Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air
Abstract
:1. Introduction
- -
- energetic connected with mining processes (mines, drawing shafts) and fuel combustion,
- -
- industrial engulfing heavy industry (crude oil processing, metallurgy, cement plants, organic chemistry industry), production and application of solvents, food industry, pharmaceutic industry and so on,
- -
- traffic, road transport (mainly cars), air and water transport,
- -
- -
- construction of hermetic buildings (preventing energy loss), which do not provide enough air exchange,
- -
- implementation of construction and finish materials with not fully identified properties,
- -
- decreasing of height and volume of rooms.
- -
- construction materials,
- -
- finish materials (paints, lacquers, wallpapers, floor covering, expanded polystyrene boards),
- -
- burning processes, tobacco smoking,
- -
- cleaning and preservation substances.
2. Characteristics of the Chemical Sensors for Detection of VOCs
2.1. Electrochemical (Amperometric) Sensors
2.2. Metal Oxide Semiconductor Sensors
- -
- type n (for example ZnO, SnO2), which change resistance of the receptor element in the case of reducing gases presence,
- -
- type p (for instance NiO, CoO), which change resistance of the receptor element in the case of oxidizing gases presence.
- -
- thickness of receptor layer and catalytic metal particles placed in it,
- -
- temperature of receptor layer.
- -
- ultrathin (thickness from 5 to 100 nm)
- -
- thin (thickness from 100 nm to 1 µm),
- -
- thick (thickness from 1 to 300 µm).
- -
- formation of ultrathin, discontinuous structures,
- -
2.3. Nondispersive Infrared Sensors (NDIR)
2.4. Thermal Sensor (Pellistor)
2.5. Photoionization Sensor (PID)
3. Commercially Available Chemical Sensors for Measurement of VOCs in Outdoor and Indoor Air
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lazarova, V.; Abed, B.; Markovska, G.; Dezenclos, T.; Amara, A. Control of odour nuisance in urban areas: The efficiency and social acceptance of the application of masking agents. Water Sci. Technol. 2013, 68, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Pearce, T.C.; Schiffman, S.S.; Nagle, H.T.; Gardner, J.W. Handbook of Machine Olfaction; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Gostelow, P.; Parsons, S.A.; Stuetz, R.M. Odour measurements for sewage treatment works. Water Res. 2001, 35, 579–597. [Google Scholar] [CrossRef]
- Taylor, S.M.; Sider, D.; Hampson, C.; Taylor, S.J.; Wilson, K.; Walter, S.D.; Eyles, J.D. Community Health Effects of a Petroleum Refinery. Ecosyst. Health 2008, 3, 27–43. [Google Scholar] [CrossRef]
- Henshaw, P.; Nicell, J.; Sikdar, A. Parameters for the assessment of odour impacts on communities. Atmos. Environ. 2006, 40, 1016–1029. [Google Scholar] [CrossRef]
- Daud, N.M.; Sheikh Abdullah, S.R.; Abu Hasan, H.; Yaakob, Z. Production of biodiesel and its wastewater treatment technologies: A review. Process Saf. Environ. Prot. 2014, 94, 487–508. [Google Scholar] [CrossRef]
- Yan, L.; Wang, Y.; Li, J.; Ma, H.; Liu, H.; Li, T.; Zhang, Y. Comparative study of different electrochemical methods for petroleum refinery wastewater treatment. Desalination 2014, 341, 87–93. [Google Scholar] [CrossRef]
- Yavuz, Y.; Koparal, A.S.; Ogutveren, U.B. Treatment of petroleum refinery wastewater by electrochemical methods. Desalination 2010, 258, 201–205. [Google Scholar] [CrossRef]
- Capelli, L.; Sironi, S.; Barczak, R.; Il Grande, M.; del Rosso, R. Validation of a method for odor sampling on solid area sources. Water Sci. Technol. 2012, 66, 1607–1613. [Google Scholar] [PubMed]
- Bokowa, A.H. Review of odour legislation. Chem. Eng. Trans. 2010, 23, 31–36. [Google Scholar] [CrossRef]
- Trincavelli, M.; Coradeschi, S.; Loutfi, A. Odour classification system for continuous monitoring applications. Sens. Actuator B Chem. 2009, 139, 265–273. [Google Scholar] [CrossRef]
- Ilgen, E.; Karfich, N.; Levsen, K.; Angerer, J.; Schneider, P.; Heinrich, J.; Wichmann, H.E.; Dunemann, L.; Begerow, J. Aromatic hydrocarbons in the atmospheric environment: Part I. Indoor versus outdoor sources, the influence of traffic. Atmos. Environ. 2001, 35, 1235–1252. [Google Scholar] [CrossRef]
- Chao, C.Y.H. Comparison between indoor and outdoor air contaminant levels in residential buildings from passive sampler study. Build. Environ. 2001, 36, 999–1007. [Google Scholar] [CrossRef]
- Righi, E.; Aggazzotti, G.; Fantuzzi, G.; Ciccarese, V.; Predieri, G. Air quality and well-being perception in subjects attending university libraries in Modena (Italy). Sci. Total Environ. 2002, 286, 41–50. [Google Scholar]
- Chan, A.T. Indoor–outdoor relationships of particulate matter and nitrogen oxides under different outdoor meteorological conditions. Atmos. Environ. 2002, 36, 1543–1551. [Google Scholar] [CrossRef]
- Kot-Wasik, A.; Zabiegała, B.; Urbanowicz, M.; Dominiak, E.; Wasik, A.; Namieśnik, J. Advances in passive sampling in environmental studies. Anal. Chim. Acta 2007, 602, 141–163. [Google Scholar] [CrossRef] [PubMed]
- Partyka, M.; Zabiegała, B.; Namieśnik, J.; Przyjazny, A. Application of Passive Samplers in Monitoring of Organic Constituents of Air. Crit. Rev. Anal. Chem. 2007, 37, 51–77. [Google Scholar] [CrossRef]
- Weschler, C.J. Changes in indoor pollutants since the 1950s. Atmos. Environ. 2009, 43, 153–169. [Google Scholar] [CrossRef]
- Zabiegała, B.; Partyka, M.; Zygmunt, B.; Namieśnik, J. Determination of volatile organic compounds in indoor air in the Gdansk area using permeation passive samplers. Indoor Built Environ. 2009, 18, 492–504. [Google Scholar] [CrossRef]
- World Health Organization Publications. Air Quality Guidelines for Europe; European Series No. 91; World Health Organization: Copenhagen, Denmark, 2000. [Google Scholar]
- Stetter, J.R.; Li, J. Amperometric gas sensors—A review. Chem. Rev. 2008, 108, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Rock, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. Chem. Rev. 2008, 108, 705–725. [Google Scholar] [CrossRef] [PubMed]
- Gebicki, J. Application of electrochemical sensors and sensor matrixes for measurement of odorous chemical compounds. Trac Trends Anal. Chem. 2016, 77, 1–13. [Google Scholar] [CrossRef]
- Drager Technik fur das Leben, 2015. Available online: www.draeger.com (accessed on 15 August 2015).
- Gebicki, J.; Dymerski, T. Application of Chemical Sensors and Sensor Matrixes to Air Quality Evaluation. In The Quality of Air, 1st ed.; de la Guardia, M., Armenta, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 73, pp. 267–294. [Google Scholar]
- Cao, Z.; Buttner, W.J.; Stetter, J.R. The properties and applications of amperometric gas sensors. Electroanalysis 1992, 4, 253–266. [Google Scholar] [CrossRef]
- Bontempelli, G.; Comisso, N.; Toniolo, R.; Schiavon, G. Electroanalytical sensors for nonconducting media based on electrodes supported on perfluorinated ion-exchange membranes. Electroanalysis 1997, 9, 433–443. [Google Scholar] [CrossRef]
- Chang, J.F.; Kuo, H.H.; Leu, I.C.; Hon, M.H. The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens. Actuator B Chem. 2002, 84, 258–264. [Google Scholar] [CrossRef]
- Sakai, G.; Baik, N.S.; Miura, N.; Yamazoe, N. Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: Dependence of CO and H2 response on film thickness. Sens. Actuator B Chem. 2001, 77, 116–121. [Google Scholar] [CrossRef]
- Galdikas, A.; Mironas, A.; Setkus, A. Copper-doping level effect on sensitivity and selectivity of tin oxide thin-film gas sensor. Sens. Actuator B Chem. 1995, 26, 29–32. [Google Scholar] [CrossRef]
- Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide semiconductor gas sensors. Catal. Surv. Asia 2003, 7, 63–75. [Google Scholar] [CrossRef]
- Emelin, E.V.; Nikolaev, I.N. Sensitivity of MOS sensors to hydrogen, hydrogen sulfide, and nitrogen dioxide in different gas atmospheres. Meas. Tech. 2006, 49, 524–528. [Google Scholar] [CrossRef]
- Berna, A. Metal Oxide Sensors for Electronic Noses and Their Application to Food Analysis. Sensors 2010, 10, 3882–3910. [Google Scholar] [CrossRef] [PubMed]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef]
- Munoz, R.; Sivret, E.C.; Parcsi, G.; Lebrero, R.; Wang, X.; Suffet, I.H.; Stuetz, R.M. Monitoring techniques for odour abatement assessment. Water Res. 2010, 44, 5129–5149. [Google Scholar] [CrossRef] [PubMed]
- Brzózka, Z.; Wróblewski, W. Sensory Chemiczne; Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 1998. [Google Scholar]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [PubMed]
- Stetter, J.R.; Penrose, W.R. Understanding Chemical Sensors and Chemical Sensor Arrays (Electronic Noses): Past, Present, and Future. Sens. Update 2002, 10, 189–229. [Google Scholar] [CrossRef]
- Wilson, A.D. Review of Electronic-nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment. Procedia Technol. 2012, 1, 453–463. [Google Scholar] [CrossRef]
- Boeker, P. On “Electronic Nose” methodology. Sens. Actuator B Chem. 2014, 204, 2–17. [Google Scholar] [CrossRef]
- Nicolas, J.; Romain, A.C. Establishing the limit of detection and the resolution limits of odorous sources in the environment for an array of metal oxide gas sensors. Sens. Actuator B Chem. 2004, 99, 384–392. [Google Scholar] [CrossRef]
- Sohn, J.H.; Hudson, N.; Gallagher, E.; Dunlop, M.; Zeller, L.; Atzeni, M. Implementation of an electronic nose for continuous odour monitoring in a poultry shed. Sens. Actuator B Chem. 2008, 133, 60–69. [Google Scholar] [CrossRef]
- Dentoni, L.; Capelli, L.; Sironi, S.; Rosso, R.; Zanetti, S.; Della Torre, M. Development of an Electronic Nose for Environmental Odour Monitoring. Sensors 2012, 12, 14363–14381. [Google Scholar] [CrossRef] [PubMed]
- Albert, K.J.; Lewis, N.S.; Schauer, C.L.; Sotzing, G.A.; Stitzel, S.E.; Vaid, T.P.; Walt, D.R. Cross-Reactive Chemical Sensor Arrays. Chem. Rev. 2000, 100, 2595–2626. [Google Scholar] [CrossRef] [PubMed]
- Munoz, B.C.; Steinthal, G.; Sunshine, S. Conductive polymer-carbon black composites-based sensor arrays for use in an electronic nose. Sens. Rev. 1999, 19, 300–305. [Google Scholar] [CrossRef]
- Briglin, S.M.; Freund, M.S.; Tokumaru, P.; Lewis, N.S. Exploitation of spatiotemporal information and geometric optimization of signal/noise performance using arrays of carbon black-polymer composite vapor detectors. Sens. Actuator B Chem. 2002, 82, 54–74. [Google Scholar] [CrossRef]
- Partridge, A.C.; Jansen, M.L.; Arnold, W.M. Conducting polymer-based sensors. Mater. Sci. Eng. C 2000, 12, 37–42. [Google Scholar] [CrossRef]
- Bai, H.; Li, C.; Chen, F.; Shi, G. Aligned three-dimensional microstructures of conducting polymer composites. Polymer 2007, 48, 5259–5267. [Google Scholar] [CrossRef]
- Bai, H.; Shi, G. Gas Sensors Based on Conducting Polymers. Sensors 2007, 7, 267–307. [Google Scholar]
- Gebicki, J.; Kloskowski, A.; Chrzanowski, W.; Stepnowski, P.; Namiesnik, J. Application of Ionic Liquids in Amperometric Gas Sensors. Crit. Rev. Anal. Chem. 2016, 46, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Gebicki, J. Application of ionic liquids in electronic nose instruments. In Analytical Applications of Ionic Liquids; Koel, M., Ed.; World Scientific Publishing Europe Ltd.: London, UK, 2016; pp. 339–360. [Google Scholar]
- English, J.T.; Bavana, A.D.; Freund, M.S. Biogenic amine vapour detection using poly (anilineboronic acid) films. Sens. Actuator B Chem. 2006, 115, 666–671. [Google Scholar] [CrossRef]
- Li, B.; Santhanam, S.; Schultz, L.; Jeffries-EL, M.; Iovu, M.C.; Sauve, G.; Cooper, J.; Zhang, R.; Revelli, J.C.; Kusne, A.G.; et al. Inkjet printed chemical sensor array based on polythiophene conductive polymers. Sens. Actuator B Chem. 2007, 123, 651–660. [Google Scholar] [CrossRef]
- Wang, F.; Yang, Y.; Swager, T.M. Molecular recognition for high selectivity in carbon nanotube/polythiophenechemiresistors. Angew. Chem. 2008, 120, 8522–8524. [Google Scholar] [CrossRef]
- Lipatov, A.; Varezhnikov, A.; Wilson, P.; Sysoev, V.; Kolmakov, A.; Sinitskii, A. Highly selective gas sensor arrays based on thermally reduced grapheneoxide. Nanoscale 2013, 5, 5426–5434. [Google Scholar] [CrossRef] [PubMed]
- Zito, C.A.; Perfecto, T.M.; Volanti, D.P. Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuator B Chem. 2017, 244, 466–474. [Google Scholar] [CrossRef]
- Tasaltin, C.; Basarir, F. Preparation of flexible VOC sensor based on carbon nanotubes and gold nanoparticles. Sens. Actuator B Chem. 2014, 194, 173–179. [Google Scholar] [CrossRef]
- Castro, M.; Kumar, B.; Feller, J.F.; Haddi, Z.; Amari, A.; Bouchikhi, B. Novel e-nose for the discrimination of volatile organic biomarkers with an array of carbon nanotubes (CNT) conductive polymer nanocomposites (CPC) sensors. Sens. Actuator B Chem. 2011, 159, 213–219. [Google Scholar] [CrossRef]
- Kumar, B.; Castro, M.; Feller, J.F. Poly(lactic acid)–multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors. Sens. Actuator B Chem. 2012, 161, 621–628. [Google Scholar] [CrossRef]
- Athawale, A.A.; Bhagwat, S.V.; Katre, P.P. Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sens. Actuator B Chem. 2006, 114, 263–267. [Google Scholar] [CrossRef]
- Santhanam, K.S.V.; Sangoi, R.; Fuller, L. A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly (3-methylthiophene). Sens. Actuator B Chem. 2005, 106, 766–771. [Google Scholar]
- Sharma, S.; Nirkhe, C.; Prthkar, S.; Athawale, A.A. Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens. Actuator B Chem. 2002, 85, 131–136. [Google Scholar] [CrossRef]
- Sayago, I.; Fernandez, M.J.; Fontecha, J.L.; Horrilli, M.C.; Vera, C.; Obieta, I.; Bustero, I. Surface acoustic wave gas sensors based on polyisobutylene and carbon nanotube composites. Sens. Actuator B Chem. 2011, 156, 1–5. [Google Scholar] [CrossRef]
- Penza, M.; Antolini, F.; Antisari, M.V. Carbon nanotubes as SAW chemical sensors materials. Sens. Actuator B Chem. 2004, 100, 47–59. [Google Scholar] [CrossRef]
- Sayago, I.; Fernandez, M.J.; Fontecha, J.L.; Horillo, M.C.; Vera, C.; Obieta, I.; Bustero, I. New sensitive layers for surface acoustic wave gas sensors based on polymer and carbon nanotube composites. Sens. Actuator B Chem. 2012, 175, 67–72. [Google Scholar] [CrossRef]
- Viespe, C.; Grigoriu, C. Surface acoustic wave sensors with carbon nanotubes and SiO2/Si nanoparticles based nanocomposites for VOC detection. Sens. Actuator B Chem. 2010, 147, 43–47. [Google Scholar] [CrossRef]
- Crawford, M.; Stewart, G.; McGregor, G.; Gilchrist, J.R. Design of a portable optical sensor for methane gas detection. Sens. Actuator B Chem. 2006, 113, 830–836. [Google Scholar]
- Goncalves, V.C.; Balogh, D.T. Optical chemical sensors using polythio-phene derivatives as active layer for detection of volatile organic compounds. Sens. Actuator B Chem. 2012, 162, 307–312. [Google Scholar] [CrossRef]
- Elosua, C.; Arregui, F.J.; Zamarreño, C.R.; Bariain, C.; Luquin, A.; Laguna, M.; Mati, I.R. Volatile organic compounds optical fiber sensor based on lossy mode resonances. Sens. Actuator B Chem. 2012, 173, 523–529. [Google Scholar] [CrossRef]
- Nizamidin, P.; Yimit, A.; Abdurrahman, A.; Itoh, K. Formaldehyde gas sensor based on silver-and-yttrium-co doped-lithium iron phosphate thin film optical waveguide. Sens. Actuator B Chem. 2013, 176, 460–466. [Google Scholar] [CrossRef]
- Martínez-Hurtado, J.L.; Davidson, C.A.B.; Blyth, J.; Lowe, C.R. Holographic detection of hydrocarbon gases and other volatile organic compounds. Langmuir 2010, 26, 15694–15699. [Google Scholar] [CrossRef] [PubMed]
- Wales, D.J.; Parker, R.M.; Quainoo, P.; Cooper, P.A.; Gates, J.C.; Grossel, M.C.; Smith, P.G.R. An integrated optical Bragg grating refractometer for volatile organic compound detection. Sens. Actuator B Chem. 2016, 282, 595–604. [Google Scholar] [CrossRef]
- Khot, L.R.; Panigrahi, S.; Lin, D. Development and evaluation of piezoelectric-polymer thin film sensors for low concentration detection of volatile organic compounds related to food safety applications. Sens. Actuator B Chem. 2011, 153, 1–10. [Google Scholar] [CrossRef]
- Si, P.; Mortensen, J.; Komolov, A.; Denborg, J.; Møller, P.J. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures. Anal. Chim. Acta 2007, 597, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, S.; Sannicolo, F.; Benincori, T.; Schiavon, G.; Zecchin, S.; Zotti, G. Calix[4]arene-functionalized poly-cyclopenta[2,1-b;3,4-b]bithiophenes with good recognition ability and selectivity for small organic molecules for application in QCM-based sensors. J. Mater. Chem. 2004, 14, 1804–1811. [Google Scholar] [CrossRef]
- Chang, J.B.; Liu, V.; Subramanian, V.; Sivula, K.; Luscombe, C.; Murphy, A.; Liu, J.; Fréchet, J.M.J. Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 2006, 100, 14506–14507. [Google Scholar] [CrossRef]
- Liao, F.; Yin, S.; Toney, M.F.; Subramanian, V. Physical discrimination ofamine vapor mixtures using polythiophene gas sensor arrays. Sens. Actuator B Chem. 2010, 150, 254–263. [Google Scholar] [CrossRef]
- Andersson, M.; Bastuck, M.; Huotari, L.; Lloyd Spetz, A.; Lappalainen, J.; Schütze, A.; Puglisi, D. SiC-FET Sensors for Selective and Quantitative Detection of VOCs Down to Ppb Level. Procedia Eng. 2016, 168, 216–220. [Google Scholar] [CrossRef]
- Bur, C.; Bastuck, M.; Puglisi, D.; Schütze, A.; Lloyd Spetz, A.; Andersson, M. Discrimination and quantification of volatile organic compounds in the ppb-range with gas sensitive SiC-FETs using multivariate statistics. Sens. Actuator B Chem. 2015, 514, 225–233. [Google Scholar] [CrossRef]
- Pandya, H.J.; Chandra, S.; Vyas, A.L. Integration of ZnO nanostructures with MEMS for ethanol sensor. Sens. Actuator B Chem. 2012, 161, 923–928. [Google Scholar] [CrossRef]
- Pohle, R.; Weisbrod, E.; Hedler, H. Enhancement of MEMS-based Ga2O3 Gas Sensors by Surface Modifications. Procedia Eng. 2016, 168, 211–215. [Google Scholar] [CrossRef]
- Kilinc, N.; Cakmak, O.; Kosemen, A.; Ermek, E.; Ozturk, S.; Yerli, Y.; Ozturk, Z.Z.; Urey, H. Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sens. Actuator B Chem. 2014, 202, 357–364. [Google Scholar] [CrossRef]
- Williams, M.L. Monitoring of exposure to air pollution. Sci. Total. Environ. 1995, 168, 169–174. [Google Scholar] [CrossRef]
- Strang, C.R.; Levine, S.P.; Herget, W.F. A preliminary evaluation of the Fourier transform infrared (FTIR) spectrometer as a quantitative air monitor for semiconductor manufacturing process emissions. Am. Ind. Hyg. Assoc. J. 1989, 50, 70–77. [Google Scholar] [CrossRef]
Pollutants | Range (ppm) | Resolution (ppm) | Response Time (s) |
---|---|---|---|
ammonia | 0–50 | 0.5 | 150 |
carbon monoxide | 0–1000 | 0.5 | 35 |
chlorine | 0–20 | 0.1 | 60 |
ethylene oxide | 0–20 | 0.1 | 140 |
formaldehyde | 0–30 | 0.01 | 60 |
glutaraldehyde | 0–20 | 0.01 | 60 |
hydrogen sulfide | 0–50 | 0.1 | 30 |
nitric oxide | 0–1000 | 0.5 | 10 |
nitrogen dioxide | 0–20 | 0.1 | 35 |
sulfur dioxide | 0–20 | 0.1 | 15 |
VOCs | Lower Explosion Limit (% v/v) | VOCs | Lower Explosion Limit (% v/v) |
---|---|---|---|
acetone | 2.5 | ethyl acetate | 2.0 |
benzene | 1.2 | styrene | 1.0 |
n-butanol | 1.7 | toluene | 1.1 |
cyclohexane | 1.0 | 1,3-butadiene | 1.4 |
1,4-dioxane | 1.9 | n-butane | 1.4 |
ethanol | 3.1 | methyl chloride | 7.6 |
diethyl ether | 1.7 | dimethyl ether | 2.7 |
methanol | 6.0 | ethylene oxide | 2.6 |
n-hexane | 1.0 | methane | 4.4 |
n-octane | 0.8 | propane | 1.7 |
Sensor Type | Applications | Compounds |
---|---|---|
MOS |
| alcohols, aldehydes, aliphatic hydro-carbons, amines, aromatic hydro-carbons (petrol vapors, etc.), carbon oxides, CH4, LPG, ketones, organic acids. |
PID |
| VOC’s with proper ionisation potential (isobutylene, aromatic hydrocarbons) |
NDIR |
| infrared absorbing VOC’s (especially methane) |
EC |
| ethanol, formaldehyde, mercaptanes |
PELLISTOR |
| most combustile gases and vapours (iso-butane, propane, methane) |
Sensor Type | Measurand | Advantages/Disadvantages | VOC’s |
---|---|---|---|
Chemoresistors (conductive polymers) | conductivity | + low operating temperature + small + low power consumption + cheap + sensitivity depends on the type of coating − sensitive to temperature and humidity − baseline drift (due to polymer instability) − short lifetime | acetone, acetonitrile, benzene, buthylamine, cyclohexane, ethanol, hexane, isopropanol, methanol, methylene chloride, toluene, xylenes [53,54,55] |
Chemoresistors (graphene, carbon nanotubes composites) | conductivity | + low detection limits + fast response + good sensitivity − complicated fabrication process − poor reproducibility | acetone, benzene, chloroform, ethanol, hexane, isopropanol, methanol, propanol, trichlotoethylene, toluene, m-xylene [56,57,58,59,60] |
Hybrid nanostructures | depends on the type of sensor | + low detection limits + high selectivity − complicated fabrication process − poor reproducibility | chloromethane, chloroform, ethanol, ethylacetate, methanol, octane, toluene [61,62,63,64,65] |
Surface Acoustic Wave | frequency | + small + low power consumption + god sensitivity to various chemicals + low detection limits − sensitive to humidity − large measurement noise − complicated signal processing system | ethanol, octane, toluene [66,67] |
Optical | change in light parameters | + portable and simple to use + possible visual detection + fast response time − Can be affected by humidity − very complex electronics − short lifetime due to photobleaching | benzene, butane, chlorobenzene, chloroform, dichloromethane, ethanol, ethyl acetate, formaldehyde, hexane, isopropanol, methane, methanol, oct-1-ene, propane, tetrahydrofurane, toluene, xylene [68,69,70,71,72,73] |
Quartz Microbalance | mass change | + low detection limits + high sensitivity and selectivity + fast response − poor signal-to-noise performance − complicated signal processing system | acetone, acetonitrile, ethanol, 3-methyl-1-butanol, 1-octanol, toluene, p-xylene [74,75,76] |
FET | threshold voltage change | + low cost + small + reproducible − long response time − baseline drift − high working temperature − control of the surrounding environment | benzene, butylamine, ethanol, formaldehyde, hexane, hexanol, hexylamine, naphthalene, trimethylamine [77,78,79,80] |
MEMS | depends on the type of sensor | + small dimensions + on-chip integration + reproducible − complicated fabrication process − surface forces may dominate over other forces in the system − controlled working environment (dust-free) − development may be more costly | diethylamine, ethanol, isopropanol, ethane, methanol, propane, pentane, trimethylamine [81,82,83] |
Manufacturer | Sensor Type | Range | Accuracy | Resolution | LOD | Sensitivity | Response Time |
---|---|---|---|---|---|---|---|
Aeroqual | MOS | 0–500 ppm | <±5 ppm + 10% | 1 ppm | 1 ppm | nd | 30 s |
MOS | 0–25 ppm | <±0.1 ppm + 10% | 0.1 ppm | 0.1ppm | nd | 60 s | |
AppliedSensor | MOS | 450–2000 ppm | nd | nd | nd | nd | nd |
AMS | MOS | 10–5000 ppm | nd | nd | 10 ppm | 0.002 (Rs/Ro)/ppm | <10 s |
Cambridge CMOS Sensors | MOS | 10–400 ppm | nd | nd | 10 ppm | 0.005 (Rs/Ro)/ppm | nd |
SGX Snesortech | MOS | 10–500 ppm | nd | nd | nd | 0.014 (Rs/Ro)/ppm | nd |
Mocon Baseline Series | PID | 2–20,000 ppm | nd | nd | 1–250 ppb | nd | <5 s |
Alphasense | PID | 50 ppb–6000 ppm | nd | nd | 1 ppb | nd | <3 s |
PID | 1 ppb–50 ppm | nd | <50 ppb | nd | nd | <3 s | |
NDIR | 0%–2.5% | <±500 ppm | <400 ppm | <500 ppm | nd | <40 s | |
Winsen | EC | 0–1 mg/dm3 | nd | nd | nd | nd | <20 s |
Winsen | EC | 0–10 ppm | nd | 0.02 ppm | nd | nd | <60 s |
Citytech | EC | 0–14 ppm | nd | <0.5 mg/m3 | nd | nd | <90 s |
Figaro | MOS | 1–100 ppm | nd | nd | nd | 0.06 (Rs/Ro)/ppm | 30 s |
Umweltsensortechnik | MOS | 0.1–100 ppm | <±20% | nd | nd | nd | <100 s |
Wuhan Cubic | NDIR | 0%–100% | ±1% full scale | 0.1% | nd | 2% | <25 s |
Unietc SRL | MOS | 0.1–30 ppb | 0.2 ppb | 0.1 ppb | 0.1 ppb | nd | nd |
EC | 0.6–25 ppm | 0.1 ppm | 0.1 ppm | 0.6 ppm | nd | nd | |
Synkera | MOS | 50–900 ppm | ±5% full scale | nd | 50 ppm | nd | <60 s |
ION Science | PID | 0.1–6000 ppm, 1 ppb–40 ppm, 5 ppb–100 ppm | nd | nd | 0.1 ppm, 1 ppb, 5 ppb | 25 mV/ppm, 0.7 mV/ppm, 10 mV/ppm | 3 s |
Gray Wolf | PID | 0.1–10000 ppm | nd | nd | nd | nd | <1 min |
Environmental Sensors CO | EC | 0–30 ppm | nd | 0.01 ppm | 0.1 ppm | nd | 60 s |
Z.B.P. SENSOR GAZ | pellistor | 0%–100% LEL | ±1.5% LEL | nd | nd | >30 mV/% | nd |
Figaro | pellistor | 0%–100% LEL | nd | nd | nd | 0.02 mV/ppm | <30 s |
SGX Snesortech | pellistor | 0%–100% LEL | nd | nd | nd | 15 mV/% | <10 s |
MICROcel | pellistor | 0%–100% LEL | nd | nd | nd | 5 mV/% | <5 s |
Sixth Sense | pellistor | 0%–10% LEL | ±10% LEL | nd | nd | >25 mV/% | <10 s |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szulczyński, B.; Gębicki, J. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments 2017, 4, 21. https://doi.org/10.3390/environments4010021
Szulczyński B, Gębicki J. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments. 2017; 4(1):21. https://doi.org/10.3390/environments4010021
Chicago/Turabian StyleSzulczyński, Bartosz, and Jacek Gębicki. 2017. "Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air" Environments 4, no. 1: 21. https://doi.org/10.3390/environments4010021
APA StyleSzulczyński, B., & Gębicki, J. (2017). Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air. Environments, 4(1), 21. https://doi.org/10.3390/environments4010021