanosci. Au 2022, 2, 450–485. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Gara, J.S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J.A. Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Bieri, M.; Treier, M.; Cai, J.; Aït-Mansour, K.; Ruffieux, P.; Gröning, O.; Gröning, P.; Kastler, M.; Rieger, R.; Feng, X. Porous graphenes: Two-dimensional polymer synthesis with atomic precision. Chem. Commun. 2009, 45, 6919–6921. [Google Scholar] [CrossRef]
- Lemme, M.C.; Bell, D.C.; Williams, J.R.; Stern, L.A.; Baugher, B.; Jarillo-Herrero, P.; Marcus, C.M. Etching of graphene devices with a helium ion beam. ACS Nano 2009, 3, 2674–2676. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Safron, N.S.; Han, E.; Arnold, M.; Gopalan, P. Fabrication and characterization of large-area, semiconducting nanoperforated graphene materials. Nano Lett. 2010, 10, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Teng, J.; Yu, J.G.; Tan, A.S.; Fu, D.F.; Zhang, H. Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy. Int. J. Miner. Metall. Mater. 2018, 25, 102–109. [Google Scholar] [CrossRef]
- Bell, N.J.; Ng, Y.H.; Du, A.; Coster, H.; Smith, S.; Amal, R. Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J. Phys. Chem. C 2011, 115, 6004–6009. [Google Scholar] [CrossRef]
- Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214. [Google Scholar] [CrossRef]
- Mao, H.N.; Wang, X.G. Use of in-situ polymerization in the preparation of graphene/polymer nanocomposites. Xinxing Tan Cailiao/New Carbon Mater. 2020, 35, 336–343. [Google Scholar] [CrossRef]
- Lee, S.J.; Yoon, S.J.; Jeon, I.Y. Graphene/Polymer Nanocomposites: Preparation, Mechanical Properties, and Application. Polymers 2022, 14, 4733. [Google Scholar] [CrossRef] [PubMed]
- Talapatra, A.; Datta, D. A review of the mechanical, thermal and tribological properties of graphene reinforced polymer nanocomposites: A molecular dynamics simulations methods. Polym. Bull. 2023, 80, 2299–2328. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef]
- Qing, F.; Hou, Y.; Stehle, R.; Li, X. Chemical vapor deposition synthesis of graphene films. APL Mater. 2019, 7, 020903. [Google Scholar] [CrossRef]
- Han, W.; Liu, L.; Yu, B.; Zhu, Q. Electrodeposition of graphene oxide-hydroxyapatite composite coating on titanium substrate. Ceram Int. 2023, 49, 9647–9656. [Google Scholar] [CrossRef]
- Iqbal, M.S.; Aslam, A.A.; Iftikhar, R.; Ziegler, K.; Chakraborty, T. The potential of functionalized graphene-based composites for removing heavy metals and organic pollutants. J. Water Process Eng. 2023, 53, 103809. [Google Scholar] [CrossRef]
- Sreeprasad, T.S.; Maliyekkal, S.M.; Lisha, K.P.; Pradeep, T. Reduced graphene oxide-metal/metal oxide composites: Facile synthesis and application in water purification. J. Hazard. Mater. 2011, 186, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Gkika, D.A.; Karmali, V.; Lambropoulou, D.A.; Mitropoulos, A.C.; Kyzas, G.Z. Membranes Coated with Graphene-Based Materials: A Review. Membranes 2023, 13, 127. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. A review of the mechanical and thermal properties of graphene and its hybrid polymer nanocomposites for structural applications. J. Mater. Sci. 2019, 54, 5992–6026. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, K.; Dixit, A.R. Carbon nanotube- and graphene-reinforced multiphase polymeric composites: Review on their properties and applications. J. Mater. Sci. 2020, 55, 2682–2724. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef]
- Alyarnezhad, S.; Marino, T.; Parsa, J.B.; Galiano, F.; Ursino, C.; Garcìa, H.; Puche, M.; Figoli, A. Polyvinylidene fluoride-graphene oxide membranes for dye removal under visible light irradiation. Polymers 2020, 12, 1509. [Google Scholar] [CrossRef] [PubMed]
- Keirouz, A.; Galiano, F.; Russo, F.; Fontananova, E.; Castro-Dominguez, B.; Figoli, A.; Mattia, D.; Leese, H. Cyrene-Enabled Green Electrospinning of Nanofibrous Graphene-Based Membranes for Water Desalination via Membrane Distillation. ACS Sustain. Chem. Eng. 2024, 12, 17713–17725. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.; Li, J.; Zhu, X.; Chen, J.; Zhang, X.; Fang, X.; Li, F. Difunctional MOF-wrapped graphene membranes for efficient photothermal membrane distillation and VOCs interception. J. Membr. Sci. 2023, 676, 121592. [Google Scholar] [CrossRef]
- Sera, J.S.; Mohammadi, T.; Tofighy, M.A. Graphene-based membranes for membrane distillation applications: A review. J. Environ. Chem. Eng. 2022, 10, 107974. [Google Scholar] [CrossRef]
- Aquino, M.; Santoro, S.; Politano, A.; D’Andrea, G.; Siciliano, A.; Straface, S.; La Russa, M.F.; Curcio, E. Environmentally Friendly Photothermal Membranes for Halite Recovery from Reverse Osmosis Brine via Solar-Driven Membrane Crystallization. Membranes 2024, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.; Feng, K.; Tang, B.; Wu, P. Surface decoration of amino-functionalized metal-organic framework/graphene oxide composite onto polydopamine-coated membrane substrate for highly efficient heavy metal removal. ACS Appl. Mater. Interfaces 2017, 9, 2594–2605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Gong, J.L.; Zeng, G.M.; An, Q.F.; Liu, Y.L.; Zhang, Y.M.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 2017, 322, 657–666. [Google Scholar] [CrossRef]
- Shukla, A.K.; Alam, J.; Alhoshan, M. Removal of heavy metal ions using a carboxylated graphene oxide-incorporated polyphenylsulfone nanofiltration membrane. Environ. Sci. 2018, 4, 438–448. [Google Scholar] [CrossRef]
- Liu, W.; Wang, D.; Soomro, R.A.; Fu, F.; Qiao, N.; Yu, Y.; Wang, R.; Xu, B. Ceramic supported attapulgite-graphene oxide composite membrane for efficient removal of heavy metal contamination. J. Membr. Sci. 2019, 591, 117323. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Chung, T.S. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration. Environ. Sci. Technol. 2015, 49, 10235–10242. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Gao, J.; Chung, T.S. Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal. J. Membr. Sci. 2016, 515, 230–237. [Google Scholar] [CrossRef]
- Abdi, G.; Alizadeh, A.; Zinadini, S.; Moradi, G. Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J. Membr. Sci. 2018, 552, 326–335. [Google Scholar] [CrossRef]
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Qian, L.; Thiruppathi, A.R.; Van Der Zalm, J.; Chen, A. Graphene Oxide-Based Nanomaterials for the Electrochemical Sensing of Isoniazid. ACS Appl. Nano Mater. 2021, 4, 3696–3706. [Google Scholar] [CrossRef]
- Kadhom, M.; Deng, B. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl. Mater. Today 2018, 11, 219–230. [Google Scholar] [CrossRef]
- Kakar, U.M.; Tauanov, Z.; Azat, S.; Ahmadi, N.; Hassand, M.H.; Sarwari, A. Carbon Nanotubes as Adsorbents for Heavy Metals: Focus on Arsenic and Hydrargyrum Removal from Water. J. Chem. Stud. 2024, 3, 07–20. [Google Scholar] [CrossRef]
- Han, Z.Y.; Huang, L.J.; Qu, H.J.; Wang, Y.; Zhang, Z.J.; Rong, Q.I.; Sang, Z.Q.; Wang, Y.; Kipper, M.J.; Tang, J.G. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. J. Mater. Sci. 2021, 56, 9545–9574. [Google Scholar] [CrossRef]
- Pan, B.; Yin, X.; Iglauer, S. A review on clay wettability: From experimental investigations to molecular dynamics simulations. Adv. Colloid Interface Sci. 2020, 285, 102266. [Google Scholar] [CrossRef]
- Ghosh, S.; Sotskov, V.; Shapeev, A.V.; Neugebauer, J.; Körmann, F. Short-range order and phase stability of CrCoNi explored with machine learning potentials. Phys. Rev. Mater. 2022, 6, 113804. [Google Scholar] [CrossRef]
- Sperger, T.; Sanhueza, I.A.; Schoenebeck, F. Computation and Experiment: A Powerful Combination to Understand and Predict Reactivities. Acc. Chem. Res. 2016, 49, 1311–1319. [Google Scholar] [CrossRef]
- Samstag, R.W.; Ducoste, J.J.; Griborio, A.; Nopens, I.; Batstone, D.J.; Wicks, J.D.; Saunders, S.; Wicklein, E.A.; Kenny, G.; Laurent, J. CFD for wastewater treatment: An overview. Water Sci. Technol. 2016, 74, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Guediri, A.; Bouguettoucha, A.; Chebli, D.; Chafai, N.; Amrane, A. Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modified phosphoric acid. J. Mol. Struct. 2020, 1202, 127290. [Google Scholar] [CrossRef]
- Fakhari, S.M.; Mrad, H. Aerodynamic shape optimization of NACA airfoils based on a novel unconstrained conjugate gradient algorithm. J. Eng. Res. 2024, 020, 1–10. [Google Scholar] [CrossRef]
- Macuglia, D. SHAKE and the exact constraint satisfaction of the dynamics of semi-rigid molecules in Cartesian coordinates, 1973–1977. Arch. Hist. Exact. Sci. 2023, 77, 345–371. [Google Scholar] [CrossRef]
- Vzzlzrt, L. ‘Exyeriments’ on Classical Fluids. I. Thermodynamical Properties of Lennard,-Jones Molecules. Phys. Rev. 1967, 159, 98. [Google Scholar]
- Hoover, W.G.; Holian, B.L. Kinetic moments method for the canonical ensemble distribution. Phys. Lett. A 1996, 2, 253–257. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 94550–95554. [Google Scholar] [CrossRef]
- Wang, S.; Maganga, I.; Zeng, L.; Gu, Z. Graphene crown pore for efficient heavy metal ion Removal: Protonated vs. Non-protonated. J. Mol. Liq. 2024, 395, 123819. [Google Scholar] [CrossRef]
- Khalajiolyaie, A.; Jian, C. Advancing wastewater treatment from cadmium contamination via functionalized graphene nanosheets. J. Water Process Eng. 2024, 63, 105491. [Google Scholar] [CrossRef]
- Azamat, J.; Khataee, A.; Joo, S.W. Functionalized graphene as a nanostructured membrane for removal of copper and mercury from aqueous solution: A molecular dynamics simulation study. J. Mol. Graph. Model. 2014, 53, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Majidi, S.; Erfan-Niya, H.; Azamat, J.; Cruz-Chú, E.R.; Walther, J.H. Efficient Removal of Heavy Metals from Aqueous Solutions through Functionalized γ-Graphyne-1 Membranes under External Uniform Electric Fields: Insights from Molecular Dynamics Simulations. J. Phys. Chem. B 2021, 125, 12254–12263. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, A.; Alizadeh, M.; Ajalli, N.; Azamat, J.; Jahanshahi, M. Molecular dynamic simulation and artificial neural network (ANN) modeling of the functionalized graphene oxide membranes on Cr (VI) ion removal through electrodialysis method. J. Mol. Liq. 2023, 383, 122083. [Google Scholar] [CrossRef]
- Rahiminejad, M.; Mortazavi, V.; Moosavi, A.; Nouri-Borujerdi, A. Transport of Water Contaminated with Various Ions Through Nanoporous Graphene: A Molecular Dynamics Simulation. Transp. Porous Media 2022, 242, 537–557. [Google Scholar] [CrossRef]
- Tabasi, E.; Vafa, N.; Firoozabadi, B.; Salmankhani, A.; Nouranian, S.; Habibzadeh, S.; Mashhadzadeh, A.H.; Spitas, C.; Saeb, M. Ion rejection performances of functionalized porous graphene nanomembranes for wastewater purification: A molecular dynamics simulation study. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130492. [Google Scholar] [CrossRef]
- Zheng, B.; Chu, X.; Li, H.; Wu, X.; Zhao, X.; Tian, Y. Layered graphene oxide membranes functioned by amino acids for efficient separation of metal ions. Appl. Surf. Sci. 2021, 546, 149145. [Google Scholar] [CrossRef]
- Khalajiolyaie, A.; Jian, C. Mechanistic understanding of the functioning of two-layer graphene membranes at the nanoscale for wastewater treatment. J. Mol. Liq. 2025, 420, 126833. [Google Scholar] [CrossRef]
- Zheng, B.; Chu, X.; Peng, Z.; Tian, Y. Improving the separation performance for heavy metals by optimizing the structure of multilayered GO membrane. J. Mol. Liq. 2023, 370, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X. Molecular simulation of layered GO membranes with amorphous structure for heavy metal ions separation. J. Membr. Sci. 2022, 660, 107947. [Google Scholar] [CrossRef]
- Giri, A.K.; Cordeiro, M.N.D.S. Heavy metal ion separation from industrial wastewater using stacked graphene Membranes: A molecular dynamics simulation study. J. Mol. Liq. 2021, 338, 116688. [Google Scholar] [CrossRef]
- Panahi, A.; Shomali, A.; Sabour, M.H.; Ghafar-Zadeh, E. Molecular dynamics simulation of electric field driven water and heavy metals transport through fluorinated carbon nanotubes. J. Mol. Liq. 2019, 278, 658–671. [Google Scholar] [CrossRef]
- Chen, A.; Liu, W.; Soomro, R.A.; Wei, Y.; Zhu, X.; Qiao, N.; Kang, Y.; Xu, B. PVA-integrated graphene oxide-attapulgite composite membrane for efficient removal of heavy metal contaminants. Environ. Sci. Pollut. Res. 2022, 29, 84410–84420. [Google Scholar] [CrossRef] [PubMed]
- Ercarikci, E.; Alanyalioglu, M. Dual-Functional Graphene-Based Flexible Material for Membrane Filtration and Electrochemical Sensing of Heavy Metal Ions. IEEE Sens. J. 2021, 21, 2468–2475. [Google Scholar] [CrossRef]
- Lari, S.; Parsa, S.A.M.; Akbari, S.; Emadzadeh, D.; Lau, W.J. Fabrication and evaluation of nanofiltration membrane coated with amino-functionalized graphene oxide for highly efficient heavy metal removal. Int. J. Environ. Sci. Tech. 2022, 19, 4615–4626. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Q.; Huang, X.; Qian, X. Surface Functionalization of Graphene Oxide with Hyperbranched Polyamide-Amine and Microcrystalline Cellulose for Efficient Adsorption of Heavy Metal Ions. ACS Omega 2022, 7, 10944–10954. [Google Scholar] [CrossRef] [PubMed]
- Arvidsson, R. Review of environmental life cycle assessment studies of graphene production. Adv. Mater. Lett. 2017, 8, 187–195. [Google Scholar] [CrossRef]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.; Voon, C.H. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Li, X.; Jin, H.; Chan, Y.; Guo, H.; Ma, W. Environmental impacts of graphene at industrial production scale and its application in electric heating technology. Resour. Conserv. Recycl. 2023, 199, 1–10. [Google Scholar] [CrossRef]
- Nayak, T.; Pathan, A. Environmental remediation and application of carbon-based nanomaterials in the treatment of heavy metal-contaminated water: A review. Mater. Today Proc. 2023, 92, 1659–1670. [Google Scholar] [CrossRef]
- Abd Rahman, F.H.; Amiruddin, H.; Abdollah, M.F.B.; Mohd Zulkifli, N.; Samion, S.; Umehara, N.; Tanemura, M.; Honda, M.; Morina, A. Synthesising graphene with renewably-sourced bio-carbon precursors: A brief review. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 173–186. [Google Scholar] [CrossRef]
- Kazemi, A.; Bahramifar, N.; Heydari, A.; Olsen, S. Life cycle assessment of nanoadsorbents at early stage technological development. J. Clean. Prod. 2018, 174, 527–537. [Google Scholar] [CrossRef]
- Munuera, J.; Britnell, L.; Santoro, C.; Cuéllar, R.; Casiraghi, C. A review on sustainable production of graphene and related life cycle assessment. 2D Mater. 2022, 9, 012002. [Google Scholar] [CrossRef]
- Sulthana, S.F.; Iqbal, U.M.; Suseela, S.B.; Anbazhagan, R.; Chinthaginjala, R.; Chitathuru, D.; Ahmad, I.; Kim, T. Electrochemical Sensors for Heavy Metal Ion Detection in Aqueous Medium: A Systematic Review. ACS Omega 2024, 9, 25493–25512. [Google Scholar] [CrossRef] [PubMed]
- McGarrity, M.; Zhao, F. Graphene-Based Chemiresistor Sensors for Drinking Water Quality Monitoring. Sensors 2023, 23, 9828. [Google Scholar] [CrossRef]
- Saputra, H.A. Electrochemical sensors: Basic principles, engineering, and state of the art. Monatsh Chem. 2023, 154, 1083–1100. [Google Scholar] [CrossRef]
- Dilshad, M.; Hussain, T.; Ali, S.; Shakeel, M.; Javed, M.; Nazir, F.; Ahmad, A. Graphene-Based Electrochemical Sensors for Heavy Metal Ions Detection: A Comprehensive Review. ASEAN J. Sci. Eng. Mater. 2025, 4, 23–42. [Google Scholar]
- Atacan, K. CuFe2O4/reduced graphene oxide nanocomposite decorated with gold nanoparticles as a new electrochemical sensor material for ʟ-cysteine detection. J. Alloys. Compd. 2019, 791, 391–401. [Google Scholar] [CrossRef]
- Ayala-Claveria, M.; Carlesi, C.; Puig, J.; Olguin, G. The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance. Processes 2024, 12, 2320. [Google Scholar] [CrossRef]
- Guha, R.; Xiong, B.; Geitner, M.; Moore, T.; Wood, T.; Velegol, D.; Kumar, M. Reactive micromixing eliminates fouling and concentration polarization in reverse osmosis membranes. J. Membr. Sci. 2017, 542, 8–17. [Google Scholar] [CrossRef]
- Tan, L.; Chen, Z.; Zhao, Y.; Wei, X.; Li, Y.; Zhang, C.; Wei, X.; Hu, X. Dual channel sensor for detection and discrimination of heavy metal ions based on colorimetric and fluorescence response of the AuNPs-DNA conjugates. BioSens. Bioelectron. 2016, 85, 414–421. [Google Scholar] [CrossRef]
- Cohen-Tanugi, D. Nanoporous graphene as a water desalination membrane. Technol. (Singap. World Sci.) 2012, 12, 3602–3608. [Google Scholar]
- Kang, J.W.; Hwang, H.J. Gigahertz actuator of multiwall carbon nanotube encapsulating metallic ions: Molecular dynamics simulations. J. Appl. Phys. 2004, 96, 3900–3905. [Google Scholar] [CrossRef]
- Song, N.; Gao, X.; Ma, Z.; Wang, X.; Wei, Y.; Gao, C. A review of graphene-based separation membrane: Materials, characteristics, preparation and applications. Desalination 2018, 437, 59–72. [Google Scholar] [CrossRef]
- Movaghgharnezhad, S.; Kang, P. Laser-induced graphene: Synthesis advances, structural tailoring, enhanced properties, and sensing applications. J. Mater. Chem. C Mater. 2024, 12, 6718–6742. [Google Scholar] [CrossRef]
- Moon, H.R.; Ryu, B. Review of Laser-Induced Graphene (LIG) Produced on Eco-Friendly Substrates. Int. J. Precis. Eng. Manuf.—Green Technol. 2024, 11, 1279–1294. [Google Scholar] [CrossRef]
- Kommu, A.; Singh, J.K. A review on graphene-based materials for removal of toxic pollutants from wastewater. Soft. Mater. 2020, 18, 297–322. [Google Scholar] [CrossRef]
Metal Ion | Range in Sewage Sludge (mg/kg) | WHO Drinking Water Limit (mg/L) |
---|---|---|
Lead (Pb) | 12–102 | 0.01 |
Cadmium (Cd) | 0.8–7.3 | 0.003 |
Copper (Cu) | 51–198 | 2.0 |
Mercury (Hg) | <0.2 | 0.006 |
Zinc (Zn) | 810–1880 | No health-based limit (<3 for taste) |
Chromium (Cr) | 13.2–355 | 0.05 (total Cr) |
Hexavalent Chromium (Cr(VI)) | 0.28–4.3 | – |
Metal Ion | Graphene-Based Material | Sensing Mechanism | Limit of Detection | Reference |
---|---|---|---|---|
Cu2⁺ | Graphene and graphene oxide | Fluorescence quenching | 1.5 Nm | [32] |
Al3⁺ | Graphene quantum dots (GQDs) | Fluorescence quenching | 10 nM | [33] |
Hg2⁺ | Reduced GO | Electrochemical detection | 5 pM | [29] |
Fe3⁺ | Functionalized GO with amino groups | Colorimetric sensing | 0.1 µM | [27] |
Pb2⁺ | GO decorated with nanoparticles | Electrochemical sensing | 50 nM | [30] |
Cd2⁺ | rGO with DNA aptamers | Fluorescence enhancement | 2 nM | [28] |
Hg2⁺ | GO | Electrochemical sensing | 3 µM | [40] |
Pb2⁺ | GO decorated with nanoparticles | Electrochemical sensing | 0.25 mM | [45] |
Ag⁺ | GO coated with silver nanoparticles | Surface-enhanced Raman spectroscopy (SERS) detection | 0.8 pM | [31] |
Cd2⁺ | Few-layer GO | Adsorption mechanism | 0.978 nM | [35] |
Hg2⁺ | Graphene-based nanocomposites | Optical sensing | 1 nM | [46] |
Pb2⁺ | Metal oxide–GO nanoparticles | Colorimetric sensing | 96 µM | [42] |
Hg2⁺ | rGO | Electrical detection via charge transfer | 4.985 nM | [44] |
Graphene-Based Material | Heavy Metal | Characterization Test | Average Removal Efficiency | References |
---|---|---|---|---|
Metal–organic framework–GO composite | Cu | FESEM, FTIR, TEM, XRD, and TG | 90% | [85] |
GO–isophorone diisocyanate | Pb, Cu, Cd, and Cr | FTIR, XPS, SEM, contact angle measurements, and zeta-potential tests | 72% | [86] |
Ceramic-supported GO–attapulgite composite | Cu, Ni, and Pb | SEM, FTIR, XPS, AFM, XRD, and using mercury intrusion pore size analyzer | 99% | [88] |
Carboxylated GO-incorporated polyphenylsulfone | As, Cr, Pb, and Zn | ATRFTIR, XRD, XPS, AFM, and using SurPASS electrokinetic analyzer (for zeta-potential test) | 80% | [87] |
GO framework with ethylenediamine | Mg, Pb, Ni, and Zn | X-ray photoelectron spectroscopy, FTIR, FESEM, and AFM | 90% | [89] |
GO composite | Pb, Ni, and Zn | FESEM, XPS, using SurPASS electrokinetic analyzer (for zeta-potential test), and pore size distribution tests | 95% | [90] |
Polyethersulfone nanofiltration membrane modified with magnetic GO–metformin hybrid | Cu | AFM, SEM, and contact angle measurements | 92% | [91] |
Graphene-Based Materials | Pollutant | Average Removal Efficiency | References |
---|---|---|---|
Graphene-based materials | Pb2⁺ | ≥90% (50–150 MPa), 60% at 250 mPa | [107] |
Triangular graphene pores | Co2⁺ | 100% (<500 MPa), 95% at 500 MPa | [2] |
Graphene functionalized with F | Cd2⁺ | ≥92% (80–350 MPa), 70% at 500 MPa | [108] |
Graphene functionalized with H | Cu2⁺, Hg2⁺ | 100% | [109] |
Fluorinated graphene pores (F-pores) | Cu2⁺, Hg2⁺ | - | [110] |
γ-graphyne-1 functionalized with −NH2 | Cr(VI) | Maximum 100% | [111] |
Graphene-Based Materials | Pollutant | Average Removal Efficiency | References |
---|---|---|---|
H-functionalized graphene pores (5 Å) | Cd2⁺, Cl− | 100% ion rejection | [108] |
Nanoporous graphene (<15 Å) | Na⁺, Ca2⁺, K⁺, Mg2⁺, Cl− | 100% ion rejection (at 100 MPa) | [112] |
Protonated triangular graphene pores | Cd2⁺, Cu2⁺, Hg2⁺, Pb2⁺ | Fewer ions remain on the feed side compared to other shapes | [107] |
Protonated trapezoidal graphene pores | Cd2⁺, Cu2⁺, Hg2⁺, Pb2⁺ | Higher ion passage compared to triangular pores | [107] |
Pristine graphene nanoporous membranes (PGNMs) | As3⁺ | 100% rejection (even without functionalization) | [113] |
Graphene-Based Materials | Pollutant | Average Removal Efficiency | References |
---|---|---|---|
H- and OH-functionalized graphene | Cd2⁺ | Maximum 98%, 92% | [108] |
γ-graphyne-1 with −NH2, COOH functionalization | Cu2⁺, Hg2⁺ | Moderate ion rejection | [110] |
GO membrane with AlaNeg functionalization | Pb2⁺ | Rejection rate increased from 30% to 80% | [114] |
NPG-N-functionalized membrane | Cd2⁺, Cu2⁺, Pb2⁺, Co2⁺, Zn2⁺ | 100% for Cd2⁺, Cu2⁺, and Co2⁺; 90% (Pb2⁺); and 98% (Zn2⁺) | [2] |
B-, NH-, and OH-functionalized graphene | Various ions | High rejection (>98%) at low pressure | [53] |
Functionalized PGNMs (large pores) | Cu2⁺ | Improved rejection with carbamate and thiourea groups (~94%) | [113] |
GO membrane with AlaNeg functionalization | Pb2⁺ | Rejection rate increased from 30% to 80% | [114] |
Graphene-Based Materials | Pollutant | Average Removal Efficiency | References |
---|---|---|---|
H- and OH-functionalized bilayer graphene membrane | Cd2⁺, Cl− | 100% rejection | [115] |
Layered GO membrane with 0.738 nm offset | Salt ions | Nearly 100% rejection at 50 MPa | [51] |
Layered GO membrane with 0 nm offset | Salt ions | 80–90% rejection at 50 MPa | [51] |
Four-layer small GO nanosheets (SG) | Cd2⁺ | >95% rejection with gap width of 1.107 nm and IS of 0.7 nm | [116] |
Large GO sheets (>50 Å) | Pb2⁺ | >95% rejection at 300 MPa | [117] |
Stacked graphene membranes with narrow channels (0.9 nm) | Cd2⁺, Pb2⁺ | High selectivity and rejection | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalajiolyaie, A.; Jian, C. Advances in Graphene-Based Materials for Metal Ion Sensing and Wastewater Treatment: A Review. Environments 2025, 12, 43. https://doi.org/10.3390/environments12020043
Khalajiolyaie A, Jian C. Advances in Graphene-Based Materials for Metal Ion Sensing and Wastewater Treatment: A Review. Environments. 2025; 12(2):43. https://doi.org/10.3390/environments12020043
Chicago/Turabian StyleKhalajiolyaie, Akram, and Cuiying Jian. 2025. "Advances in Graphene-Based Materials for Metal Ion Sensing and Wastewater Treatment: A Review" Environments 12, no. 2: 43. https://doi.org/10.3390/environments12020043
APA StyleKhalajiolyaie, A., & Jian, C. (2025). Advances in Graphene-Based Materials for Metal Ion Sensing and Wastewater Treatment: A Review. Environments, 12(2), 43. https://doi.org/10.3390/environments12020043