Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to?
Abstract
:1. Introduction
2. Highly Sensitive Semiconductor Gas Sensor Principles
3. Highly Selective Sensor Systems
4. Novel Integrated Pre-Concentrator Gas Sensor Microsystem
5. Sensor System Testing and Evaluation
6. Factory and On-Site Calibration
7. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Brinke, J.T.; Selvin, S.; Hodgson, A.T.; Fisk, W.J.; Mendell, M.J.; Koshland, C.P.; Daisey, J.M. Development of new volatile organic compound (VOC) exposure metrics and their relationship to sick building syndrome symptoms. Indoor Air 1998, 8, 140–152. [Google Scholar] [CrossRef]
- Burge, P.S. Sick building syndrome. Occup. Environ. Med. 2004, 61, 185–190. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines for Indoor Air Quality: Selected Pollutants, Geneva (2010). Available online: http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf (accessed on 31 December 2016).
- Guo, H.; Lee, S.C.; Chan, L.Y.; Li, W.M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union: Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0050 (accessed on 31 December 2016).
- TRGS 910: Technische Regeln für Gefahrstoffe, Risikobezogenes Maßnahmenkonzept für Tätigkeiten mit krebserzeugenden Gefahrstoffen, Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Ausschuss für Gefahrstoffe. 2015. Available online: http://www.baua.de/de/Themen-von-A-Z/Gefahrstoffe/TRGS/TRGS-910.html (accessed on 31 December 2016).
- Reimann, P.; Schütze, A. Fire detection in coal mines based on semiconductor gas sensors. Sens. Rev. 2012, 32, 47–58. [Google Scholar] [CrossRef]
- Pearce, T.C.; Schiffman, S.S.; Nagle, H.T.; Gardner, J.W. Handbook of Machine Olfaction: Electronic Nose Technology; Wiley: Weinheim, Germany, 2006. [Google Scholar]
- European Collaborative Action Indoor Air Quality & Its Impact on Man: Sampling Strategies for Volatile Organic Compounds (VOCs) in Indoor Air. Available online: http://www.buildingecology.com/iaq/useful-publications/european-collaborative-action-on-urban-air-indoor-environment-and-human-exposure-reports-1/ (accessed on 31 December 2016).
- ISO 16000–3:2011, Indoor Air—Part 3: Determination of Formaldehyde and Other Carbonyl Compounds in Indoor Air and Test Chamber Air—Active Sampling Method (2011). Available online: http://www.iso.org/iso/catalogue_detail.htm?csnumber=51812 (accessed on 31 December 2016).
- Watson, N.; Davies, S.; Wevill, D. Air Monitoring: New Advances in Sampling and Detection. Sci. World J. 2011, 11, 2582–2598. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.R. Semiconductor Gas Sensors. Sens. Act. 1982, 2, 329–341. [Google Scholar] [CrossRef]
- Leidinger, M.; Sauerwald, T.; Reimringer, W.; Ventura, G.; Schütze, A. Selective detection of hazardous VOCs for indoor air quality applications using a virtual gas sensor array. J. Sens. Sens. Syst. 2014, 3, 253–263. [Google Scholar] [CrossRef]
- Bastuck, M.; Bur, C.; Sauerwald, T.; Schütze, A. Quantification of volatile organic compounds in the ppb-range using partial least squares regression. In Proceedings of the SENSOR 2015—17th International Conference on Sensors and Measurement Technology, Nuremberg, Germany, 19–21 May 2015.
- Kohl, D.; Kelleter, J.; Petig, H. Detection of Fires by Gas Sensors. In Sensors Update; WILEY-VCH: Weinheim, Germany, 2001; Volume 9, pp. 161–223. [Google Scholar]
- Bârsan, M.; Hübner, N.; Weimar, U. Conduction mechanism in semiconducting metal oxide sensing films: Impact on transduction. In Semiconductor Gas Sensors, 1st ed.; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 35–63. [Google Scholar]
- Comini, E. Metal oxide nano-crystals for gas sensing. Anal. Chim. Acta 2006, 568, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Ramgir, N.; Datta, N.; Kaur, M.; Kailasaganapathi, S.; Debnath, A.K.; Aswal, D.K.; Gupta, S.K. Metal oxide nanowires for chemiresistive gas sensors: Issues, challenges and prospects. Colloids Surf. A 2013, 439, 101–116. [Google Scholar] [CrossRef]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Wang, Y.; Yeow, J.T. W. A Review of Carbon Nanotubes-Based Gas Sensors. J. Sens. 2009. [Google Scholar] [CrossRef]
- Wulan Septiani, N.L.; Yuliarto, B. Review—The Development of Gas Sensor Based on Carbon Nanotubes. J. Electrochem. Soc. 2016, 163. [Google Scholar] [CrossRef]
- Huotari, J.; Kekkonen, V.; Haapalainen, T.; Leidinger, M.; Sauerwald, T.; Puustinen, J.; Liimatainen, J.; Lappalainen, J. Pulsed laser deposition of metal oxide nanostructures for highly sensitive gas sensor applications. Sens. Actuators B Chem. 2016, 236, 978–987. [Google Scholar] [CrossRef]
- Leidinger, M.; Huotari, J.; Sauerwald, T.; Lappalainen, J.; Schütze, A. Selective detection of naphthalene with nanostructured WO3 gas sensors prepared by pulsed laser deposition. J. Sens. Sens. Syst. 2016, 5, 147–156. [Google Scholar] [CrossRef]
- Baur, T.; Schütze, A.; Sauerwald, T. Optimierung des temperaturzyklischen Betriebs von Halbleitergassensoren. Technisches. Messen. 2015, 82, 187–195. [Google Scholar] [CrossRef]
- Sauerwald, T. Model based improvement of temperature cycled operation of tin oxide gas sensors. In Proceedings of the IX International Workshop on Semiconductor Gas Sensors, Zakopane, Poland, 13–16 December 2015.
- Zhang, S.P.; Lei, T.; Li, D.; Zhang, G.Z.; Xie, C. UV light activation of TiO2 for sensing formaldehyde: How to be sensitive, recovering fast, and humidity less sensitive. Sens. Actuators B Chem. 2014, 202, 964–970. [Google Scholar] [CrossRef]
- Jin, H.; Haick, H. UV regulation of non-equilibrated electrochemical reaction for detecting aromatic volatile organic compounds. Sens. Actuators B Chem. 2016, 237, 30–40. [Google Scholar] [CrossRef]
- Reimann, P.; Schütze, A. Sensor arrays, virtual multisensors, data fusion, and gas sensor data evaluation. In Gas. Sensing Fundamentals; Kohl, C.-D., Wagner, T., Eds.; Springer Series on Chemical Sensors and Biosensors, Volume 15; Springer: Berlin Heidelberg, Germany, 2014; pp. 67–107. [Google Scholar]
- Clifford, P.K.; Tuma, D.T. Characteristics of semiconductor gas sensors II. transient response to temperature change. Sens. Actuators 1983, 3, 255–281. [Google Scholar] [CrossRef]
- Lee, A.P.; Reedy, B.J. Temperature modulation in semiconductor gas sensing. Sens. Actuators B Chem. 1999, 60, 35–42. [Google Scholar] [CrossRef]
- Gramm, A.; Schütze, A. High performance solvent vapor identification with a two sensor array using temperature cycling and pattern classification. Sens. Actuators B Chem. 2003, 95, 58–65. [Google Scholar] [CrossRef]
- Bur, C.; Reimann, P.; Andersson, M.; Schütze, A.; Spetz, A.L. Increasing the Selectivity of Pt-Gate SiC Field Effect Gas Sensors by Dynamic Temperature Modulation. IEEE Sens. J. 2011, 12, 1906–1913. [Google Scholar] [CrossRef]
- Fricke, T.; Sauerwald, T.; Schütze, A. Study of Pulsed Operating Mode of a Microstructured Pellistor to Optimize Sensitivity and Poisoning Resistance. In Proceedings of the IEEE Sensors Conference 2014, Valencia, Spain, 2–5 November 2014.
- Ankara, Z.; Schütze, A. Low Power Virtual Sensor System based on a Micromachined Gas Sensor for Security Applications and Warning Systems. In Proceedings of the Eurosensors XXII Conference 2008, Dresden, Germany, 7–10 September 2008.
- Schüler, M.; Sauerwald, T.; Schütze, A. A novel approach for detecting HMDSO poisoning of metal oxide gas sensors and improving their stability by temperature cycled operation. J. Sens. Sens. Syst. 2015, 4, 305–311. [Google Scholar] [CrossRef]
- Bur, C.; Andersson, M.; Lloyd Spetz, A.; Schütze, A. Detecting Volatile Organic Compounds in the ppb Range with Gas Sensitive Platinum gate SiC-Field Effect Transistors. IEEE Sens. J. 2014, 14, 3221–3228. [Google Scholar] [CrossRef]
- Weimar, U.; Göpel, W.A.C. Measurements on tin oxide sensors to improve selectivities and sensitivities. Sens. Actuators B Chem. 1995, 26–27, 13–18. [Google Scholar] [CrossRef]
- Bastuck, M.; Bur, C.; Lloyd Spetz, A.; Andersson, M.; Schütze, A. Gas identification based on bias induced hysteresis of a gas-sensitive SiC field effect transistor. J. Sens. Sens. Syst. 2014, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Reimann, P.; Dausend, A.; Darsch, S.; Schüler, M.; Schütze, A. Improving MOS Virtual Multisensor Systems by Combining Temperature Cycled Operation with Impedance Spectroscopy. In Proceedings of the ISOEN 2011, International Symposium on Olfaction and Electronic Nose, New York, NY, USA, 2–5 May 2011.
- Bur, C.; Bastuck, M.; Lloyd Spetz, A.; Andersson, M.; Schütze, A. Selectivity enhancement of SiC-FET gas sensors by combining temperature and gate bias cycled operation using multivariate statistics. Sens. Actuators B Chem. 2014, 193, 931–940. [Google Scholar] [CrossRef]
- Kammerer, T.; Ankara, Z.; Schütze, A. GaSTON—A versatile platform for intelligent gas detection systems and its application for fast discrimination of fuel vapors. In Proceedings of the Eurosensors XVII Conference 2003, Guimarães, Portugal, 22–24 September 2003.
- Conrad, T.; Hiry, P.; Schütze, A. PuMaH—A temperature control and resistance read-out system for microstructured gas sensors based on PWM signals. In Proceedings of the IEEE Sensors Conference 2005, Irvine, CA, USA, 31 October–3 November 2005.
- Conrad, T.; Fricke, T.; Reimann, P.; Schütze, A. A versatile platform for the efficient development of gas detection systems based on automatic device adaptation. In Proceedings of the Eurosensors XX Conference 2006, Göteborg, Sweden, 17–20 September 2006.
- 3S-Toolbox. Available online: http://www.3s-ing.de/3s-technology/3s-toolbox/?L=1 (accessed on 30 December 2016).
- Reimringer, W.; Rachel, T.; Conrad, T.; Schütze, A. Outdoor odor nuisance monitoring by combining advanced sensor systems and a citizens network. In Proceedings of the ISOEN 2015, 16th International Symposium on Olfaction and Electronic Noses, Dijon, France, 28 June–1 July 2015.
- Stahl-Offergeld, M.; Hohe, H.P.; Jung, R.; Leidinger, M.; Schütze, A.; Sauerwald, T. Highly integrated sensor system for the detection of trace gases. In Proceedings of the IMCS’16–16th International Meeting on Chemical Sensors, Jeju Island, Korea, 10–14 July 2016.
- Schüler, M.; Sauerwald, T.; Schütze, A. Metal oxide semiconductor gas sensor self-test using Fourier-based impedance spectroscopy. J. Sens. Sens. Syst. 2014, 3, 213–221. [Google Scholar] [CrossRef]
- Sauerwald, T.; Schüler, M.; Schütze, A. Erforschung einer Strategie und Entwicklung einer Messplattform zur Selbstüberwachung von Gasmesssystemen auf Basis von Halbleitergassensoren; Bundesministerium für Wirtschaft und Energie: Berlin, Germany, 2015. [Google Scholar]
- Leonardos, G.; Kendall, D.; Barnard, N. Odor Threshold Determinations of 53 Odorant Chemicals. J. Air Pollut. Control. Assoc. 1969, 19, 91–95. [Google Scholar] [CrossRef]
- Akbar, M.; Restaino, M.; Agah, M. Chip-scale gas chromatography: From injection through detection. Microsyst. Nanoeng. 2015, 1, 15039. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Stürmann, J.; Nicoletti, S.; Dori, L.; Cardinali, G.C. Selectivity enhancement of metal oxide gas sensors using a micromachined gas chromatographic column. Sens. Actuators B Chem. 2005, 105, 400–406. [Google Scholar] [CrossRef]
- Leidinger, M.; Rieger, M.; Sauerwald, T.; Nägele, M.; Hürttlen, J.; Schütze, A. Trace gas VOC detection using metal-organic frameworks micro pre-concentrators and semiconductor gas sensors. Procedia Eng. 2015, 120, 1042–1045. [Google Scholar] [CrossRef]
- Leidinger, M.; Rieger, M.; Sauerwald, T.; Alépée, C.; Schütze, A. Integrated pre-concentrator gas sensor microsystem for ppb level benzene detection. Sens. Actuators B Chem. 2016, 236, 988–996. [Google Scholar] [CrossRef]
- SENSIndoor clip. Available online: http://sensindoor.eu/film (accessed on 30 December 2016).
- Helwig, N.; Schüler, M.; Bur, C.; Schütze, A.; Sauerwald, T. Gas mixing apparatus for automated gas sensor characterization. Meas. Sci. Technol. 2014, 25, 055903. [Google Scholar] [CrossRef]
- OSS Foundation: Atmospheric Composition. Available online: ossfoundation.us/projects/environment/global-warming/atmospheric-composition (accessed on 30 December 2016).
- Deutscher Wetterdienst (DWD): Composition of the Atmosphere–Trace Gases–Carbon Monoxide. Available online: www.dwd.de/EN/research/observing_atmosphere/composition_atmosphere/trace_gases/cont_nav/co_node.html (accessed on 30 December 2016).
- Schultealbert, C.; Baur, T.; Schütze, A.; Böttcher, S.; Sauerwald, T. A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors. Sens. Actuators B Chem. 2017, 239, 390–396. [Google Scholar] [CrossRef]
- Nanotechnology-Based Intelligent Multi-SENsor System with Selective Pre-Concentration for Indoor Air Quality Control, Website of the SENSIndoor Project. Available online: www.sensindoor.eu/ (accessed on 30 December 2016).
- Lappalainen, J.; Huotari, J.; Leidinger, M.; Baur, T.; Alépée, C.; Komulainen, S.; Puustinen, J.; Schütze, A. Tailored Metal Oxide Nanoparticles, Agglomerates, and Nanotrees for Gas Sensor Applications. In Proceedings of the IX International Workshop on Semiconductor Gas Sensors, Zakopane, Poland, 13–16 December 2015.
- Kekkonen, V.; Alépée, C.; Liimatainen, J.; Leidinger, M.; Schütze, A. Gas sensing characteristics of nanostructured metal oxide coatings produced by ultrashort pulsed laser deposition. In Proceedings of the Eurosensors XXIX Conference 2015, Freiburg, Germany, 6–9 September 2015.
- Puglisi, D.; Eriksson, J.; Andersson, M.; Huotari, J.; Bastuck, M.; Bur, C.; Lappalainen, J.; Schütze, A.; Lloyd Spetz, A. Exploring the Gas Sensing Performance of Catalytic Metal/Metal Oxide 4H-SiC Field Effect Transistors. Mater. Sci. Forum 2016, 858, 997–1000. [Google Scholar] [CrossRef]
- Puglisi, D.; Eriksson, J.; Bur, C.; Schütze, A.; Lloyd Spetz, A.; Andersson, M. Catalytic metal-gate field effect transistors based on SiC for indoor air quality control. J. Sens. Sens. Syst. 2015, 4, 1–8. [Google Scholar] [CrossRef]
- Metrology for VOC Indicators in Air Pollution and Climate Change, Website of the KEY-VOCs Project. Available online: www.key-vocs.eu (accessed on 30 December 2016).
- Spinelle, L.; Gerboles, M.; Kok, G.; Sauerwald, T. Sensitivity of VOC Sensors for Air Quality Monitoring within the EURAMET Key-VOC project. In Proceedings of the Fourth EuNetAir Scientific Meeting, Linköping, Sweden, 3–5 June 2015.
- Reimringer, W.; Howes, J.; Conrad, T. Implementation of Complex Gas Sensor Systems: Ideas for a Structural Model. In Proceedings of the Sixth EuNetAir Scientific Meeting, Prague, Czech Republic, 5–7 October 2016.
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schütze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments 2017, 4, 20. https://doi.org/10.3390/environments4010020
Schütze A, Baur T, Leidinger M, Reimringer W, Jung R, Conrad T, Sauerwald T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments. 2017; 4(1):20. https://doi.org/10.3390/environments4010020
Chicago/Turabian StyleSchütze, Andreas, Tobias Baur, Martin Leidinger, Wolfhard Reimringer, Ralf Jung, Thorsten Conrad, and Tilman Sauerwald. 2017. "Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to?" Environments 4, no. 1: 20. https://doi.org/10.3390/environments4010020
APA StyleSchütze, A., Baur, T., Leidinger, M., Reimringer, W., Jung, R., Conrad, T., & Sauerwald, T. (2017). Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments, 4(1), 20. https://doi.org/10.3390/environments4010020