Application of Electronic Tongue for Detection and Classification of Lead Concentrations in Coal Mining Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Mining Wastewater Samples
2.2. Methods of Analysis of Mining Wastewater Samples
2.2.1. Physicochemical Characterization
2.2.2. Detection and Quantification of Lead Using Atomic Absorption Spectroscopy (AAS)
2.2.3. The Implementation of an E-Tongue as an Alternative Technique
- Standard solutions were utilized.
- Real samples collected from the coal mine were analyzed.
- Preparation of lead standard solutions and actual samples
- Electrochemical analysis
- Data Processing
3. Results
3.1. Physicochemical Analysis
3.2. Detection and Quantification of Lead Using AAS
3.3. E-Tongue
3.3.1. Concentrations for Evaluating the Performance of the E-Tongue
3.3.2. Concentrations at Points 1 and 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Hernández, M.; Mora, P.; Ortega, M.F.; Cabello, J.P. Development of a Comprehensive Sustainability Index for Extractive and Mining Companies: Integrating the Sustainable Development Goals. Heliyon 2025, 11, e41975. [Google Scholar] [CrossRef]
- Martinez, P. La Contaminación del Agua en la Minería | Observatorio Económico Latinoamericano OBELA; OBELA: México City, Mexico, 2021; Available online: https://www.obela.org/analisis/la-contaminacion-del-agua-en-la-mineria (accessed on 22 December 2024).
- Petropoulou, I.; Frousiou, M.-S.; Vasileiou, E. An Overview of Quality Assessment Methods for Water and Soil in Mining Regions. Mater. Proc. 2023, 15, 31. [Google Scholar] [CrossRef]
- Torres, S.M.A.; Castro, J.D.C.; Botero, M.A.G. Alternativas de aprovechamiento de residuos de la industria minera de El Bajo Cauca Antioqueño en el sector de la construcción. Rev. EIA 2021, 18, 36004. [Google Scholar] [CrossRef]
- Naciones Unidas. Agua y saneamiento—Desarrollo Sostenible. Available online: https://www.un.org/sustainabledevelopment/es/water-and-sanitation/ (accessed on 23 December 2024).
- Whitworth, A.J.; Vaughan, J.; Southam, G.; van der Ent, A.; Nkrumah, P.N.; Ma, X.; Parbhakar-Fox, A. Review on Metal Extraction Technologies Suitable for Critical Metal Recovery from Mining and Processing Wastes. Miner. Eng. 2022, 182, 107537. [Google Scholar] [CrossRef]
- Luino, F.; Bonetto, S.; Bono, B.; Comina, C.; Little, W.W.; Porfido, S.; Sassone, P.; Turconi, L. Marl Mining Activity and Negative Repercussions for Two Hillside Villages (Northern Italy). Geosciences 2024, 14, 181. [Google Scholar] [CrossRef]
- Chung, J.; Asad, M.W.A.; Topal, E. Timing of Transition from Open-Pit to Underground Mining: A Simultaneous Optimisation Model for Open-Pit and Underground Mine Production Schedules. Resour. Policy 2022, 77, 102632. [Google Scholar] [CrossRef]
- Karn, R.; Ojha, N.; Abbas, S.; Bhugra, S. A Review on Heavy Metal Contamination at Mining Sites and Remedial Techniques. IOP Conf. Ser. Earth Environ. Sci. 2021, 796, 012013. [Google Scholar] [CrossRef]
- Moghimi Dehkordi, M.; Pournuroz Nodeh, Z.; Soleimani Dehkordi, K.; Salmanvandi, H.; Rasouli Khorjestan, R.; Ghaffarzadeh, M. Soil, Air, and Water Pollution from Mining and Industrial Activities: Sources of Pollution, Environ-mental Impacts, and Prevention and Control Methods. Results Eng. 2024, 23, 102729. [Google Scholar] [CrossRef]
- Organizacion Mundial de la Salud. Intoxicación Por Plomo. Available online: https://www.who.int/es/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 23 December 2024).
- Li, H.; Yao, J.; Sunahara, G.; Min, N.; Li, C.; Duran, R. Quantifying Ecological and Human Health Risks of Met-al(Loid)s Pollution from Non-Ferrous Metal Mining and Smelting Activities in Southwest China. Sci. Total Environ. 2023, 873, 162364. [Google Scholar] [CrossRef] [PubMed]
- Raj, K.; Das, A.P. Lead Pollution: Impact on Environment and Human Health and Approach for a Sustainable Solution. Environ. Chem. Ecotoxicol. 2023, 5, 79–85. [Google Scholar] [CrossRef]
- Wu, D.; Hu, Y.; Cheng, H.; Ye, X. Detection Techniques for Lead Ions in Water: A Review. Molecules 2023, 28, 3601. [Google Scholar] [CrossRef]
- Gupta, A.; Rotake, D.; Darji, A. Sensing Lead Ions in Water: A Comprehensive Review on Strategies and Sensor Materials. Anal. Sci. 2024, 40, 997–1021. [Google Scholar] [CrossRef] [PubMed]
- Rajoria, S.; Vashishtha, M.; Sangal, V.K. Heavy Metal Ions in Wastewater: A Review on Detection and Toxicity. SciMedcentral 2023, 6. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Behbahani, M. A Novel Lead Imprinted Polymer as the Selective Solid Phase for Extraction and Trace Detection of Lead Ions by Flame Atomic Absorption Spectrophotometry: Synthesis, Characterization and Analytical Application. Arab. J. Chem. 2017, 10, S2499–S2508. [Google Scholar] [CrossRef]
- Chochorek, A.; Bobrowski, A.; Kiralyova, Z.; Mocak, J. ICP-OES Determination of Select Metals in Surface Water—A Metrological. Polish J. Environ. Stud. 2010, 19, 59–64. [Google Scholar]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A Review on Detection of Heavy Metal Ions in Water—An Electrochemical Approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Farghaly, O.A. Direct and Simultaneous Voltammetric Analysis of Heavy Metals in Tap Water Samples at Assiut City: An Approach to Improve the Analysis Time for Nickel and Cobalt Determination at Mercury Film Electrode. Microchem. J. 2003, 75, 119–131. [Google Scholar] [CrossRef]
- Falina, S.; Syamsul, M.; Rhaffor, N.A.; Sal Hamid, S.; Mohamed Zain, K.A.; Abd Manaf, A.; Kawarada, H. Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosen-sors: A Review. Biosensors 2021, 11, 478. [Google Scholar] [CrossRef] [PubMed]
- Cetó, X.; del Valle, M. Electronic Tongue Applications for Wastewater and Soil Analysis. iScience 2022, 25, 104304. [Google Scholar] [CrossRef] [PubMed]
- Sohrabizadeh, Z.; Sodaeizadeh, H.; Hakimzadeh, M.A.; Taghizadeh-Mehrjardi, R.; Ghanei Bafghi, M.J. A statistical approach to study the spatial heavy metal distribution in soils in the Kushk Mine, Iran. Geosci. Data J. 2023, 10, 315–327. [Google Scholar] [CrossRef]
- Karkra, R.; Kumar, P.; Bansod, B.K.S.; Bagchi, S.; Sharma, P.; Krishna, C.R. Classification of Heavy Metal Ions Present in Multi-Frequency Multi-Electrode Potable Water Data Using Evolutionary Algorithm. Appl. Water Sci. 2017, 7, 3679–3689. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. A Screen-Printed Voltammetric Electronic Tongue for the Analysis of Complex Mixtures of Metal Ions. Sens. Actuators B Chem. 2017, 250, 393–401. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, X.; Qian, L.; Cui, Y.; Zheng, X.; Kang, Y.; Fu, X.; Wang, S.; Wang, P.; Wang, D. A Hand-Held Optoelec-tronic Tongue for the Identification of Heavy-Metal Ions. Sens. Actuators B Chem. 2022, 352, 130971. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Calidad del Agua. Determinacion del ph, 2nd ed.; ICONTEC: Bogota, Colombia, 2012. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 4500-H+ pH. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 2510 Conductivity. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Calidad de Agua. Medición de la Conductividad, 1st ed.; ICONTEC: Bogotá, Colombia, 2013. [Google Scholar]
- Instituto Colombiano de Normas Técnicas. Calidad del Agua. Determinacion de la Turbiedad. Metodo Nefelometrico, 1st ed.; ICONTEC: Bogota, Colombia, 1999. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 2130 Turbidity. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Calidad del Agua. Determinación del Color, 1st ed.; ICONTEC: Bogota, Colombia, 2011. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 2120 Color. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Calidad del Agua. Determinación de la Acidez y Determinación de la Alcalini-dad, 1st ed.; ICONTEC: Bogota, Colombia, 2016. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 2320 Alkalinity. In Standard Methods for the Examination of Water and Wastewater; Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Calidad Del Agua. Determinacion de La Dureza, 1st ed.; ICONTEC: Bogota, Colombia, 1999. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 2340 Hardness. In Standard Methods For the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Calidad del Agua. Determinación de Nitratos, no3, 2nd ed.; ICONTEC: Bogota, Colombia, 2014. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 4500-No2 Nitrogen (Nitrite). In Standard Methods For the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Calidad del Agua. Determinacion de Sulfato-so42-Metodo Turbidimettrico, 1st ed.; ICONTEC: Bogota, Colombia, 1999. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 4500-So42 Sulfate. In Standard Methods For the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Calidad del Suelo. Determinación de Fósforo Disponible, 1st ed.; ICONTEC: Bogota, Colombia, 2020. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federation. 4500-p Phosphorus. In Standard Methods For the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Calidad del Agua. Determinación del Contenido de Sólidos, 4th ed.; ICONTEC: Bogota, Colombia, 2024. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federatio. 2540 Solids. In Standard Methods For the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Instituto Colombiano de Normas Técnicas. Calidad del Agua. Demanda Química de Oxígeno (dqo), 4th ed.; ICONTEC: Bogota, Colombia, 2021. [Google Scholar]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federatio. 5220 Chemical Oxygen Demand (Cod). In Standard Methods For the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Standard Methods Committee of the American Public Health Association; American Water Works Association; Water Environment Federatio. 5210 BIOCHEMICAL OXYGEN DEMAND (BOD). In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017; Available online: https://www.standardmethods.org/doi/10.2105/SMWW.2882.102 (accessed on 29 December 2024).
- Instituto Colombiano de Normas Técnicas. Calidad del Agua. Demanda Bioquímica de Oxígeno (dbo), 4th ed.; ICONTEC: Bogota, Colombia, 2021. [Google Scholar]
- Pathak, S.; Quraishi, S.J.; Singh, A.; Singh, M.; Arora, K.; Ather, D. A Comparative Analysis of Machine Learning Models: SVM, Naïve Bayes, Random Forest, and LSTM in Predictive Analytics. In Proceedings of the 2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 1–3 November 2023; pp. 790–795. [Google Scholar] [CrossRef]
- Boer, Y.; Valencia, L.; Setiadi, M.R.; Eka Setiawan, K.; Hasani, M.F. Classification of Heart Disease: Comparative Analysis Using KNN, Random Forest, Gaussian Naive Bayes, XGBoost, SVM, Decision Tree, and Logistic Regression. In Proceedings of the 2023 5th International Conference on Cybernetics and Intelligent System (ICORIS), Pangkalpinang, Indonesia, 6–7 October 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Herath, H.C.M. Performance Evaluation of Machine Learning Classifiers for Hyperspectral Images. In Proceedings of the 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021; pp. 1216–1220. [Google Scholar] [CrossRef]
- Maydanchi, M.; Ziaei, A.; Basiri, M.; Azad, A.N.; Pouya, S.; Ziaei, M.; Haji, F.; Sargolzaei, S. Comparative Study of Decision Tree, AdaBoost, Random Forest, Naïve Bayes, KNN, and Perceptron for Heart Disease Prediction. In Proceedings of the SoutheastCon 2023, Orlando, FL, USA, 1–16 April 2023; pp. 204–208. [Google Scholar] [CrossRef]
- Tharwat, A. Linear vs. Quadratic Discriminant Analysis Classifier: A Tutorial. Int. J. Appl. Pattern Recognit. 2016, 3, 145–180. [Google Scholar] [CrossRef]
- Shimizu, F.M.; Braunger, M.L.; Riul, A. Heavy Metal/Toxins Detection Using Electronic Tongues. Chemosensors 2019, 7, 36. [Google Scholar] [CrossRef]
- Kuhlman, G.M.; Keymeulen, D.; Buehler, M.G.; Kounaves, S.P. Detecting heavy metals in solution using electronic-tongue 3 REDOX water quality sensors. In Proceedings of the 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), Big Sky, MT, USA, 6–13 March 2004; Volume 1, pp. 363–378. [Google Scholar] [CrossRef]
Parameter | Technique | Standard | Reference |
---|---|---|---|
pH | Potentiometric Method | NTC 4113 APHA 4500 | [27,28] |
Conductivity [µS/cm] | Electrometric Method | NTC 809 APHA 2510-B | [29,30] |
Turbidity [NTU] | Nephelometric Method | NTC 4707 APHA 2130-B | [31,32] |
Color [UPtCo] | Visual Comparison with Calibrated Disks | NTC 5844 APHA 2120-B | [33,34] |
Alkalinity [mg/L] | Volumetric Method | NTC 4903 APHA 2320-B | [35,36] |
Hardness [mg/L] | EDTA Titration | NTC 4706 APHA 2340-C | [37,38] |
Nitrites [mg/L] | Spectrophotometric Method | NTC 4798 APHA 4500-NO2-B | [39,40] |
Sulfates [mg/L] | Turbidimetric Spectrophotometric Method | NTC 4708 APHA 4500-SO4 | [41,42] |
Phosphates [mg/L] | Spectrophotometric Method (Molybdenum Blue) | NTC 5350 APHA 4500-P | [43,44] |
SST [mg/L] | Gravimetric Method | NTC 897 APHA 2540-D | [45,46] |
DQO [mg/L] | Closed Reflux Colorimetric Method | NTC 3629 APHA 5220-D | [47,48] |
DBO5 | Incubation Method | NTC 3963 APHA 5210-B | [49,50] |
Test 1 | Test 2 |
---|---|
0.5 ppm | Distilled water |
1 ppm | 0.05 ppm |
10 ppm | 0.1 ppm |
20 ppm | 0.3 ppm |
40 ppm | 0.5 ppm |
50 ppm | 0.6 ppm |
60 ppm | 0.8 ppm |
70 ppm | 0.9 ppm |
80 ppm | 1 ppm |
90 ppm | Sample 1 |
100 ppm | Sample 2 |
z | Assigned Value |
---|---|
Econd [V] | 0 |
Edep [V] | 0 |
Tcond [s] | 0 |
Tdep [s] | 0 |
Tequil [s] | 0.3 |
Ebegin [V] | −1 |
Evtx1 [V] | −1 |
Evtx2 [V] | 1 |
Estpe [V] | 0.01 |
Srate [V/s] | 0.05 |
Nscans | 10 |
Method | Type | Operation | Applications | Reference |
---|---|---|---|---|
SVM (Support Vector Machine) | Supervised | Finds an optimal hyperplane that maximizes class separation using kernel transformations. | Text Classification, Disease Detection, Image Analysis | [51] |
k-NN (k-Nearest Neighbor) | Supervised | Classifies based on the classes of the k-nearest neighbors in the feature space. | Pattern Recognition, Image Classification, Recommendation Systems | [52] |
RF (Random Forest) | Supervised | An ensemble of decision trees that uses random sampling and the averaging of predictions to improve accuracy. | Value Prediction, Medical Data Analysis, Fraud Detection | [53] |
Naïve Bayes | Supervised | Based on conditional probability and Bayes’s theorem; independence between features is assumed. | Text Classification, Spam Detection, Sentiment Analysis | [54] |
QDA (Quadratic Discriminant Analysis) | Supervised | Fits quadratic decision boundaries based on class-specific statistics. | Medical Diagnosis, Pattern Recognition, Finance and Marketing | [55] |
Parameter | Sample Point 1 | Sample Point 2 | Permissible limit |
---|---|---|---|
pH | 7.3 | 8.1 | 6–9 |
Conductivity [µS/cm] | 3224 | 2864 | Analysis and Report |
Turbidity [NTU] | 424 | 22.2 | Analysis and Report |
Color [UPtCo] | 643 | 181 | Analysis and Report |
Alkalinity [mg/L] | 340 | 560 | Analysis and Report |
Hardness [mg/L] | 2500 | 966 | Analysis and Report |
Nitrites [mg/L] | 0.089 | 0.042 | Analysis and Report |
Sulfates [mg/L] | 118 | 115 | 1200 |
Phosphates [mg/L] | 2.85 | 1.3 | Analysis and Report |
SST [mg/L] | 1370 | 108 | 50 |
DQO [mg/L] | 508 | 24 | 150 |
DBO5 | 314 | 15.1 | 50 |
ML Model | Accuracy (%) | Precision (%) | Sensitivity (%) | Specificity (%) | F1-Score (%) | NPV (%) | AUC ROC Curve (%) |
---|---|---|---|---|---|---|---|
SVM | 97.30 | 97.52 | 97.30 | 97.30 | 99.73 | 99.73 | 98.50 |
k-NN | 94.55 | 95.10 | 94.55 | 94.45 | 94.57 | 99.46 | 97.00 |
RF | 90.91 | 91.70 | 90.91 | 99.09 | 90.90 | 99.10 | 95.00 |
Naïve Bayes | 86.36 | 86.75 | 86.36 | 98.64 | 86.01 | 98.65 | 92.50 |
QDA | 93.64 | 93.88 | 93.64 | 99.36 | 93.63 | 99.37 | 96.50 |
Model | Accuracy (%) | Precision (%) | Sensitivity (%) | Specificity (%) | F1-Score (%) | NPV (%) | AUC ROC Curve (%) |
---|---|---|---|---|---|---|---|
SVM | 90.00 | 91.05 | 90.00 | 99.00 | 90.15 | 99.01 | 94.50 |
k-NN | 70.23 | 70.85 | 70.00 | 96.80 | 70.00 | 96.82 | 66.07 |
RF | 90.00 | 90.59 | 90.00 | 98.99 | 99.02 | 99.00 | 94.00 |
Naïve Bayes | 86.36 | 86.64 | 86.36 | 98.64 | 86.43 | 98.64 | 92.50 |
QDA | 87.27 | 89.52 | 87.27 | 98.73 | 87.44 | 98.74 | 93.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, J.K.C.; Barrera, L.D.P.; Acevedo, C.M.D. Application of Electronic Tongue for Detection and Classification of Lead Concentrations in Coal Mining Wastewater. Environments 2025, 12, 41. https://doi.org/10.3390/environments12020041
Gómez JKC, Barrera LDP, Acevedo CMD. Application of Electronic Tongue for Detection and Classification of Lead Concentrations in Coal Mining Wastewater. Environments. 2025; 12(2):41. https://doi.org/10.3390/environments12020041
Chicago/Turabian StyleGómez, Jeniffer Katerine Carrillo, Laura Daniela Patiño Barrera, and Cristhian Manuel Durán Acevedo. 2025. "Application of Electronic Tongue for Detection and Classification of Lead Concentrations in Coal Mining Wastewater" Environments 12, no. 2: 41. https://doi.org/10.3390/environments12020041
APA StyleGómez, J. K. C., Barrera, L. D. P., & Acevedo, C. M. D. (2025). Application of Electronic Tongue for Detection and Classification of Lead Concentrations in Coal Mining Wastewater. Environments, 12(2), 41. https://doi.org/10.3390/environments12020041