Evaluation of Alternatives for the Passenger Road Transport Sector in Europe: A Life-Cycle Assessment Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of Road Mobility Products
2.2. Policy Definition
- Changes in the vehicle production processes;
- Changes in vehicle constitution; and
- Use of alternative energy sources for vehicle propulsion.
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- EUROSTAT. Eurostat—Energy Data Navigation Tree. 2017. Available online: http://ec.europa.eu/eurostat (accessed on 15 November 2017).
- Eurostat. Energy, Transport and Environment Indicators; Eurostat: Luxembourg, 2015. [Google Scholar]
- European Environment Agency. European Union Emission Inventory Report 1990–2015 under the UNECE Convention on Long-Range Transboundary Air Pollution (LRTAP); No. 9; European Environment Agency: Copenhagen, Denmark, 2017. [Google Scholar]
- Del Pero, F.; Delogu, M.; Pierini, M. The effect of lightweighting in automotive LCA perspective: Estimation of mass-induced fuel consumption reduction for gasoline turbocharged vehicles. J. Clean. Prod. 2017, 154, 566–577. [Google Scholar] [CrossRef]
- Tian, X.; Geng, Y.; Zhong, S.; Wilson, J.; Gao, C.; Chen, W.; Yu, Z.; Hao, H. A bibliometric analysis on trends and characters of carbon emissions from transport sector. Transp. Res. Part D Transp. Environ. 2018, 59, 1–10. [Google Scholar] [CrossRef]
- EU. Regulation (EC) No. 715/2007 of the European Parliament and of the Council of 20 June 2007 on Type Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Mai; EU: Brussels, Belgium, 2007. [Google Scholar]
- European Parliament. Directives Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources; No. 1; European Parliament: Brussels, Belgium, 2009. [Google Scholar]
- BMW. BMW Group Werk Leipzig. Available online: https://www.bmwgroup-werke.com/leipzig/de.html (accessed on 4 January 2018).
- Rai, H.B.; van Lier, T.; Meers, D. Improving urban freight transport sustainability: Policy assessment framework and case study. Res. Transp. Econ. 2017, 64, 26–35. [Google Scholar]
- Makarova, I.; Pashkevich, A.; Shubenkova, K. Ensuring sustainability of public transport system through rational management. Procedia Eng. 2017, 178, 137–146. [Google Scholar] [CrossRef]
- Yan, X.; Santos, G.; Carey, C.; Behrendt, H.; Holdway, A.; Maconi, L.; Owen, N.; Shirvani, T.; Teytelboym, A. Future of Mobility Roadmap Ways to Reduce Emissions While Keeping Mobile Executive Summary; University of Oxford: Oxford, UK, 2010. [Google Scholar]
- Bauer, C.; Hofer, J.; Althaus, H.-J.; Del Duce, A.; Simons, A. The environmental performance of current and future passenger vehicles: Life cycle assessment based on a novel scenario analysis framework. Appl. Energy 2015, 157, 871–883. [Google Scholar] [CrossRef]
- Van Mierlo, J.; Messagie, M.; Rangaraju, S. Comparative environmental assessment of alternative fueled vehicles using a life cycle assessment. Transp. Res. Procedia 2017, 25, 3435–3445. [Google Scholar] [CrossRef]
- Chłopek, J.; Lasocki, Z. Comparison of the environmental impact of an electric car and a car with an internal combustion engine in Polish conditions using life cycle assessment method. Combust. Engines 1922, 52, 192–201. [Google Scholar]
- Hawkins, T.R.; Singh, B.; Majeau-Bettez, G.; Strømman, A.H. Comparative environmental life cycle assessment of conventional and electric vehicles. J. Ind. Ecol. 2013, 17, 53–64. [Google Scholar] [CrossRef]
- Duarte, G.; Rolim, C.; Baptista, P. How battery electric vehicles can contribute to sustainable urban logistics: A real-world application in Lisbon, Portugal. Sustain. Energy Technol. Assess. 2016, 15, 71–78. [Google Scholar] [CrossRef]
- Rolim, C.C.; Baptista, P.C.; Farias, T.L.; Rodrigues, Ó. Electric vehicle adopters in Lisbon: Motivation, utilization patterns and environmental impacts. EJTIR Issue 2014, 14, 225–239. [Google Scholar]
- Helms, U.; Lambrecht, H.; Höpfner, U. Energy Savings by Light-Weighting—Final Report; Institute for Energy and Environmental Research: Heidelberg, Germany, 2003. [Google Scholar]
- Raugei, M.; Morrey, D.; Hutchinson, A.; Winfield, P. A coherent life cycle assessment of a range of lightweighting strategies for compact vehicles. J. Clean. Prod. 2015, 108, 1168–1176. [Google Scholar] [CrossRef]
- Kim, H.C.; Wallington, T.J. Life-Cycle Energy and Greenhouse Gas Emission Benefits of Lightweighting in Automobiles: Review and Harmonization. Environ. Sci. Technol. 2013, 47, 6089–6097. [Google Scholar] [CrossRef] [PubMed]
- Mayyas, A.T.; Qattawi, A.; Mayyas, A.R.; Omar, M.A. Life cycle assessment-based selection for a sustainable lightweight body-in-white design. Energy 2012, 39, 412–425. [Google Scholar] [CrossRef]
- Hakamada, M.; Furuta, T.; Chino, Y.; Chen, Y.; Kusuda, H.; Mabuchi, M. Life cycle inventory study on magnesium alloy substitution in vehicles. Energy 2007, 32, 1352–1360. [Google Scholar] [CrossRef]
- Du, J.; Han, W.; Peng, Y. Life cycle greenhouse gases, energy and cost assessment of automobiles using magnesium from Chinese Pidgeon process. J. Clean. Prod. 2010, 18, 112–119. [Google Scholar] [CrossRef]
- BMW. BMW I: The Future of Mobility. Available online: https://www.bmw.pt/pt/topics/fascination-bmw/bmw-i/concept.html (accessed on 4 January 2018).
- Alves, C.; Silva, A.J.; Reis, L.G.; Freitas, M.; Rodrigues, L.B.; Alves, D.E. Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 2010, 18, 313–327. [Google Scholar] [CrossRef]
- JRC. Life Cycle Indicators Basket-of-Products: Development of Life Cycle Based Macro-Level Monitoring Indicators for Resources, Products and Waste for the EU-27; JRC: Tokyo, Japan, 2012. [Google Scholar]
- JRC. ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European Context; JRC: Tokyo, Japan, 2011. [Google Scholar]
- Gkatzoflias, D.; Kouridis, C.; Ntziachristos, L.; Samaras, Z. COPERT 4, Computer Programme to Calculate Emissions from Road Transport; ETC/AEM; European Environment Agency: Copenhagen, Denmark, 2014. [Google Scholar]
- Dieselnet, Emission Standards. Europe: Cars and Light Trucks. Available online: https://www.dieselnet.com/standards/eu/ld.php#stds (accessed on 27 January 2018).
- Dieselnet. Emission Standards. Europe: Heavy-Duty Truck and Bus Engines. Available online: https://www.dieselnet.com/standards/eu/hd.php#stds (accessed on 27 January 2018).
- GHK. A Study to Examine the Benefits of the End of Life Vehicles Directive and the Costs and Benefits of a Revision of the 2015 Targets for Recycling, Re-Use and Recovery under the ELV Directive; GHK: Birmingham, UK, 2006. [Google Scholar]
- Eurostat. Eurostat—Waste Data Navigation Tree; Eurostat: Luxembourg, 2014. [Google Scholar]
- EU. Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on End-of Life Vehicles; EU: Brussels, Belgium, 2000. [Google Scholar]
- Ecoinvent v3. Documentation of Changes Implemented in Ecoinvent Database 3.0 (2013.09.04). Available online: http://www.ecoinvent.org/files/report_of_changes_ecoinvent_2.2_to_3.0_20130904.pdf (accessed on 4 September 2013).
- International Renewable Energy Agency. Renewable Energy Cost Analysis: Wind Power; International Renewable Energy Agency: Abu Dhabi, UAE, 2012. [Google Scholar]
- Cheah, L.W. Cars on a Diet: The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the US; Massachusetts Institute of Technology: Cambridge, MA, USA, 2010. [Google Scholar]
- Du, J.D.; Han, W.J.; Peng, Y.H.; Gu, C.C. Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China. Energy 2010, 35, 4671–4678. [Google Scholar] [CrossRef]
- Keoleian, G.A.; Sullivan, J.L. Materials challenges and opportunities for enhancing the sustainability of automobiles. MRS Bull. 2012, 37, 365–373. [Google Scholar] [CrossRef]
- Delogu, M.; Del Pero, F.; Pierini, M. Lightweight design solutions in the automotive field: Environmental modelling based on fuel reduction value applied to diesel turbocharged vehicles. Sustainability 2016, 8, 1167. [Google Scholar] [CrossRef]
- Koffler, C.; Rohde-Brandenburger, K. On the calculation of fuel savings through lightweight design in automotive life cycle assessments. Int. J. Life Cycle Assess. 2010, 15, 128–135. [Google Scholar] [CrossRef]
- Wright, L.; Boundy, S.C.D.B.; Diegel, S.W. Appendix A—Conversions, in Biomass Energy Data Book; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2011.
- Hsieh, W.-D.; Chen, R.-H.; Wu, T.-L.; Lin, T.-H. Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels. Atmos. Environ. 2002, 36, 403–410. [Google Scholar] [CrossRef]
- Knothe, G. The Biodiesel Handbook, 1st ed.; Taylor & Francis: Oxford, UK, 2005. [Google Scholar]
- Karna, P. Carbon Footprint of the Raw Materials of an Urban Transit Bus; Lahden Ammattikorkeakoulu: Lahti, Finland, 2012. [Google Scholar]
- Cooney, G.; Hawkins, T.R.; Marriott, J. Life cycle assessment of diesel and electric public transportation buses. J. Ind. Ecol. 2013, 17, 689–699. [Google Scholar] [CrossRef]
- EU. Product Environmental Footprint Pilot Guidance, Guidance for the Implementation of the EU Product Environmental Footprint (PEF) during the Environmental Footprint (EF) Pilot Phase—Version 4.0; EU: Brussels, Belgium, 2014. [Google Scholar]
Sub-Products | Number (×103) | vkm (×106) | Energy Consumption (MJ/vkm) | ||
---|---|---|---|---|---|
Name | Type of Vehicle | Euro Standard | |||
SP 1 | Car Petrol < 1.4 L | Conv to Euro 3 [29] | 55,549 | 588,267 | 2.884 |
SP 2 | Car Petrol < 1.4 L | Euro 4 [29] | 10,605 | 112,794 | 2.755 |
SP 3 | Car Petrol < 1.4 L | Euro 5 [29] | 7015 | 74,617 | 2.755 |
SP 4 | Car Petrol 1.4–2.0 L | Conv to Euro 3 [29] | 47,481 | 530,852 | 3.466 |
SP 5 | Car Petrol 1.4–2.0 L | Euro 4 [29] | 9065 | 101,344 | 3.211 |
SP 6 | Car Petrol 1.4–2.0 L | Euro 5 [29] | 5997 | 67,043 | 3.211 |
SP 7 | Car Petrol > 2.0 L | Conv to Euro 3 [29] | 8404 | 97,936 | 4.430 |
SP 8 | Car Petrol > 2.0 L | Euro 4 [29] | 1605 | 18,762 | 4.437 |
SP 9 | Car Petrol > 2.0 L | Euro 5 [29] | 1061 | 12,412 | 4.437 |
SP 10 | Car Diesel 1.4–2.0 L | Conv to Euro 3 [29] | 50,845 | 816,541 | 2.565 |
SP 11 | Car Diesel 1.4–2.0 L | Euro 4 [29] | 9707 | 155,884 | 2.400 |
SP 12 | Car Diesel 1.4–2.0 l L | Euro 5 [29] | 6421 | 103,123 | 2.400 |
SP 13 | Car Diesel > 2.0 L | Conv to Euro 3 [29] | 12,511 | 207,188 | 3.203 |
SP 14 | Car Diesel > 2.0 L | Euro 4 [29] | 2388 | 39,554 | 3.344 |
SP 15 | Car Diesel > 2.0 L | Euro 5 [29] | 1580 | 26,166 | 3.344 |
SP16 | Car LPG | Conv to Euro 5 [29] | 5107 | 48,971 | 2.344 |
SP17 | Mopeds < 50 cm3 | Conv to Euro 3 [29] | 12,865 | 48,168 | 0.9643 |
SP18 | Motorcycles < 250 cm3 | Conv to Euro 3 [29] | 9173 | 22,440 | 1.407 |
SP19 | Motorcycles > 250 cm3 | Conv to Euro 3 [29] | 11,853 | 44,377 | 2.160 |
SP 20 | Urban Buses Standard 15–18 t | Conv to Euro V [30] | 764 | 24,971 | 13.96 |
SP 21 | Coaches Standard ≤ 18 t | Conv to Euro V [30] | 69 | 2288 | 7.793 |
SP 22 | Urban CNG Buses | Euro I to III [30] | 69 | 2288 | 26.63 |
Material Type | Reuse | Recycling | Recovery | Landfill |
---|---|---|---|---|
Aluminum | 10.0 | 87.8 | 0.0 | 2.2 |
Coppers | 10.0 | 87.8 | 0.0 | 2.2 |
Ferro metals | 4.8 | 94.0 | 0.0 | 1.2 |
Glass | 3.3 | 46.7 | 0.0 | 50.0 |
Lubricating oils | 0.0 | 0.0 | 100.0 | 0.0 |
Non-ferro | 10.0 | 87.8 | 0.0 | 2.2 |
Others | 0.0 | 0.0 | 0.0 | 100.0 |
Paint | 0.0 | 0.0 | 0.0 | 100.0 |
PE | 1.7 | 18.3 | 10.0 | 70.0 |
PET | 1.7 | 18.3 | 10.0 | 70.0 |
Plastics | 1.7 | 18.3 | 10.0 | 70.0 |
PP | 1.7 | 18.3 | 10.0 | 70.0 |
PUR | 1.7 | 18.3 | 10.0 | 70.0 |
PVC | 1.7 | 18.3 | 10.0 | 70.0 |
Rubber | 20.0 | 30.0 | 50.0 | 0.0 |
Steel | 4.8 | 94.0 | 0.0 | 1.2 |
Textile | 0.0 | 10.0 | 0.0 | 90.0 |
Zincs | 10.0 | 87.8 | 0.0 | 2.2 |
Material type | Reuse | Recycling | Recovery | Landfill |
---|---|---|---|---|
Magnesium alloy | 10.0 | 87.8 | 0.0 | 2.2 |
CFRP | 1.7 | 18.3 | 10.0 | 70.0 |
Size | Model | Weight (kg) | Power (kW) | Consumption (Wh/km) |
---|---|---|---|---|
Small | Peugeot iOn | 1195 | 47 | 189 |
Medium | Nissan Leaf | 1613 | 80 | 186 |
Large | Tesla Model S | 2074 | 225 | 215 |
Impact Category | BAU-Basket-of-Products Conventional | A1—Renewable Energy Sources in Production | A2—European Vehicle Production | A2—Rest-of-World Vehicle Production | B1—Smaller Vehicles | B2—Aluminum Lightweight Vehicles | B2—Mg + CFRP Lightweight Vehicles | B3—More Recent Vehicle Technology | C1—Dieselization of Fleet | C2—CNG Vehicles | C3—Biofuels—Low-Level Blends, 1st Selection for Feedstock | C3—Biofuels—Low-Level Blends, 2nd Selection for Feedstock | C3—Biofuels—High-Level Blends | C4—Battery Electric Vehicles |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate change | 0.223 | 0.221 | 0.220 | 0.223 | 0.202 | 0.202 | 0.199 | 0.217 | 0.192 | 0.196 | 0.214 | 0.212 | 0.120 | 0.127 |
Ozone depletion | 0.007 | 0.007 | 0.007 | 0.007 | 0.006 | 0.007 | 0.006 | 0.007 | 0.006 | 0.011 | 0.007 | 0.007 | 0.004 | 0.005 |
Human toxicity, cancer eff. | 2.701 | 2.694 | 2.706 | 2.699 | 2.400 | 2.003 | 1.927 | 2.694 | 2.387 | 3.285 | 2.743 | 2.721 | 3.481 | 4.646 |
Human toxicity, non-canc. | 0.971 | 0.968 | 0.973 | 0.970 | 0.871 | 0.925 | 0.909 | 0.965 | 1.013 | 0.984 | 0.962 | 1.022 | 1.884 | 2.923 |
Particulate matter | 0.224 | 0.222 | 0.211 | 0.227 | 0.207 | 0.203 | 0.201 | 0.171 | 0.275 | 0.160 | 0.226 | 0.227 | 0.219 | 0.283 |
Ionizing radiation HH | 0.141 | 0.138 | 0.153 | 0.138 | 0.127 | 0.126 | 0.127 | 0.138 | 0.126 | 0.110 | 0.142 | 0.139 | 0.125 | 0.428 |
Photochemical. ozone for. | 0.213 | 0.212 | 0.209 | 0.214 | 0.195 | 0.194 | 0.191 | 0.175 | 0.208 | 0.135 | 0.218 | 0.214 | 0.242 | 0.260 |
Acidification | 0.135 | 0.133 | 0.127 | 0.136 | 0.124 | 0.124 | 0.125 | 0.115 | 0.134 | 0.108 | 0.142 | 0.138 | 0.260 | 0.173 |
Terrestrial eutroph. | 0.092 | 0.092 | 0.090 | 0.093 | 0.087 | 0.083 | 0.083 | 0.063 | 0.109 | 0.052 | 0.102 | 0.096 | 0.241 | 0.068 |
Freshwater eutrophication | 0.162 | 0.159 | 0.166 | 0.161 | 0.144 | 0.155 | 0.150 | 0.161 | 0.142 | 0.208 | 0.166 | 0.165 | 0.236 | 0.806 |
Marine eutrophication | 0.106 | 0.106 | 0.104 | 0.107 | 0.100 | 0.096 | 0.094 | 0.079 | 0.134 | 0.054 | 0.125 | 0.112 | 0.443 | 0.085 |
Freshwater ecotoxicity | 2.030 | 2.035 | 2.035 | 2.028 | 1.803 | 1.946 | 1.763 | 2.027 | 1.795 | 2.415 | 2.046 | 2.042 | 2.390 | 5.089 |
Land use | 0.012 | 0.012 | 0.012 | 0.012 | 0.012 | 0.011 | 0.011 | 0.012 | 0.022 | 0.004 | 0.015 | 0.014 | 0.107 | 0.003 |
Water resource depletion | 8.062 | 7.791 | 8.213 | 8.029 | 7.202 | 7.323 | 7.316 | 8.018 | 7.118 | 9.135 | 8.315 | 8.157 | 11.102 | 39.887 |
Min., fos., and ren. res. dep. | 1.330 | 1.331 | 1.331 | 1.330 | 1.180 | 1.957 | 1.264 | 1.328 | 1.156 | 1.560 | 1.349 | 1.348 | 1.664 | 3.184 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulino, F.; Pina, A.; Baptista, P. Evaluation of Alternatives for the Passenger Road Transport Sector in Europe: A Life-Cycle Assessment Approach. Environments 2018, 5, 21. https://doi.org/10.3390/environments5020021
Paulino F, Pina A, Baptista P. Evaluation of Alternatives for the Passenger Road Transport Sector in Europe: A Life-Cycle Assessment Approach. Environments. 2018; 5(2):21. https://doi.org/10.3390/environments5020021
Chicago/Turabian StylePaulino, Filipe, André Pina, and Patrícia Baptista. 2018. "Evaluation of Alternatives for the Passenger Road Transport Sector in Europe: A Life-Cycle Assessment Approach" Environments 5, no. 2: 21. https://doi.org/10.3390/environments5020021
APA StylePaulino, F., Pina, A., & Baptista, P. (2018). Evaluation of Alternatives for the Passenger Road Transport Sector in Europe: A Life-Cycle Assessment Approach. Environments, 5(2), 21. https://doi.org/10.3390/environments5020021