Water Footprint (ISO 14046) in Latin America, State of the Art and Recommendations for Assessment and Communication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Contact with Stakeholders
2.2. Research of Water Footprint Studies in Latin America
2.3. Remote Work Sessions
- Collection of data to prepare water footprint inventories
- Impact categories and impact assessment methods
- Good practices for the communication of water footprint studies
- Future of the water footprint assessment in Latin America
2.4. Face-to-Face Work Session
2.5. Drafting the Document
3. Results
3.1. Stakeholders of Water Footprint in Latin America
3.2. State of the Art of the Water Footprint in Latin America
3.3. Data Collection Recommendations for Water Footprint Studies in Latin America
3.4. Impact Assessment—Recommendations for the Evaluation of the Water Footprint in Latin America
3.4.1. Considerations on the Selection of Impact Categories
3.4.2. Impact Assessment Methods for Water Footprint Studies in Latin America
3.4.3. Regionalization Efforts of Impact Assessment Methods in Latin America
3.5. Recommendations for the Communication of the Water Footprint in Latin America
4. Final Remarks and Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- World Economic Forum. The Global Risks Report 2016, 11th ed.; World Economic Forum: Geneva, Switzerland, 2016. [Google Scholar]
- UNECLAC/UNW-DPAC. Water and a Green Economy in Latin America and the Caribbean (LAC); UNECLAC/UNW-DPAC: Santiago, Chile, 2012. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual; Earthscan: London, UK, 2011. [Google Scholar]
- ISO 14046:2014 Environmental Management—Water Footprint—Principles, Requirements and Guidelines; ISO: Geneva, Switzerland, 2014.
- Iniciativa El Agua Nos Une—SuizAgua. Available online: http://www.elaguanosune.org/ (accessed on 4 October 2018).
- Centro Nacional de Producción Más Limpia y Tecnologías Ambientales; Agrícola Sara Palma; Argos; Clariant; Familia; Griffith Laboratories; Haceb; Holcim; Mineros; Syngenta; Uniban; Quantis Int.; et al. Resultados del Proyecto SuizAgua Colombia. 2015. Available online: https://www.shareweb.ch/site/ElAguaNosUne/Documents/150427_Publicacion_Resultados_empresariales.pdf (accessed on 8 July 2016).
- Fundación Chile; Agualimpia. Manual de Aplicación para Evaluación de Huella Hídrica acorde a la Norma ISO 14046; elaborado bajo el marco del proyecto SuizAgua de la Agencia Suiza para la Cooperación y el Desarrolllo COSUDE; Fundación Chile, Agualimpia, COSUDE: Santiago de Chile, Chile, 2016; Available online: https://www.shareweb.ch/site/ElAguaNosUne/Documents/160405_Manual_aplicación_ISO14046_final.pdf (accessed on 8 July 2016).
- ISO/TR 14073:2017 Environmental Management—Water footprint—Illustrative Examples on How to Apply ISO 14046; ISO: Geneva, Switzerland, 2017.
- ISO 14046—Environmental Management—Water Footprint—A Practical Guide for SMEs; ISO: Geneva, Switzerland, 2017.
- Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; Macleod, M.; Margni, M.; Van De Meent, D.; Rosenbaum, R.K.; McKone, T.E. Building a model based on scientific consensus for life cycle impact assessment of chemicals: The search for harmony and parsimony. Environ. Sci. Technol. 2008, 42, 7032–7037. [Google Scholar] [CrossRef] [PubMed]
- Huijbregts, M. A critical view on scientific consensus building in life cycle impact assessment. Int. J. Life Cycle Assess. 2014, 19, 477–479. [Google Scholar] [CrossRef]
- European Commission-Joint Research Centre—Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook—Recommendations for Life Cycle Impact Assessment in the European Context, 1st ed.; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water Footprint of crop productions: A review. Sci. Total Environ. 2016, 548–549, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Aivazidou, E.; Tsolakis, N.; Iakovou, E.; Vlachos, D. The emerging role of water footprint in supply chain management: A critical literature synthesis and a hierarchical decision-making framework. J. Clean. Prod. 2016, 137, 1018–1037. [Google Scholar] [CrossRef]
- Creswell, J.W. Research Design: Qualitative, Quantitative and Mixed Methods Approaches, 4th ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2014; ISBN 978-1-4522-2609-5. [Google Scholar]
- Boulay, A.M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef]
- Heo, Y. Methodology for Prioritizing DfE Strategies Based on LCA and AHP; Ajou University: Suwon, Korea, 2001. [Google Scholar]
- Centro de Análisis de Ciclo de Vida y Diseño Sustentable CADIS; Embajada de Suiza en Colombia; Agencia Suiza para la Cooperación y el Desarrollo COSUDE; Martínez, A.; Chargoy, J.; Puerto, M.; Suppen, N.; Rojas, D.; Alfaro, S.; Ayes, D.; et al. Huella de Agua (ISO 14046) en América Latina, Análisis y Recomendaciones Para Una Coherencia Regional; Centro de Análisis de Ciclo de Vida y Diseño Sustentable CADIS, Embajada de Suiza en Colombia, Ayuda Humanitaria y Desarrollo COSUDE: Ciudad de México, Mexico, 2016; 90p, Available online: https://www.researchgate.net/publication/314329199_Huella_de_Agua_ISO_14046_en_America_Latina_analisis_y_recomendaciones_para_una_coherencia_regional (accessed on 10 July 2018).
- Arena, A.P.; Piastrellini, R.; Civit, B. Water footprint of soybean production in Argentina. In Proceedings of the Lcm 2011, Berlin, Germany, 28–31 August 2011; p. 7. [Google Scholar]
- Alvarez, H.J.; Larripa, M.J.; Galli, J.R.; Civit, B.M. Inventario de la huella de agua en sistemas lecheros diferenciados por el uso de la tierra y el nivel de suplementación. In 36° Congreso Argentino de Producción Animal; INTA: Ciudad de Corrientes, Argentina, 2013; Volume 33. [Google Scholar]
- Anschau, R.A.; Bongiovanni, R.; Tuninetti, L.; Manazza, F. Huella hídrica de la cadena de maní en Argentina. In Actas del IV Encuentro Argentino de Ciclo de Vida y III Encuentro de la Red Argentina de Huella Hídrica Enarciv 2015; Bongiovanni, R., Tuninetti, L., Eds.; INTA: Buenos Aires, Argentina, 5–6 November 2015; pp. 16–20. [Google Scholar]
- Civit, B.; Piastrellini, R.; Curadelli, S.; Arena, P. Medida del impacto sobre la calidad de agua en la etapa de producción de productos. In Actas del IV Encuentro Argentino de Ciclo de Vida y III Encuentro de la Red Argentina de Huella Hídrica Enarciv 2015; Bongiovanni, R., Tuninetti, L., Eds.; INTA: Buenos Aires, Argentina, 5–6 November 2015; pp. 21–25. [Google Scholar]
- San Luis Agua, S.E.; Ministerio del Campo; Gobierno de la Provincia de San Luis. Cálculo y Análisis de la Huella Hídrica de la Provincia de San Luis. Sectores Agrícola y Pecuario; Gobierno de la Provincia de San Luis: San Luis, Argentina, 2014; Available online: http://www.huellahidrica.org/Reports/Calculo%20Huella%20Hidrica.pdf (accessed on 8 July 2016).
- Charlon, V.; Tieri, M.P.; Manazza, F.; Engler, P.; Pece, M.A.; Frank, F.C. Comparación de dos metodologías de cálculo de huella hídrica en un sistema de producción de leche de argentina. In Proceedings of the Actas del III Encuentro Argentino de Ciclo de Vida y II Encuentro de la Red Argentina de Huella Hídrica ENARCIV 2014, Mendoza, Argentina, 2–5 September 2014. [Google Scholar]
- Banco de desarrollo de América Latina. Proyecto Huella de Ciudades: Resultados Estratégicos y Guía Metodológica; Flores, V., Ed.; Development Bank of Latin America: La Paz, Bolivia, 2015; ISBN 9789804220289. [Google Scholar]
- águaBrasil. Pegada Hídrica das Bacias Hidrográficas. 2014. Available online: https://www.bb.com.br/docs/pub/siteEsp/uds/dwn/pegadahidrica.pdf (accessed on 8 July 2016).
- Francke, I.C.M.; Castro, J.F.W. Applying the water footprint methodology in a cosmetic company: Lessons from Natura Cosméticos, Brazil. In Proceedings of the Session “Solving the Water Crisis: Common Action toward a Sustainable Water Footprint”, Planet under Pressure Conference, London, UK, 26 March 2012; Zhang, G.P., Hoekstra, A.Y., Tickner, D., Eds.; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2012. [Google Scholar]
- Ferreira, F.F. Pegada Hídrica da Geração de Energia Hidrelétrica no Brasil—Um Estudo de Caso da AES TIETÊ S.A.; Federal University of Rio de Janeiro: Rio de Janeiro, Brasil, 2014. [Google Scholar]
- Silva, V.P.R.; Maracajá, K.F.B.; Araújo, L.E.; Dantas Neto, J.; Aleixo, D.O.; Campos, J.H.B.C. Pegada hídrica de indivíduos com diferentes hábitos alimentares. Rev. Ambient. Água 2013, 8, 250–262. [Google Scholar] [CrossRef]
- Marzullo, R.d.C.M. Metodologia para o Cálculo da Pegada Hídrica Ecotoxicológica de Produtos dentro de uma Perspectiva de ACV com Uso do GIS: Estudo Piloto para o Etanol Hidratado; University of São Paulo: São Paulo, Brasil, 2014. [Google Scholar]
- Fundación Chile. Reporte Huella Hídrica en Chile Sectores Prioritarios de la Cuenca del río Rapel; Fundación Chile: Santiago de Chile, Chile, 2016. [Google Scholar]
- Peña, C.A.; Huijbregts, M.A. The Blue Water Footprint of Primary Copper Production in Northern Chile. J. Ind. Ecol. 2014, 18, 49–58. [Google Scholar] [CrossRef]
- Fundación Chile. Evaluación de Huella Hídrica al Site Maipú de Clariant acorde a la Norma ISO14046; Fundación Chile: Santiago de Chile, Chile, 2015. [Google Scholar]
- Water Week Latinoamerica 2015, Slideshows: Tinguiririca Energía, Nestlé Chile, Mall Plaza, Clariant. Available online: https://issuu.com/suizagua (accessed on 8 July 2016).
- Arevalo, D.; Lozano, J.G.; Sabogal, J. Estudio nacional de Huella Hídrica Colombia Sector Agrícola. Rev. Int. Sosten. Tecnol. Hum. 2011, 7, 103–126. [Google Scholar]
- CTA; GSI-LAC; COSUDE; IDEAM. Evaluación Multisectorial de la Huella Hídrica en Colombia. Resultados por Subzonas Hidrográficas en el Marco del Estudio Nacional del Agua 2014; Centro de Ciencia y Tecnología de Antioquia: Medellín, Colombia, 2015; ISBN 978-958-8470-28-3. [Google Scholar]
- Centro de Ciencia y Tecnología de Antioquia. Evaluación De La Huella Hídrica En La Cuenca Del Río Porce; Centro de Ciencia y Tecnología de Antioquia: Antioquia, Colombia, 2013. [Google Scholar]
- Rojas Vanegas, Y.; Ramirez Vera, L.; Ortega Torres, J. Evaluacion de la Huella Hidrica del Lirio Japones. Water Footpr. Jpn. Lily (Hemerocallis) 2013, 1, 10. [Google Scholar] [CrossRef]
- Echeverri Bedoya, X.V. Estimación de la Huella Hídrica en la Extracción de Caliza a Cielo Abierto y Propuesta de Una Política de Integración Sostenible del Recurso Hídrico—Caso Planta Rioclaro, Argos; Universidad Nacional de Colombia: Medellín, Colombia, 2014. [Google Scholar]
- Morales, H.; Quevedo, L.; Ospina, J.; Florez, E.; Guzmán, P.; Monserrate, F.; Ospina, F.; Orrego, M.; Romero, M.; Carabali, T.; et al. Estimaciones comparativas de huella hídrica en Arroz: Manejo AMTEC vs Convencional. In Memorias Taller Huella Hídrica y de Carbono en la Agricultura Colombiana; Ministerio de Agricultura, CIAT, CGIAR, CCAFS: Bogotá, Colombia, 2014; Available online: http://www.aclimatecolombia.org/recursos-de-informacion/?wpfb_list_page=2 (accessed on 8 July 2016).
- Parrado, C. Huella hídrica en el sector floricultor colombiano. In Memorias Taller Huella Hídrica y de Carbono en la Agricultura Colombiana; Ministerio de Agricultura, CIAT, CGIAR, CCAFS: Bogotá, Colombia, 2014; Available online: http://www.aclimatecolombia.org/recursos-de-informacion/?wpfb_list_page=2 (accessed on 8 July 2016).
- Ortiz-Rodriguez, O.O.; Naranjo, C.A.; García-Caceres, R.G.; Villamizar-Gallardo, R.A. Water footprint assessment of the Colombian cocoa production. Rev. Bras. Eng. Agrícola Ambient. 2015, 19, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Quintero, M.; Romero, M.; Tapasco, J.; Monserrate, F.; Molina, C.; Román, N.; Coral-Eraso, D. Huella hídrica en el cultivo del maíz. In Memorias Taller Huella Hídrica y de Carbono en la Agricultura Colombiana; Ministerio de Agricultura, CIAT, CGIAR, CCAFS: Bogotá, Colombia, 2014; Available online: http://www.aclimatecolombia.org/recursos-de-informacion/?wpfb_list_page=2 (accessed on 8 July 2016).
- Otero, W.; Solanilla, R.; Cifuentes, A.; Garcia, J.; Monserrate, F.; Romero, M.; Quintero, M.; Valencia, J.; Carabalí, T. Estimación de la huella hídrica en papa: Comparación entre agricultura de conservación y agricultura tradicional en Cundinamarca. In Memorias Taller Huella Hídrica y de Carbono en la Agricultura Colombiana; Ministerio de Agricultura, CIAT, CGIAR, CCAFS: Bogotá, Colombia, 2014; Available online: http://www.aclimatecolombia.org/recursos-de-informacion/?wpfb_list_page=2 (accessed on 8 July 2016).
- HIDROCEC-UNA. Aplicación del Cálculo de Huella Hídrica para Regiones de Cultivos de Café, Banano y Arroz en Costa Rica; Instituto Interamericano de Cooperación para la Agricultura: San José, Costa Rica, 2013. [Google Scholar]
- Vallejo, A.L. Metodología Práctica para la Cuantificación de la Huella de Agua en Plantas Empacadoras de Banano en Costa Rica; Escuela de Química, Instituto Tecnológico de Costa Rica: Cartago, Costa Rica, 2015; p. 108. [Google Scholar]
- Zarate, E.; Kuiper, D. Evaluación de Huella Hídrica del Banana para Pequeños Productores en Perú y Ecuador; Good Stuff International: Bowil, Switzerland, 2013; p. 70. [Google Scholar]
- Vernaza, E. La Huella Hídrica y el Agua Virtual de las Rosas: Como el Uso, Consumo y Aprovechamiento del Agua Tiene Impacto Dentro de la Cadena de Suministro de la Industria Florícola; Universidad San Francisco de Quito: Quito, Ecuador, 2014. [Google Scholar]
- AgroDer. Huella Hídrica en México en el Contexto de Norteamérica; WWF México y AgroDer: Distrito Federal, Mexico, 2012. [Google Scholar]
- Farell, C.; Turpin, S.; Suppen, N. Huella de agua de uso público-urbano en México. Rev. Int. Estadística y Geogr. 2013, 4, 58–71. [Google Scholar]
- Farell, C. Diseño de una Metodología para Reportar la Huella de Agua; Universidad Autónoma Metropolitana Unidad Azcapotzalco: Mexico City, Mexico, 2013. [Google Scholar]
- Agualimpia; Mexichem; Quantis; Agencia Suiza para la Cooperación COSUDE; Campillo, C.; Conza, A.; Alfaro, B.; Laura, R.; Vionnet, S.; Gmuender, S.; et al. Análisis de Huella Hídrica en la Planta de Fabricación de Tuberías en el Agustino. 2015. Available online: https://www.shareweb.ch/site/ElAguaNosUne/Documents/15_SuizAgua%20PE-huella_hídrica_planta_tuberías_El_Agustino_Pavco.pdf (accessed on 8 July 2016).
- Agualimpia; Camposol; Quantis; Agencia Suiza para la Cooperación COSUDE; Campillo, C.; Conza, A.; Alfaro, B.; Laura, R.; Vionnet, S.; Gmuender, S.; et al. Análisis de Huella Hídrica en los Campos de Cultivo de Espárrago de Camposol acorde a la Norma ISO14046. 2015. Available online: https://www.shareweb.ch/site/ElAguaNosUne/Documents/15_SuizAgua%20PE-Análisis_huella_hídrica_Campos_Espárrago_Camposol.pdf (accessed on 8 July 2016).
- Agualimpia; Nestlé; Quantis; Agencia Suiza para la Cooperación COSUDE; Conza, A.; Alfaro, B.; Laura, R.; Reyes, J.G.; Vionnet, S.; Gmuender, S.; et al. Informe de Evaluación de Huella Hídrica del Helado Donito de Lúcuma y Vainilla en la Fábrica Donofrio. 2015. Available online: https://www.shareweb.ch/site/ElAguaNosUne/Documents/15_SuizAgua%20PE-Evaluación_huella_hídrica_Helado_Donito_Lúcuma_Nestlé.PDF (accessed on 8 July 2016).
- Agualimpia; Duke Energy; Quantis; Agencia Suiza para la Cooperación COSUDE; Conza, A.; Alfaro, B.; Laura, R.; Espinoza, R.; Vionnet, S.; Gmuender, S.; et al. Análisis de Huella Hídrica en la Central Termoeléctrica “Aguaytia” acorde a la Norma ISO14046. 2015. Available online: https://www.shareweb.ch/site/ElAguaNosUne/Documents/15_SuizAgua%20PE-Evaluacion_huella_hidrica_Termoelectrica_DukeE_Peru.pdf (accessed on 8 July 2016).
- Mekonnen, M.M.; Pahlow, M.; Aldaya, M.M.; Zarate, E.; Hoekstra, A. Water Footprint Assessment for Latin America and the Caribbean: An Analysis of the Sustainability, Efficiency and Equitability of Water Consumption and Pollution, Value of Water Research Report Series No. 66; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2014. [Google Scholar]
- Ran, Y.; Deutsch, L.; Lannerstad, M.; Heinke, J. Rapidly Intensified Beef Production in Uruguay: Impacts on Water-related Ecosystem Services. Aquat. Procedia 2013, 1, 77–87. [Google Scholar] [CrossRef]
- Lovarelli, D.; Ingrao, C.; Fiala, M.; Bacenetti, J. Beyond the Water Footprint: A new framework proposal to assess freshwater environmental impact and consumption. J. Clean. Prod. 2018, 172, 4189–4199. [Google Scholar] [CrossRef]
- UN-WWAP. The United Nations World Water Development Report 2015: Water for a Sustainable World; UN-WWAP: Paris, France, 2015. [Google Scholar]
- Morillo, J.G.; Díaz, J.A.R.; Camacho, E.; Montesinos, P. Linking water footprint accounting with irrigation management in high value crops. J. Clean. Prod. 2015, 87, 594–602. [Google Scholar] [CrossRef]
- Bare, J.C.; Hofstetter, P.; Pennington, D.W.; Udo de Haes, H.A. Midpoints versus endpoints: The sacrifices and benefits. Int. J. Life Cycle Assess. 2000, 5. [Google Scholar] [CrossRef]
- Boulay, A.-M.; Bulle, C.; Bayart, J.-B.; Deschênes, L.; Margni, M. Regional Characterization of Freshwater Use in LCA: Modeling Direct Impacts on Human Health. Environ. Sci. Technol. 2011, 45, 8948–8957. [Google Scholar] [CrossRef] [PubMed]
- Goedkoop, M.; Heijungs, R.; De Schryver, A.; Struijs, J.; van Zelm, R. ReCiPe 2008. A LCIA Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level; Ministry of Housing, Spatial Planning and the Environment: The Hague, The Netherlands, 2013. [Google Scholar]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puerto, M.; Gmünder, S. Regionalizing AWARE per Hydrographic Subzone of Colombia; The International Life Cycle Conference in Latin America (CILCA for Its Acronym in Spanish): Medellín, Colombia, 2017; Available online: http://www.elaguanosune.org/gestion-del-conocimiento/estudios-de-caso/colombia/aware-para-subzonas-hidricas-de-colombia-metodo-de-boulay-et-al-2016-datos-anuales-para-ano-promedio-y-ano-seco-del-ena-2014-ideam/ (accessed on 11 July 2017).
- De Almeida Castro, A.L.; Pereira Andrade, E.; de Alencar Costa, M.; de Lima Santos, T.; Lie Ugaya, C.M.; Brito de Figueirêdo, M.C. Applicability and relevance of water scarcity models at local management scales: Review of models and recommendations for Brazil. Environ. Impact Assess. Rev. 2018, 72, 126–136. [Google Scholar] [CrossRef]
Activity | Data Collection Types |
---|---|
Contact with stakeholders | E-mail contact and exchange Telephone/web-based interviews |
Desk based research of water footprint studies in Latin America | Public and private document analysis |
Remote work sessions | Online Focus group interviews Interviews and e-mail surveys (open and closed questions) |
Face-to-face work sessions | Focus Group Interview Closed survey with statistical validation (analytical hierarchical method (AHP) method, n = 26) |
Drafting the document | Public document analysis |
Country | Product, Service or Sector Under Analysis | |
---|---|---|
Water Footprint Network (WFN) | Life Cycle Assessment (LCA)/ISO 14046:2014 | |
Argentina | Product: Soybean [19], milk through various production systems: Pastoral System (SP), Pastoral Base System (SBP) and Intensive Pastoral Base System (SBPI) [20], peanut [21], grape for wine [22]. Sector: Agricultural and livestock of the province of San Luis [23]. | Product: Milk [24], grape for wine [22]. |
Bolivia | Production systems: Drinking water, soft drinks, isotonic, energizers [25]. Geographical: Cities of La Paz, Quito, Lima, Santa Cruz de la Sierra, Guayaquil, Fortaleza, Loja, Santa Cruz de Galápagos, Recife, Cali and Tarija.For the evaluation, the residential, commercial, industrial, public, municipal services and government activities (administrative, service and operational) were considered [25]. | |
Brazil | Geographical: Seven river basins considering the sectors: Livestock, agriculture, reforestation, supply and sanitation [26]. Product: Cosmetics including shampoo, soap and moisturizers [27]. Service: Hydroelectric power generation [28], food consumption by one person [29]. | Product: Hydrated ethanol [30]. |
Chile | Geographical: Rapel River basin considering the sectors: Agricultural, mining, domestic and energy [31]. Product: Copper oxide mineral and copper sulfide mineral [32]. | Chemicals plant factory [33], mall operation, dry milk production, PVC pipes factory, cement production and hydroelectricity generation (unpublished, presented at the Water Week Latin America 2015 [34]). |
Colombia | Country, by sector: Agricultural [35], domestic, industrial, electrical and oil [36]. Geographical: Porce River Basin considering the sectors: Agricultural, industrial, domestic, hydroelectric power generation and mining [37]. Product: Japanese Lily [38], limestone [39], rice [40], flowers [41], cocoa [42], corn [43], potato [44]. | Product: Cement, concrete, tissue paper (hygienic, napkins, kitchen towels, facial tissues and moist products), feminine hygiene products, food products, heating and cooling products, precious metals (gold), cardboard boxes, banana snacks [6]. Production plants: Farms for the cultivation and benefit of bananas, operation of a chemical products plant, operation of a dairy products factory, and operation of an agrochemical production plant [6]. |
Costa Rica | Product: Coffee, banana, rice [45]. | Production plant: Banana packing plant [46]. |
Ecuador | Products: Banana [47], roses [48]. | |
Mexico | Geographical: Country [49]. | Products: Wheat, corn, water for urban public use, advisory service for water treatment [50]. Sector: Agricultural, brewer, cement [51]. Geographical: Water scarcity factor in 13 administrative hydrological regions [51]. |
Peru | Product: Banana [47]. | Product: Polyvinyl chloride pie [52], asparagus [53], ice cream [54], thermoelectric power [55]. |
Regional (Latin America) | Geographical: Countries of Latin America considering consumption in agricultural, livestock and industrial sectors [56]. | |
Uruguay | Production system: Intensive, extensive and mixed cattle [57]. |
Obstacle | Description | Recommended Solution |
---|---|---|
The information available is not geographically or statistically representative | Life cycle databases required for water footprint studies are designed for other geographic contexts, for example, Europe or the United States. | It is possible to obtain useful information through government institutions on issues such as water availability, volume of authorized water for consumption, sanitation coverage, among others. |
The information that is required is not known | There are not enough water footprint studies in Latin America to form a complete life cycle database applicable to the region. | It is recommended to make adaptations to the databases and document these adaptations in a transparent manner in the reports. |
The measurement and monitoring mechanisms are insufficient | Frequently, there are no flow meters in the companies and existing ones do not always have a calibration certificate. | Promote the installation of measuring equipment and certify the correct calibration of the equipment from authorized instances at the national level in each country. |
Confidentiality of information | Frequently, companies protect their information, which hinders the disclosure of inventories. | A possible solution is the signing of confidentiality agreements at the beginning of the studies, in order to allow the use of the impact result per functional unit, to avoid revealing data. |
Impact Category | Recommended Impact Method |
---|---|
Freshwater scarcity | AWARE (51%) 1 (Boulay et al. 2018) [16] |
Freshwater availability | Water availability footprint (59%) (Boulay et al. 2011) [62] |
Freshwater ecotoxicity | USEtox (75%) (Rosenbaum et al. 2008) [10] |
Freshwater eutrophication | ReCiPeMidpoints (55%) (Goedkoop et al. 2008) [63] |
Study | Impact Category/ Impact Assessment Method | Description |
---|---|---|
Farell (2013) [51] | Freshwater scarcity (WSI)/ Pfister et al. (2009) [64] | The water scarcity index (WSI) was adapted to the 13 hydrological-administrative regions of Mexico. Adaptation was made updating of data with information from the National Water Commission (CONAGUA) |
Peña and Huijbregts (2013) [32] | Freshwater scarcity (WSI)/ Pfister et al. (2009) [64] | In Chile, the value of the WSI factor for the northern mining area was regionalized, obtaining values similar to those reported globally. |
Marzullo (2014) [30] | Freshwater ecotoxicity | New methodological approach (at the midpoint level), uses the impact assessment method suggested by the Brazilian Agency for the control of pollution, preservation and restoration of water quality (CETESB). |
B. Civit (unpublished study) | Freshwater scarcity (WSI)/ Pfister et al. (2009) [64] | The WSI factors for Argentina were adapted, validating with the province of Mendoza, finding the same results as with the initial factors. |
Puerto and Gmünder (2014) [65] | Freshwater scarcity (AWARE)/ Boulay et al. (2018) [16] | The AWARE characterization factor was adapted at the sub-basin level using annual data available in the 2014 National Water Study of the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM). |
de Almeida Castro (2018) [66] | Freshwater scarcity (WSI and AWARE)/Pfister et al. (2009) [64] and Boulay et al. (2018) [16] | The use of national data at State Hydrographic Unit (SHU) provided results with significant differences regarding results from original characterization models. |
Intended Audience | Recommended Communication Strategy |
---|---|
Civil society Consumers Non-Governmental Organizations | Environmental labels Environmental labels Environmental labels |
Company directors | Executive report or communication report |
Technical Engineers | Detailed report according to ISO 14046:2014 |
Verification body | Detailed report according to ISO 14046:2014 |
Government entities responsible for the management of water resources | Communication report Environmental labels Detailed report according to ISO 14046:2014 |
Ministries or secretaries of the environment | Communication report |
Authorities in charge of sustainable public procurement | Environmental labels |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Arce, A.; Chargoy, J.P.; Puerto, M.; Rojas, D.; Suppen, N. Water Footprint (ISO 14046) in Latin America, State of the Art and Recommendations for Assessment and Communication. Environments 2018, 5, 114. https://doi.org/10.3390/environments5110114
Martínez-Arce A, Chargoy JP, Puerto M, Rojas D, Suppen N. Water Footprint (ISO 14046) in Latin America, State of the Art and Recommendations for Assessment and Communication. Environments. 2018; 5(11):114. https://doi.org/10.3390/environments5110114
Chicago/Turabian StyleMartínez-Arce, Andrés, Juan Pablo Chargoy, Maly Puerto, Diana Rojas, and Nydia Suppen. 2018. "Water Footprint (ISO 14046) in Latin America, State of the Art and Recommendations for Assessment and Communication" Environments 5, no. 11: 114. https://doi.org/10.3390/environments5110114
APA StyleMartínez-Arce, A., Chargoy, J. P., Puerto, M., Rojas, D., & Suppen, N. (2018). Water Footprint (ISO 14046) in Latin America, State of the Art and Recommendations for Assessment and Communication. Environments, 5(11), 114. https://doi.org/10.3390/environments5110114