Estimating Ambient Ozone Effect of Kansas Rangeland Burning with Receptor Modeling and Regression Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Data
2.2. Summary of Previous Results of Receptor Modeling
2.3. Methods of O3 and PM2.5 Regression Analysis
3. Results
3.1. Regression Models Using Meteorological Data as Predictor Variables
3.2. Residual Analysis
3.3. Modeling O3 by Integrating Episodic Contributions of S3 and S4
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kansas Department of Health and Environment, Bureau of Air. State of Kansas Flint Hills Smoke Management Plan. Available online: http://www.ksfire.org/docs/about/Flint_Hills_SMP_v10FINAL.pdf (accessed on 8 February 2017).
- Liu, Z. Air Quality Concerns of Prescribed Range Burning in Kansas; Kansas State University Agricultural Experiment Station and Cooperative Extension Service: Manhattan, KS, USA, 2014. [Google Scholar]
- Hu, Y.; Odman, M.T.; Chang, M.E.; Jackson, W.; Lee, S.; Edgerton, E.S.; Baumann, K.; Russell, A.G. Simulation of air quality impacts from prescribed fires on an urban area. Environ. Sci. Technol. 2008, 42, 3676–3682. [Google Scholar] [CrossRef] [PubMed]
- Heilman, W.E.; Liu, Y.; Urbanski, S.; Kovalev, V.; Mickler, R. Wildland fire emissions, carbon, and climate: Plume rise, atmospheric transport, and chemistry processes. For. Ecol. Manag. 2014, 317, 70–79. [Google Scholar] [CrossRef]
- Watson, J.G.; Robinson, N.F.; Chow, J.C.; Henry, R.C.; Kim, B.M.; Pace, T.G.; Meyer, E.L.; Nguyen, Q. The USEPA/DRI chemical mass balance receptor model, CMB 7.0. Environ. Softw. 1990, 5, 38–49. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.G.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; US Environmental Protection Agency Office of Research and Development: Washington, DC, USA, 2014.
- Norris, G.; Vedantham, R.; Duvall, R.; Henry, R.C. EPA Unmix 6.0 Fundamentals & User Guide; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2007.
- Liu, Z.; Liu, Y.; Maghirang, R.; Devlin, D.; Blocksome, C. Estimate contributions of prescribed rangeland burning in Kansas to ambient PM2.5 through source apportionment. Trans. ASABE 2016, 59, 1267–1275. [Google Scholar]
- Lippmann, M. Health effects of ozone. A critical review. JAPCA 1989, 39, 672–695. [Google Scholar] [CrossRef] [PubMed]
- Cassmassi, J.C. Development of an Objective Ozone Forecast Model for the South Coast Air Basin. In Proceedings of the Air Pollution Control Association 80th Annual Meeting, New York, NY, USA, 21–26 June 1987.
- Dye, T.S.; Ray, S.E.; Lindsey, C.G.; Arthur, M.; Chinkin, L.R. Summary of Ozone Forecasting and Equation Development for the Air Districts of Sacramento, Yolo-Solano, and Placer. Vol. I: Ozone Forecasting. Vol. II: Equation Development. Final Report Prepared for Sacramento Metropolitan Air Quality Management District, 1996; Sonoma Technology, Inc.: Santa Rosa, CA, USA, 1996. [Google Scholar]
- Hubbard, M.C.; Cobourn, W.G. Development of a regression model to forecast groundlevel ozone concentration in Louisville, KY. Atmos. Environ. 1998, 32, 2637–2647. [Google Scholar] [CrossRef]
- Ryan, W.F. Forecasting severe ozone episodes in the Baltimore metropolitan area. Atmos. Environ. 1995, 29, 2387–2398. [Google Scholar] [CrossRef]
- Narasimhan, R.; Keller, J.; Subramaniam, G.; Raasch, E.; Croley, B.; Duncan, K.; Potter, W.T. Ozone modeling using neural networks. J. Appl. Meteorol. 2000, 39, 291–296. [Google Scholar] [CrossRef]
- Thompson, M.L.; Reynolds, J.; Cox, L.H.; Guttorp, P.; Sampson, P.D. A review of statistical methods for the meteorological adjustment of tropospheric ozone. Atmos. Environ. 2001, 35, 617–630. [Google Scholar] [CrossRef]
- Özbay, B.; Keskin, G.A.; Doğruparmak, Ş.Ç.; Ayberk, S. Multivariate methods for ground-level ozone modeling. Atmos. Res. 2011, 102, 57–65. [Google Scholar] [CrossRef]
- Liu, X.; Yeo, K.; Hwang, Y.; Singh, J.; Kalagnanam, J. A statistical modeling approach for air quality data based on physical dispersion processes and its application to ozone modeling. Ann. Appl. Stat. 2016, 10, 756–785. [Google Scholar] [CrossRef]
- Brown, N.; Jin, L. Improving the Understanding of PM2.5 and Ozone Chemistry from Air Quality Modeling for More Accurate Prediction of Power Generation Impacts; California Energy Commission: Sacramento, CA, USA, 2013. [Google Scholar]
- Interagency Monitoring of Protected Visual Environments (IMPROVE). Available online: http://vista.cira.colostate.edu/improve/ (accessed on 8 February 2017).
- Clean Air Status and Trends Network (CASTNET). Available online: http://www.epa.gov/castnet/ (accessed on 8 February 2017).
- Malm, W.C.; Sisler, J.F.; Huffman, D.; Eldred, R.A.; Cahill, T.A. Spatial and Seasonal Trends in Particle Concentration and Optical Extinction in the United-States. J. Geophys. Res. Atmos. 1994, 99, 1347–1370. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z. Source Apportionment of Ambient PM2.5 by Using Unmix and PMF Reception Models at Flint Hills Rural Site and Kansas City Urban Site. In Proceedings of the ASABE, Orlando, FL, USA, 17–20 July 2016.
- Zvyagintsev, A.M.; Belikov, I.B.; Elanskii, N.F.; Kakadzhanova, G.; Kuznetsova, I.N.; Tarasova, O.A.; Shalygina, I.Y. Statistical modeling of daily maximum surface ozone concentrations. Atmos. Ocean. Opt. 2010, 23, 284–292. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Guidelines for Developing an Air Quality (Ozone and PM2.5). Available online: https://www3.epa.gov/airnow/aq_forecasting_guidance-1016.pdf (accessed on 8 February 2017).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer: New York, NY, USA, 2003. [Google Scholar]
- Roy, D.P.; Lin, Y.; Lewis, E.P.; Justice, C.O. Prototyping a global algorithm for systematic fire affected area mapping using MODIS time series data. Remote Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- Tansey, K.; Gregoire, J.; Defourny, P.; Leigh, R.; Pekel, J.; van Bochove, E.; Bartholome, E. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution and daily intervals. Geophys. Res. Lett. 2008, 35, L01401. [Google Scholar] [CrossRef]
- Odman, M.T.; Hu, Y.; Garcia-Menendez, F.; Davis, A.; Russell, A.G. Fires and Air Quality Forecasts: Past, Present, and Future. Environ. Manag. 2013, 1, 12–21. [Google Scholar]
- A Clearer View of Tomorrow’s Haze: Improvement in Air Quality Forecasting. Available online: http://pubs.awma.org/gsearch/em/2014/2/hu.pdf (accessed on 8 February 2017).
- Al-Saadi, J.; Szykman, J.; Pierce, R.B.; Kittaka, C. Improving national air quality forecasts with satellite aerosol observations. Bull. Am. Meteorol. Soc. 2005, 86, 1249. [Google Scholar] [CrossRef]
Variable | Mean | Standard Deviation | Range |
---|---|---|---|
1 8-h daily maximum O3 concentration (ppb) | 42.4 | 13.0 | 4.0 to 81.0 |
2 Daily (24-h) average PM2.5 concentration (μg·m−3) | 7.82 | 5.41 | 0.73 to 58.9 |
2 Daily PM2.5: contribution of S1-nitrate/agricultural (μg·m−3) | 1.80 | 2.59 | 0 to 21.8 |
2 Daily PM2.5: contribution of S2-primary smoke particles (μg·m−3) | 0.39 | 0.78 | 0 to 13.4 |
2 Daily PM2.5: contribution of S3-secondary organic aerosol (μg·m−3) | 2.25 | 3.62 | 0 to 72.1 |
2 Daily PM2.5: contribution of S4-sulfate/industrial (μg·m−3) | 2.48 | 2.66 | 0 to 19.4 |
2 Daily PM2.5: contribution of S5-crustal/soil (μg·m−3) | 0.98 | 1.47 | 0 to 19.5 |
3 Daily maximum air temperature: Tmax (°C) | 18.9 | 11.6 | −13.2 to 42.3 |
3 Daily minimum air temperature: Tmin (°C) | 6.0 | 10.9 | −25.0 to 26.3 |
3 Difference between Tmax and Tmin: Tdiff (°C) | 12.9 | 4.8 | 0 to 30.4 |
3 Daily precipitation (mm) | 2.5 | 9.7 | 0 to 128.8 |
3 Daily total solar radiation: L (Langley) | 323.2 | 172.6 | 24.2 to 780.4 |
3 Daily average wind speed: V (m·s−1) | 3.8 | 2.1 | 0.6 to 16.0 |
3 Daily prevailing wind direction in degrees | 0 to 360 |
Regression Models | r2 | p |
---|---|---|
For non-rainy days (n = 799) | ||
0.40 | <0.01 | |
0.08 | <0.01 | |
0.08 | <0.01 | |
0.24 | <0.01 | |
0.21 | <0.01 | |
0.75 | <0.01 | |
For rainy days (n = 272) | ||
0.53 | <0.01 | |
0.06 | <0.01 | |
0.20 | <0.01 | |
0.10 | <0.01 | |
0.15 | <0.01 | |
0.65 | <0.01 |
Scenarios | O3 Due to Previous Day and Seasonal Effect (ppb) | O3 Due to Solar Radiation (ppb) | O3 Due to R4 (Episodic Industrial Emissions) (ppb) | O3 Due to R3 (Episodic Fire Emissions) (ppb) | O3 Due to Interactions of R3 and R4 (ppb) | Total O3 (ppb) |
---|---|---|---|---|---|---|
Average in April: O3(d)0 = 51.6 ppb, L = 358 Langley, Tdiff = 13.8 °C, R3 = 3.52 μg·m−3, R4 = 0 μg·m−3 | 40.7 | 10.2 | 0 | 1.8 | 0 | 52.8 |
Average plus two-sigma uncertainties in April: O3(d)0 = 73.4 ppb, L = 660 Langley, Tdiff = 24.2 °C, R3 = 24.2 μg·m−3, R4 = 6.01 μg·m−3 | 50.3 | 21.5 | 2.5 | 12.7 | 3.0 | 90.1 |
Average in June: O3(d)0 = 51.1 ppb, L = 494 Langley, Tdiff = 12.6 °C, R3 = 0 μg·m−3, R4 = 0 μg·m−3 | 43.6 | 10.3 | 0 | 0 | 0 | 53.9 |
Average plus two-sigma uncertainties in June: O3(d)0 = 70.8 ppb, L = 777 Langley, Tdiff = 19.8 °C, R3 = 2.18 μg·m−3, R4 = 6.33 μg·m−3 | 52.3 | 16.0 | 2.7 | 1.1 | 0.3 | 72.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, Y.; Murphy, J.P.; Maghirang, R. Estimating Ambient Ozone Effect of Kansas Rangeland Burning with Receptor Modeling and Regression Analysis. Environments 2017, 4, 14. https://doi.org/10.3390/environments4010014
Liu Z, Liu Y, Murphy JP, Maghirang R. Estimating Ambient Ozone Effect of Kansas Rangeland Burning with Receptor Modeling and Regression Analysis. Environments. 2017; 4(1):14. https://doi.org/10.3390/environments4010014
Chicago/Turabian StyleLiu, Zifei, Yang Liu, James P. Murphy, and Ronaldo Maghirang. 2017. "Estimating Ambient Ozone Effect of Kansas Rangeland Burning with Receptor Modeling and Regression Analysis" Environments 4, no. 1: 14. https://doi.org/10.3390/environments4010014
APA StyleLiu, Z., Liu, Y., Murphy, J. P., & Maghirang, R. (2017). Estimating Ambient Ozone Effect of Kansas Rangeland Burning with Receptor Modeling and Regression Analysis. Environments, 4(1), 14. https://doi.org/10.3390/environments4010014