Modeling and Upscaling Plot-Scale Soil Erosion under Mediterranean Climate Variability
Abstract
:1. Introduction
2. The Monte Pino Experimental Site (MPES)
3. Data and Model
3.1. Data
3.2. Model
- the contributing area is equal to the plot area; and,
- the term e(−ω∙100∙NDVIm) is the Thornes vegetation exponential function, where NDVIm is the Normalized Difference Vegetation Index derived from the red near-infrared reflectance ratio (NDVI = (NIR − RED)/(NIR + RED)) (where NIR and RED are the amounts of near-infrared and red light, respectively, reflected by the vegetation and captured by the sensor of the satellite).
3.3. Model Calibration
4. Results and Discussion
Seasonal Timing of the Intensifying Storminess
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Fu, B.J.; Zhao, W.; Chen, L.-D.; Lü, Y.-H. Eco-hydrological effects of landscape pattern change. Landsc. Ecol. Eng. 2005, 1, 25–32. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazy, A.A. Conservation tillage impacts on soil, crop and environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef]
- Mikha, M.M.; Benjamin, J.G.; Vigil, M.F.; Poss, D.J. Manure and tillage use in remediation of eroded land and impacts on soil chemical properties. PLoS ONE 2017, 12, e0175533. [Google Scholar] [CrossRef] [PubMed]
- Diodato, N.; Soriano, M.; Bellocchi, G.; Fiorillo, F.; Cevasco, A.; Revellino, P.; Guadagno, F.M. Historical evolution of slope instability in the Calore River Basin, Southern Italy. Geomorphology 2017, 282, 74–84. [Google Scholar] [CrossRef]
- Naylor, L.A.; Spencer, T.; Lane, S.N.; Darby, S.E.; Magilligan, F.J.; Macklin, M.G.; Möller, I. Stormy geomorphology: Geomorphic contributions in an age of climate extremes. Earth Surf. Proc. Landf. 2017, 42, 166–190. [Google Scholar] [CrossRef]
- Diodato, N.; Bellocchi, G. Introduction. In Storminess and Environmental Change; Diodato, N., Bellocchi, G., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 1–14. [Google Scholar]
- Borrelli, P.; Märker, M.; Panagos, P.; Schütt, B. Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy. Catena 2014, 114, 45–58. [Google Scholar] [CrossRef]
- Thornes, J. Land degradation. In The Physical Geography of the Mediterranean; Woodward, J., Ed.; Oxford University Press: Oxford, UK, 2009; pp. 563–581. [Google Scholar]
- Poesen, J.W.A.; Hooke, M. Erosion, flooding and channel management in Mediterranean environments of southern Europe. Prog. Phys. Geog. 1997, 21, 157–199. [Google Scholar] [CrossRef]
- Boukheir, R.; Abdallah, C. Conceptualization of GIS field prediction regional soil-erosion Mediterranean models, case study Lebanon. Geophys. Res. Abstr. 2006, 8, 01289. [Google Scholar]
- Sundquist, B. Topsoil Loss and Degradation—Causes, Effects and Implications: A Global Perspective. Available online: http://www.civilizationsfuture.com/bsundquist/se0.html (accessed on 16 August 2017).
- Borrelli, P.; Diodato, N.; Panagos, P. Rainfall erosivity in Italy: A national scale spatio-temporal assessment. Int. J. Digit. Earth 2016, 9, 835–850. [Google Scholar] [CrossRef]
- Nearing, M.A. Potential changes in rainfall erosivity in the US with climate change during the 21st century. J. Soil Water Conserv. 2001, 56, 220–232. [Google Scholar]
- Zhang, X.C.; Nearing, M.A. Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma. Catena 2005, 61, 185–195. [Google Scholar] [CrossRef]
- Diodato, N.; Bellocchi, G. Enhanced propagation of rainfall kinetic energy in the UK. Theor. Appl. Climatol. 2017, 129, 1335–1340. [Google Scholar] [CrossRef]
- Martínez-Murillo, J.F.; Nadal-Romero, E.; Regüés, D.; Poesen, J. Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review. Catena 2013, 106, 101–112. [Google Scholar] [CrossRef]
- Morugán-Coronado, A.; Garciá-Orenes, F.; Cerdiá, A. Effect of land management on soil properties in flood irrigated citrus orchards in Eastern Spain. Soil Discuss. 2015, 2, 1–27. [Google Scholar] [CrossRef]
- Aiello, A.; Adamo, M.; Canora, F. Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy. Catena 2015, 131, 174–185. [Google Scholar] [CrossRef]
- Conforti, M.; Buttafuoco, G. Interplay between land use changes and soil erosion in a small mountainous catchment in southern Italy. Rendiconti Online Societa Geologica Italiana 2016, 38, 25–28. [Google Scholar] [CrossRef]
- Rodolfi, G.; Agnesi, V.; Augelli, P.P.C.; Conoscenti, C.; Del Monte, M.; Fredi, P.; Gentili, B.; Lupia Palmieri, E.; Märker, M.; Materazzi, M.; et al. Soil erosion by water in Mediterranean environment: Italian assessment network of test areas and catchments (EROMED). Geophys. Res. Abstr. 2005, 7, 07527. [Google Scholar]
- FAO (Food and Agriculture Organization). Climate Change Adaptation and Mitigation in the Food and Agriculture Sector; Technical Background Document from the Expert Consultation; FAO: Rome, Italy, 2008. [Google Scholar]
- Mantel, S.; van Lynden, G.J.; Huting, J. Deliverable 10: Scenario Analysis. Pan-European Soil Erosion Risk Assessment; European Commission, Joint Research Center: Ispra, Italy, 2017. [Google Scholar]
- Synder, K.A.; Tartowski, S.L. Multi-scale temporal variation in water availability: Implications for vegetation dynamics in arid and semi-arid ecosystems. J. Arid Environ. 2006, 65, 219–234. [Google Scholar] [CrossRef]
- Le Bissonnais, Y.; Montier, C.; Jamagne, M.; Daroussin, J.; King, D. Mapping erosion risk for cultivated soil in France. Catena 2002, 46, 207–220. [Google Scholar] [CrossRef]
- Brunsden, D. Back A’long: A Millennial Geomorphology. In Geomorphological Processes and Landscape Change; Higgitt, D.L., Lee, E.M., Eds.; Blackwell Publisher: Oxford, UK, 2001; pp. 27–60. [Google Scholar]
- Wainwright, J.; Parsons, A.J.; Abrahams, A.D. Plot-scale studies of vegetation, overland flow and erosion interactions: Case studies from Arizona and New Mexico. Hydrol. Process. 2000, 14, 2921–2943. [Google Scholar] [CrossRef]
- Chmelová, R.; Šarapatka, B. Soil erosion by water: Contemporary research methods and their use. Geographica 2002, 37, 23–30. [Google Scholar]
- Ollesch, G.; Vacca, A. Influence of time on measurement results of erosion plot studies. Soil Tillage Res. 2002, 67, 23–39. [Google Scholar] [CrossRef]
- Cerdan, O.; Le Bissonnais, Y.; Govers, G.; Lecomte, V.; van Oost, K.; Couturier, A.; King, C.; Dubreuil, N. Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. J. Hydrol. 2004, 299, 4–14. [Google Scholar] [CrossRef]
- Assouline, S.; Ben-Hur, M. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena 2006, 66, 611–620. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; Martinez-Mena, M.; Arnau-Rosalèn, E.; Calvo-Cases, A.; Castillo, V.; Albaladejo, J. Measuring soil erosion by field plots: Understanding the sources of variation. Earth Sci. Rev. 2006, 78, 267–285. [Google Scholar] [CrossRef]
- Parsons, A.J.; Brazier, R.E.; Wainwright, J.; Powell, D.M. Scale relationships in hillslope runoff and erosion. Earth Surf. Proc. Landf. 2006, 31, 1384–1393. [Google Scholar] [CrossRef]
- Di Stefano, C.; Ferro, V.; Pampalone, V. Applying the USLE family of models at the Sparacia (South Italy) experimental site. Land Degrad. Dev. 2017, 28, 994–1004. [Google Scholar] [CrossRef]
- Basso, F.; Pisante, M.; Basso, B. Soil erosion and land degradation. In Mediterranean Desertification; Geeson, N.A., Brandt, C.J., Thornes, J.B., Eds.; Wiley: Chichester, NJ, USA, 2002; pp. 347–359. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation; Agricultural Research Service, US Department of Agriculture in Cooperation with Purdue Agricultural Experiment Station: Washington, DC, USA, 1965; p. 47.
- Pan European Soil Erosion Risk Assessment—PESERA. Available online: http://esdac.jrc.ec.europa.eu/public_path/Pesera.pdf (accessed on 16 August 2017).
- HyMeX Database. Available online: http://mistrals.sedoo.fr/HyMeX (accessed on 16 August 2017).
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; US Department of Agriculture: Washington, DC, USA, 1978; pp. 1–69.
- Williams, J.R. Sediment-yield prediction with universal equation using runoff energy factor. In Present and Prospective Technology for Predicting Sediment Yield and Sources; US Department of Agriculture, Agriculture Research Service: Washington, DC, USA, 1975; pp. 244–252. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook No. 703; US Department of Agriculture: Washington, DC, USA, 1997; p. 384.
- Laflen, J.M.; Lane, L.J.; Foster, G.R. WEPP: A new generation of erosion prediction technology. J. Soil Water Conserv. 1991, 46, 34–38. [Google Scholar]
- Morgan, R.P.C.; Quinton, J.N.; Smith, R.E.; Govers, G.; Posen, J.W.A.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M.E. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf. Proc. Landf. 1998, 23, 527–544. [Google Scholar] [CrossRef]
- Thornes, J.B. The ecology of erosion. Geography 1985, 70, 222–234. [Google Scholar]
- Chen, Z.-Q.; Govindaraju, R.S.; Kavvas, M.L. Spatial averaging of unsaturated flow equations under infiltration conditions over areally heterogeneous fields: 1. Development of models. Water Resour. Res. 1994, 30, 523–533. [Google Scholar] [CrossRef]
- Mulligan, M.; Wainwright, J. Modelling and model building. In Environmental Modelling; Wainwright, J., Mulligan, M., Eds.; John Wiley and Sons, Ltd.: Chichester, NJ, USA, 2013; pp. 7–73. [Google Scholar]
- Kavvas, M.L. On the coarse-graining of hydrologic processes with increasing scales. J. Hydrol. 1999, 217, 191–202. [Google Scholar] [CrossRef]
- Kinnell, P.I.A. Event soil loss, runoff and the universal soil loss equation family of models: A review. J. Hydrol. 2010, 385, 384–397. [Google Scholar] [CrossRef]
- Diodato, N. Predicting RUSLE (Revised Universal Soil Loss Equation) monthly erosivity index from readily available rainfall data in Mediterranean area. Environmentalist 2005, 25, 63–70. [Google Scholar] [CrossRef]
- Zhang, X.; Drake, N.A.; Wainwright, J. Scaling issues in environmental modelling. In Environmental Modelling; Mulligan, M., Wainwright, J., Eds.; Wiley & Sons, Ltd.: Chichester, NJ, USA, 2004; pp. 7–73. [Google Scholar]
- Mitasova, H.; Iverson, L. Erosion and sedimentation potential analysis for Hunter lake. In An Environmental Assessment of the Hunter Lake Project Area; Brigham, W.U., Brigham, A.R., Eds.; Illinois Natural History Survey: Champaign, IL, USA, 1992. [Google Scholar]
- Mitasova, H.; Hofierka, J.; Zlocha, M.; Iverson, L.R. Modelling topographic potential for erosion and deposition using GIS. Int. J. Geogr. Inf. Sci. 1996, 10, 629–641. [Google Scholar] [CrossRef]
- Moore, I.D.; Wilson, J.P. Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. J. Soil Water Conserv. 1992, 47, 423–428. [Google Scholar]
- Pack, R.T.; Tarboton, D.G.; Goodwin, C.N. Terrain Stability Mapping with SINMAP; Technical Description and Users Guide for Version 1.00, Report Number 4114-0; Terratech Consulting Ltd.: Salmon Arm, BC, Canada, 1998. [Google Scholar]
- Pack, R.T.; Tarboton, D.G.; Goodwin, C.N. Assessing terrain stability in a GIS using SINMAP. In Proceedings of the 15th Annual GIS Conference, GIS 2001, Vancouver, BC, Canada, 19–22 February 2001. [Google Scholar]
- Tarboton, D.G. A new method for the determination of flow directions and contributing areas in grid digital elevation models. Water Resour. Res. 1997, 33, 309–319. [Google Scholar] [CrossRef]
- Diodato, N.; Bellocchi, G. Modelling NDVI responses to climate variability in Mediterranean terrestrial ecosystem. Environ. Monit. Assess. 2008, 44, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Carson, M.A.; Kirkby, M.J. Hillslope Form and Process; Cambridge University Press: New York, NY, USA, 1972; p. 475. [Google Scholar]
- Diodato, N. Modelling net erosion responses to enviroclimatic changes recorded upon multisecular timescales. Geomorphology 2006, 80, 164–177. [Google Scholar] [CrossRef]
- Jørgensen, S.E.; Kamp-Nielsen, L.; Christensen, T.; Windolf-Nielsen, J.; Westergaard, B. Validation of a prognosis based upon a eutrophication model. Ecol. Modell. 1986, 35, 165–182. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Gumbel, E. Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958; p. 400. [Google Scholar]
- Alpert, P.; Ben-Gai, T.; Baharad, A.; Manes, A. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total value. Geophys. Res. Lett. 2002, 29, 1536–1539. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Peterson, T.C.; Quadir, D.A.; Dorji, S.; Zou, X.; Tang, H.; Santhosh, K.; Joshi, U.R.; Jaswal, A.K.; Kolli, R.K.; et al. Changes in daily temperature and precipitation extremes in central and south Asia. J. Geophys. Res. 2006, 111, D16105. [Google Scholar] [CrossRef]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Earth System Research Laboratory—Physical Science Division. Available online: http://www.cdc.noaa.gov (accessed on 16 August 2017).
- Christensen, J.H.; Christensen, O.B. Climate modelling: Severe summertime flooding in Europe. Nature 2003, 421, 805–806. [Google Scholar] [CrossRef] [PubMed]
- Meusburger, K.; Steel, A.; Panagos, P.; Montanarella, L.; Alewell, C. Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrol. Earth Syst. Sci. 2012, 16, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Bissonnais, Y.L.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S.; et al. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Reusch, T.B.H.; Ehlers, A.; Hämmerli, A.; Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. USA 2005, 102, 2826–2831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jentsch, A.; Beierkuhnlein, C. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems. C. R. Geosci. 2008, 340, 621–628. [Google Scholar] [CrossRef]
- Lane, L.J.; Hernandez, M.; Nichols, M. Processes controlling sediment yield from watersheds as functions of spatial scale. Environ. Modell. Softw. 1997, 12, 355–369. [Google Scholar] [CrossRef]
- Kinnel, P.I.A.; Risse, M. USLE-M: Empirical modeling rainfall erosion through runoff and sediment concentration. Soil Sci. Soc. Am. J. 1998, 62, 1667–1672. [Google Scholar] [CrossRef]
Year | Month | Day | P (mm·day−1) | EI30 (MJ·mm·ha−1·h−1) | Erosion (kg·m−2) | Events |
---|---|---|---|---|---|---|
2001 | May | 23 | 67.0 | 2300 | 20.000 | Downpours with flash-floods and surface landslides |
24 | 26.6 | 200 | 1.740 | Thunderstorm | ||
August | 22 | 17.0 | 177 | 0.668 | Thunderstorm with isolated downpours | |
September | 15 | 14.8 | 33 | 0.056 | Thunderstorms and showers | |
17 | 10.0 | 50 | 0.160 | Intense rainfall | ||
November | 13 | 50.0 | 261 | 0.800 | Intense rainfall with wind gust | |
28 | 18.0 | 40 | 0.223 | Rainfall | ||
2002 | April | 4 | 41.0 | 47 | 0.044 | Intense rainfall |
May | 20 | 13.0 | 88 | 0.018 | Thunderstorms and showers | |
27 | 8.6 | 47 | 0.031 | Short thunderstorm | ||
June | 2 | 17.2 | 65 | 0.013 | Thunderstorms and showers | |
September | 22 | 66.0 | 494 | 0.578 | Continuous thunderstorms and showers with wind | |
23 | 26.6 | 113 | 0.036 | Thunderstorms and showers (afternoon) | ||
October | 10 | 46.4 | 171 | 0.033 | Showers at morning and thunderstorm at evening | |
2003 | April | 6 | 26.6 | 20 | 0.016 | Continuous and moderate rain, somewhat with showers |
June | 3 | 60.0 | 1500 | 2.990 | Afternoon deluge with quiet rain, after stormy | |
July | 7 | 17.0 | 80 | 0.044 | Moderate rain with isolated thunderstorms in the afternoon | |
31 | 27.2 | 172 | 0.333 | Heavy thunderstorm at evening | ||
October | 5 | 29.6 | 188 | 0.261 | Heavy thunderstorm followed by moderate rain at nighttime | |
29 | 27.8 | 136 | 0.036 | Thunderstorms in the evening | ||
2005 | August | 21 | 34.0 | 86 | 0.267 | Afternoon thunderstorm |
September | 1 | 14.0 | 80 | 0.220 | Afternoon thunderstorm | |
18–20 | 32.7 | 60 | 0.600 | Showers | ||
2006 | July | 25 | 18.2 | 186 | 0.187 | Evening thunderstorm |
August | 6 | 10.8 | 38 | 0.049 | Afternoon thunderstorm | |
8 | 20.0 | 148 | 0.190 | Afternoon thunderstorm | ||
13 | 38.2 | 324 | 1.320 | Afternoon thunderstorm | ||
September | 15 | 34.8 | 218 | 0.222 | Showers | |
26 | 39.6 | 277 | 0.266 | Thunderstorm and showers | ||
November | 22 | 32.5 | 45 | 0.022 | Showers and isolated thunderstorms |
Parameter | Values |
---|---|
η | 1.66 |
K | 0.001 |
W | 0.16 |
C | 5 |
Z | 1 |
ω | 0.05 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diodato, N.; Guerriero, L.; Bellocchi, G. Modeling and Upscaling Plot-Scale Soil Erosion under Mediterranean Climate Variability. Environments 2017, 4, 58. https://doi.org/10.3390/environments4030058
Diodato N, Guerriero L, Bellocchi G. Modeling and Upscaling Plot-Scale Soil Erosion under Mediterranean Climate Variability. Environments. 2017; 4(3):58. https://doi.org/10.3390/environments4030058
Chicago/Turabian StyleDiodato, Nazzareno, Luigi Guerriero, and Gianni Bellocchi. 2017. "Modeling and Upscaling Plot-Scale Soil Erosion under Mediterranean Climate Variability" Environments 4, no. 3: 58. https://doi.org/10.3390/environments4030058
APA StyleDiodato, N., Guerriero, L., & Bellocchi, G. (2017). Modeling and Upscaling Plot-Scale Soil Erosion under Mediterranean Climate Variability. Environments, 4(3), 58. https://doi.org/10.3390/environments4030058