Carbon Footprint of By-Product Concentrate Feed: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheat Bran
2.2. Biscuit Meal
2.3. Soybean Meal
2.4. Corn Gluten Meal
2.5. Sunflower Oil and Sunflower Meal
2.6. Maize Flour
2.7. Barley Meal
2.8. Sensitive Analysis of Soybean Meal Association with Deforestation
3. Results
3.1. Carbon Footprint
3.2. Sensitive Analysis Soybean Meal Association with Deforestation
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mottet, A.; De Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On Our Plates or Eating at Our Table? A New Analysis of the Feed/Food Debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Randolph, T.F.; Schelling, E.; Grace, D.; Nicholson, C.F.; Leroy, J.L.; Cole, D.C.; Demment, M.W.; Omore, A.; Zinsstag, J.; Ruel, M. Invited Review: Role of Livestock in Human Nutrition and Health for Poverty Reduction in Developing Countries1,2,3. J. Anim. Sci. 2007, 85, 2788–2800. [Google Scholar] [CrossRef]
- Bruinsma, J. The Resource Outlook for 2050: By How Much Do Land. Water and Crop Yields Need to Increase by 2050? FAO: Rome, Italy, 2009; Available online: https://www.fao.org/3/ak971e/ak971e.pdf (accessed on 17 October 2024).
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience 2017, 67, 386–391. [Google Scholar] [CrossRef]
- Flysjö, A.; Henriksson, M.; Cederberg, C.; Ledgard, S.; Englund, J.-E. The Impact of Various Parameters on the Carbon Footprint of Milk Production in New Zealand and Sweden. Agric. Syst. 2011, 104, 459–469. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915794-0. [Google Scholar]
- Muscat, A.; De Olde, E.M.; De Boer, I.J.M.; Ripoll-Bosch, R. The Battle for Biomass: A Systematic Review of Food-Feed-Fuel Competition. Glob. Food Secur. 2020, 25, 100330. [Google Scholar] [CrossRef]
- Castanheira, É.G.; Freire, F. Greenhouse Gas Assessment of Soybean Production: Implications of Land Use Change and Different Cultivation Systems. J. Clean. Prod. 2013, 54, 49–60. [Google Scholar] [CrossRef]
- Cardoso, A.S.; Berndt, A.; Leytem, A.; Alves, B.J.R.; De Carvalho, I.D.N.O.; De Barros Soares, L.H.; Urquiaga, S.; Boddey, R.M. Impact of the Intensification of Beef Production in Brazil on Greenhouse Gas Emissions and Land Use. Agric. Syst. 2016, 143, 86–96. [Google Scholar] [CrossRef]
- Palladini, N.M.; Gislon, G.; Sandrucci, A.; Zucali, M.; Tamburini, A.; Bava, L. Assessment of Food-Feed Competition for Producing Milk in Cow Dairy Farms. Agric. Syst. 2024, 218, 103984. [Google Scholar] [CrossRef]
- Pinotti, L.; Luciano, A.; Ottoboni, M.; Manoni, M.; Ferrari, L.; Marchis, D.; Tretola, M. Recycling Food Leftovers in Feed as Opportunity to Increase the Sustainability of Livestock Production. J. Clean. Prod. 2021, 294, 126290. [Google Scholar] [CrossRef]
- Van Hal, O.; De Boer, I.J.M.; Muller, A.; De Vries, S.; Erb, K.-H.; Schader, C.; Gerrits, W.J.J.; Van Zanten, H.H.E. Upcycling Food Leftovers and Grass Resources through Livestock: Impact of Livestock System and Productivity. J. Clean. Prod. 2019, 219, 485–496. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Cutrignelli, M.I. A Review on the Use of Agro-Industrial CO-Products in Animals’ Diets. Ital. J. Anim. Sci. 2022, 21, 577–594. [Google Scholar] [CrossRef]
- Bradford, B.J.; Mullins, C.R. Invited Review: Strategies for Promoting Productivity and Health of Dairy Cattle by Feeding Nonforage Fiber Sources. J. Dairy Sci. 2012, 95, 4735–4746. [Google Scholar] [CrossRef] [PubMed]
- Orsetti, T. Assemblea Assalzoo, Mangimi Trainati Dagli Avicoli Nel 2023. Available online: https://informatorezootecnico.edagricole.it/economia-mercati/assemblea-assalzoo-mangimi-trainati-avicoli-2023/ (accessed on 24 September 2024).
- Sabia, E.; Zanon, T.; Braghieri, A.; Pacelli, C.; Angerer, V.; Gauly, M. Effect of Slaughter Age on Environmental Efficiency on Beef Cattle in Marginal Area Including Soil Carbon Sequestration: A Case of Study in Italian Alpine Area. Sci. Total Environ. 2024, 918, 170798. [Google Scholar] [CrossRef]
- Costantini, M.; Vázquez-Rowe, I.; Manzardo, A.; Bacenetti, J. Environmental Impact Assessment of Beef Cattle Production in Semi-Intensive Systems in Paraguay. Sustain. Prod. Consum. 2021, 27, 269–281. [Google Scholar] [CrossRef]
- Batalla, I.; Knudsen, M.T.; Mogensen, L.; Hierro, Ó.D.; Pinto, M.; Hermansen, J.E. Carbon Footprint of Milk from Sheep Farming Systems in Northern Spain Including Soil Carbon Sequestration in Grasslands. J. Clean. Prod. 2015, 104, 121–129. [Google Scholar] [CrossRef]
- Berton, M.; Bovolenta, S.; Corazzin, M.; Gallo, L.; Pinterits, S.; Ramanzin, M.; Ressi, W.; Spigarelli, C.; Zuliani, A.; Sturaro, E. Environmental Impacts of Milk Production and Processing in the Eastern Alps: A “Cradle-to-Dairy Gate” LCA Approach. J. Clean. Prod. 2021, 303, 127056. [Google Scholar] [CrossRef]
- Angerer, V.; Sabia, E.; König Von Borstel, U.; Gauly, M. Environmental and Biodiversity Effects of Different Beef Production Systems. J. Environ. Manag. 2021, 289, 112523. [Google Scholar] [CrossRef] [PubMed]
- Supermix Farm Computer Systems, SuperMix. Available online: https://www.fcs.it/supermix.php (accessed on 27 January 2025).
- Garcia-Launay, F.; Van Der Werf, H.M.G.; Nguyen, T.T.H.; Le Tutour, L.; Dourmad, J.Y. Evaluation of the Environmental Implications of the Incorporation of Feed-Use Amino Acids in Pig Production Using Life Cycle Assessment. Livest. Sci. 2014, 161, 158–175. [Google Scholar] [CrossRef]
- Ali, B.M.; Van Zanten, H.H.E.; Berentsen, P.; Bastiaansen, J.W.M.; Bikker, P.; Lansink, A.O. Environmental and Economic Impacts of Using Co-Products in the Diets of Finishing Pigs in Brazil. J. Clean. Prod. 2017, 162, 247–259. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Baumont, R.; Noblet, J.; Renaudeau, D.; Lessire, M.; Lebas, F. Wheat Bran. Feedipedia is a programme by INRAE, CIRAD, AFZ, and FAO. 2015. Available online: https://feedipedia.org/node/726 (accessed on 24 October 2024).
- Wilfart, A.; Espagnol, S.; Dauguet, S.; Tailleur, A.; Gac, A.; Garcia-Launay, F. ECOALIM: A Dataset of Environmental Impacts of Feed Ingredients Used in French Animal Production. PLoS ONE 2016, 11, e0167343. [Google Scholar] [CrossRef]
- Bikker, P.; Jansman, A.J.M. Review: Composition and Utilisation of Feed by Monogastric Animals in the Context of Circular Food Production Systems. Animal 2023, 17, 100892. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Bouvarel, I.; Ponchant, P.; Van Der Werf, H.M.G. Using Environmental Constraints to Formulate Low-Impact Poultry Feeds. J. Clean. Prod. 2012, 28, 215–224. [Google Scholar] [CrossRef]
- Zmami, M.; Ben-Salha, O. Does Oil Price Drive World Food Prices? Evidence from Linear and Nonlinear ARDL Modeling. Economies 2019, 7, 12. [Google Scholar] [CrossRef]
- Golob, P.; Farrell, G.; Orchard, J.E. (Eds.) Crop Post-Harvest: Science and Technology; Blackwell Science Ltd.: Oxford, UK, 2002; Volume 1, ISBN 978-0-470-75101-5. [Google Scholar]
- Gollnow, F.; Hissa, L.D.B.V.; Rufin, P.; Lakes, T. Property-Level Direct and Indirect Deforestation for Soybean Production in the Amazon Region of Mato Grosso, Brazil. Land Use Policy 2018, 78, 377–385. [Google Scholar] [CrossRef]
- Flachowsky, G.; Meyer, U. Challenges for Plant Breeders from the View of Animal Nutrition. Agriculture 2015, 5, 1252–1276. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, Y.; Zhang, T.; Zhu, X.; Fang, Q.; Oenema, O. Decreasing Environmental Footprints of Dairy Production Systems through Optimization of Feed Rations and Origins. J. Clean. Prod. 2024, 461, 142637. [Google Scholar] [CrossRef]
- Lindberg, M.; Henriksson, M.; Bååth Jacobsson, S.; Berglund Lundberg, M. Byproduct-Based Concentrates in Swedish Dairy Cow Diets—Evaluation of Environmental Impact and Feed Costs. Acta Agric. Scand. Sect.—Anim. Sci. 2021, 70, 132–144. [Google Scholar] [CrossRef]
- Sandström, V.; Chrysafi, A.; Lamminen, M.; Troell, M.; Jalava, M.; Piipponen, J.; Siebert, S.; Van Hal, O.; Virkki, V.; Kummu, M. Food System By-Products Upcycled in Livestock and Aquaculture Feeds Can Increase Global Food Supply. Nat. Food 2022, 3, 729–740. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, A.; Arbolino, R.; Szopik-Depczyńska, K.; Limosani, M.; Ioppolo, G. A Systematic Review for Measuring Circular Economy: The 61 Indicators. J. Clean. Prod. 2021, 281, 124942. [Google Scholar] [CrossRef]
- Fussone, R.; Cannella, S.; Dominguez, R.; Framinan, J.M. On the Bullwhip Effect in Circular Supply Chains Combining By-Products and End-of-Life Returns. Appl. Math. Model. 2025, 137, 115670. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Northrup, D.; Wang, M. Effects of Soybean Varieties on Life-cycle Greenhouse Gas Emissions of Biodiesel and Renewable Diesel. Biofuels Bioprod. Biorefining 2023, 17, 449–462. [Google Scholar] [CrossRef]
- Fischer, R.A. Definitions and Determination of Crop Yield, Yield Gaps, and of Rates of Change. Field Crops Res. 2015, 182, 9–18. [Google Scholar] [CrossRef]
- Tretola, M.; Ottoboni, M.; Luciano, A.; Rossi, L.; Baldi, A.; Pinotti, L. Former Food Products Have No Detrimental Effects on Diet Digestibility, Growth Performance and Selected Plasma Variables in Post-Weaning Piglets. Ital. J. Anim. Sci. 2019, 18, 987–996. [Google Scholar] [CrossRef]
- Kaltenegger, A.; Humer, E.; Stauder, A.; Zebeli, Q. Feeding of Bakery By-Products in the Replacement of Grains Enhanced Milk Performance, Modulated Blood Metabolic Profile, and Lowered the Risk of Rumen Acidosis in Dairy Cows. J. Dairy Sci. 2020, 103, 10122–10135. [Google Scholar] [CrossRef]
- Aljerf, L.; AlMasri, N.; Prince, U. Statistical Relationship between Milk Constituents Used in Breeding Programs during Lactation: French Case Study. Madridge J. Case Rep. Stud. 2018, 2, 90–93. [Google Scholar] [CrossRef]
Feed Ingredients (%) | BCF | MCF | CRF |
---|---|---|---|
Wheat bran | 49.1 | 22.6 | - |
Biscuit meal | 21.6 | - | - |
Corn gluten meal | 19.5 | - | - |
Sunflower meal | 5.8 | - | - |
Soybean meal | - | 27.8 | 43.6 |
Maise flour | - | 31.0 | 26.3 |
Barley meal | - | 13.5 | 26.3 |
Flaxseed oil | 1.4 | 2.4 | 1.3 |
Mineral mix | 2.6 | 2.7 | 2.6 |
Energy required | |||
Electricity medium voltage (Kwh/ton) | 41.0 | 41.0 | 41.0 |
Natural gas (MJ/ton) | 73.8 | 73.8 | 73.8 |
Nutritional value (%) | |||
Crude protein | 22.1 | 22.0 | 22.1 |
Crude lipid | 7.4 | 7.0 | 8.0 |
Starch | 32.6 | 27.5 | 33.0 |
MFU 1 | 1.09 | 1.09 | 1.09 |
Feed Ingredients | Description | Agribalyse Database |
---|---|---|
Wheat bran | Wheat bran, animal feed, at plant/FR U | Agricultural/animal feed/feed ingredients/transformation/cereal-based/imported from SimaPro v. 9.5. |
Biscuit meal | Biscuit meal, and animal feed, at the retailer’s gate | Agricultural/animal feed/feed ingredients/transformation/others |
Corn gluten meal | Corn gluten meal (gluten 60) | Agricultural/animal feed/feed ingredients/transformation/cereal-based |
Sunflower meal | Sunflower meal and oil, with low dehulling, at the transformation plant | Agricultural/animal feed/feed ingredients/transformation/oil seed-based |
Soybean meal not associated with deforestation | Soybean meal BR, crushed in France, animal feed, at a French mill, not associated with deforestation/FR U | Agricultural/animal feed/feed ingredients/transformation/legume-based |
Maise flour | Maise flour at an industrial mill | Agricultural/food/transformation |
Barley meal | Barley, feed grain, conventional, stored and transported, processing/FR U | Agricultural/animal feed/feed ingredients/transformation/cereal-based |
Soybean meal associated with deforestation | Soybean meal BR, crushed in France, animal feed, at a French mill, associated with deforestation/FR U | Agricultural/animal feed/feed ingredients/transformation/legume-based |
Pollutants in Air (%) | BCF | MCF | MCFSD | CRF | CRFSD |
---|---|---|---|---|---|
CO2 Land Transformation | 0 | 0 | 42.9 | 0 | 48.5 |
CO2 Fossil | 62.1 | 68.9 | 40.0 | 69.6 | 33.0 |
N2O | 32.4 | 26.8 | 14.6 | 25.4 | 12.1 |
CH4 Fossil | 3.4 | 2.9 | 1.6 | 2.9 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabia, E.; Braghieri, A.; Vignozzi, L.; Paolino, R.; Cosentino, C.; Di Trana, A.; Pacelli, C. Carbon Footprint of By-Product Concentrate Feed: A Case Study. Environments 2025, 12, 42. https://doi.org/10.3390/environments12020042
Sabia E, Braghieri A, Vignozzi L, Paolino R, Cosentino C, Di Trana A, Pacelli C. Carbon Footprint of By-Product Concentrate Feed: A Case Study. Environments. 2025; 12(2):42. https://doi.org/10.3390/environments12020042
Chicago/Turabian StyleSabia, Emilio, Ada Braghieri, Luca Vignozzi, Rosanna Paolino, Carlo Cosentino, Adriana Di Trana, and Corrado Pacelli. 2025. "Carbon Footprint of By-Product Concentrate Feed: A Case Study" Environments 12, no. 2: 42. https://doi.org/10.3390/environments12020042
APA StyleSabia, E., Braghieri, A., Vignozzi, L., Paolino, R., Cosentino, C., Di Trana, A., & Pacelli, C. (2025). Carbon Footprint of By-Product Concentrate Feed: A Case Study. Environments, 12(2), 42. https://doi.org/10.3390/environments12020042