A Simple Approach of Groundwater Quality Analysis, Classification, and Mapping in Peshawar, Pakistan
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Groundwater Sampling and Determination of Physio-Chemical Properties
2.3. The Clustering Analysis
2.4. Classification and Mapping of the Groundwater Pollution
3. Results and Discussion
3.1. Physio-Chemical Properties of the Groundwater Samples
3.2. Clustering Analysis of the Groundwater Data
3.3. Classification and Mapping of the Groundwater Pollution
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cui, Y.; Shao, J. The role of ground water in arid/semiarid ecosystems, Northwest China. Groundwater 2005, 43, 471–477. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Ahuja, S.; Alauddin, M.; Hug, S.J.; Lloyd, J.R.; Pfaff, A.; Pichler, T.; Saltikov, C.; Stute, M.; van Geen, A. Ensuring safe drinking water in Bangladesh. Science 2006, 314, 1687–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Cook, P.G.; Favreau, G.; Dighton, J.C.; Tickell, S. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J. Hydrol. 2003, 277, 74–88. [Google Scholar] [CrossRef]
- Cook, P.G.; Wood, C.; White, T.; Simmons, C.T.; Fass, T.; Brunner, P. Groundwater inflow to a shallow, poorly-mixed wetland estimated from a mass balance of radon. J. Hydrol. 2008, 354, 213–226. [Google Scholar] [CrossRef]
- Qureshi, A.S. Challenges and Opportunities of Groundwater Management in Pakistan. In Groundwater of South Asia; Mukherjee, A., Ed.; Springer: Singapore, 2018; pp. 735–757. [Google Scholar] [CrossRef]
- Alcamo, J.; Henrichs, T.; Rösch, T. World Water in 2025: Global Modeling and Scenario Analysis for the World Commission on Water for the 21st Century; Kassel World Water Ser. Rep. 2; Center for Environmental Systems Research; University of Kassel: Kassel, Germany, 2000. [Google Scholar]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, Z.; Zeng, G.; Li, J.; Fang, Y.; Yuan, Q.; Wang, Y.; Ye, F. Assessment ofsurface water quality using multivariate statistical techniques in red soil hilly region: A case study of Xiangjiang watershed, China. Environ. Monit. Assess. 2009, 152, 123. [Google Scholar] [CrossRef]
- Daud, M.K.; Nafees, M.; Ali, S.; Rizwan, M.; Bajwa, R.A.; Shakoor, M.B.; Arshad, M.U.; Chatha, S.A.S.; Deeba, F.; Murad, W.; et al. Drinking water quality status and contamination in Pakistan. BioMed Res. Int. 2017, 2017, 7908183. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.; van Kempen, C.M.; Reckman, J.W.; Vasak, S.; Bierkens, M.F. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Adnan, S.; Iqbal, J. Spatial analysis of the groundwater quality in the Peshawar District, Pakistan. Procedia Eng. 2014, 70, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K. An integrated model for the assessment of global water resources—Part 2: Applications and assessments. Hydrol. Earth Syst. Sci. 2008, 12, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- UNDP Pakistan. Development Advocate Pakistan: Water Security in Pakistan: Issues and Challenges; United Nations Development Programme Pakistan: Islamabad, Pakistan, 2017; Volume 3, Issue 4, Available online: https://www.pk.undp.org/content/pakistan/en/home/library/development_policy/development-advocate-pakistan--volume-3--issue-4.html (accessed on 5 October 2019).
- PRI—Million Sick Due to Lack of Water in Pakistan. Available online: http://www.pri.org/stories/2009-04-20/millions-sick-due-lack-clean-water-pakistan (accessed on 2 June 2019).
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; incorporating the first addendum; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Anku, Y.S.; Banoeng-Yakubo, B.; Asiedu, D.K.; Yidana, S.M. Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana. Environ. Geol. 2009, 58, 989–997. [Google Scholar] [CrossRef]
- Comly, H.H. Cyanosis in infants caused by nitrates in well water. J. Am. Med. Assoc. 1945, 129, 112. [Google Scholar] [CrossRef]
- Biorck, G.; Bostrom, H.; Widstrom, A. On the relationship between water hardness and death rate in cardiovascular disease. Acta Med. Scand. 1965, 178, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y. Calcium and magnesium in drinking water and risk of death from cerebrovascular disease. Stroke 1998, 29, 411–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, D.C.; Williams, M.K.; Surampalli, R.Y. Nitrate contamination of groundwater: Sources and potential health effects. J. -Am. Water Work. Assoc. 1992, 84, 85–90. [Google Scholar] [CrossRef]
- Yamakanamardi, S.V.; Hampannavar, U.S.; Purandara, B.K. Assessment of chloride concentration in groundwater: A case study for Belgaum City. Int. J. Environ. Sci. 2011, 2, 271. [Google Scholar]
- Cronin, A.A.; Hoadley, A.W.; Gibson, J.; Breslin, N.; Komou, F.K.; Haldin, L.; Pedley, S. Urbanisation effects on groundwater chemical quality: Findings focusing on the nitrate problem from 2 African cities reliant on on-site sanitation. J. Water Health 2007, 5, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Kaushall, S.; Groffman, P.; Likens, G.; Belt, K.; Stack, W.; Kelly, V.; Band, L.; Fisher, G. Increased salinization of freshwater in the Northeastern United States. Proc. Natl. Acad. Sci. USA 2005, 102, 13517–13520. [Google Scholar] [CrossRef] [Green Version]
- Miklovic, S.; Galatowitsch, S. Effect of NaCl and Typha angustifolia L. on marsh community establishment: A greenhouse study. Wetlands 2005, 24, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Omo-Irabor, O.O.; Olobaniyi, S.B.; Oduyemi, K.; Akunna, J. Surface and groundwater water quality assessment using multivariate analytical methods: A case study of the Western Niger Delta, Nigeria. Phys. Chem. Earthparts A/B/C 2008, 33, 666–673. [Google Scholar] [CrossRef]
- National Research Council. Groundwater Vulnerability Assessment: Contamination Potential under Conditions of Uncertainties; National Academy Press: Washington, DC, USA, 1993. [Google Scholar]
- Cohen, D.B.; Fisher, C.; Reid, M.L. Ground-water contamination by toxic substances: A California assessment. In Evaluation of Pesticides in Ground Water; Garner, W.Y., Honeycutt, R.C., Nigg, H.N., Eds.; ACS Symp. Series 315; American Chemical Society: Washington, DC, USA, 1986; pp. 499–529. [Google Scholar]
- Aller, L.; Lehr, J.H.; Petty, R.; Bennett, T. DRASTIC: A Standardized System to Evaluate Groundwater Pollution Potential Using Hydrogeologic Settings; National Water Well Association: Washington, OH, USA, 1987. [Google Scholar]
- Duarte, L.; Espinha Marques, J.; Teodoro, A.C. An Open Source GIS-Based Application for the Assessment of Groundwater Vulnerability to Pollution. Environments 2019, 6, 86. [Google Scholar] [CrossRef] [Green Version]
- Shirazi, S.; Imran, H.; Akib, S.; Yusop, Z.; Harun, Z. Groundwater vulnerability assessment in the Melaka State of Malaysia using DRASTIC and GIS techniques. Environ. Earth Sci. 2013, 70, 2293–2304. [Google Scholar] [CrossRef]
- Shahab, A.; Shihua, Q.; Rad, S.; Keita, S.; Khan, M.; Adnan, S. Groundwater vulnerability assessment using GIS-based DRASTIC method in the irrigated and coastal region of Sindh province, Pakistan. Hydrol. Res. 2019, 50, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Adnan, S.; Iqbal, J.; Maltamo, M.; Valbuena, R. GIS-based DRASTIC model for groundwater vulnerability and pollution risk assessment in the Peshawar District, Pakistan. Arab. J. Geosci. 2018, 11, 458. [Google Scholar] [CrossRef] [Green Version]
- Pettyjohn, W.A.; Savoca, M.; Self, D. Regional Assessment of Aquifer Vulnerability and Sensitivity in the Conterminous United States; Report EPA-600/2-91/043; Environmental Protection Agency: Ada, OK, USA, 1991. [Google Scholar]
- Hoyer, B.E.; Hallberg, G.R. Ground Water Vulnerability Regions of Iowa; Special Map 11; Iowa Department of Natural Resources: Iowa, IA, USA, 1991. [Google Scholar]
- Steenhuis, T.S.; Pacenka, S.; Porter, K.S. MOUSE: A management model for evaluation ground water contamination from diffuse surface sources aided by computer graphics. Appl. Agric. Res. 1987, 2, 277–289. [Google Scholar]
- Dean, J.D.; Huyakorn, P.S.; Donigian, A.S., Jr.; Voos, K.A.; Schanz, R.W.; Meeks, Y.J.; Carsel, R.F. Risk of Unsaturated/Saturated Transport and Transformation of Chemical Concentrations (RUSTIC); EPA/600/3-89/048a; Environmental Protection Agency: Athens, GA, USA, 1989; Volumes I and II. [Google Scholar]
- Chen, H.; Druliner, A.D. Agricultural Chemical Contamination of Ground Water in Six Areas of the High Plains Aquifer, Nebraska. In National Water Summary 1986—Hydrologic Events and Ground-Water Quality; Water-Supply Paper 2325; Geological Survey: Reston, VA, USA, 1988. [Google Scholar]
- Teso, R.R.; Younglove, T.; Peterson, M.R.; Sheeks, D.L.; Gallavan, R.E. Soil taxonomy and surveys: Classification of areal sensitivity to pesticide contamination of ground water. J. Soil Water Conserv. 1988, 43, 348–352. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth: Monterey, CA, USA, 1984. [Google Scholar]
- Eaton, A.D.; Cresceri, L.S.; Rice, E.W.; Greenberg, A.B. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Ud Din, I.; Xue, M.C.; Abdullah, A.S.; Shah, T.; Ilyas, A. Role of information & communication technology (ICT) and e-governance in health sector of Pakistan: A case study of Peshawar. Cogent Soc. Sci. 2017, 3, 1308051. [Google Scholar]
- City Development Strategy Peshawar. 2001. Available online: http://documents.worldbank.org/curated/en/680651468287766516/pdf/563740v10REPLA00Box385328B00PUBLIC0.pdf (accessed on 16 August 2019).
- Pakistan Bureau of Statistics. Block Wise Provisional Summary Results of 6th Population & Housing Census-2017. 2018. Available online: http://www.pbs.gov.pk/content/block-wise-provisional-summary-results-6th-population-housing-census-2017-january-03-2018 (accessed on 26 May 2019).
- Mirza, M.W.; Abbas, Z.; Rizvi, M.A. Temperature zoning of Pakistan for asphalt mix design. Pak. J. Eng. Appl. Sci. 2016, 8, 49–60. [Google Scholar]
- Pakistan Meteorological Department. Rainfall Data of Peshawar Station (1977–2006) Collected from Pakistan Meteorological Department; Pakistan Meteorological Department: Islamabad, Pakistan, 2013. [Google Scholar]
- Hussain, A.; Dipietro, J.A.; Pogue, K.R. Stratigraphy and structure of the Peshawar Basin. Pakistan. J. Nepal. Geol. Soc. 1998, 18, 25–35. [Google Scholar]
- Yousafzai, A.; Eckstein, Y.; Dahl, P. Numerical simulation of groundwater flow in the Peshawar intermontane basin, northwest Himalayas. Hydrogeol. J. 2008, 16, 1395. [Google Scholar] [CrossRef]
- Pogue, K.R.; Wardlaw, B.R.; Harris, A.G.; Hussain, A. Paleozoic and Mesozoic stratigraphy of the Peshawar basin, Pakistan: Correlations and implications. Geol. Soc. Am. Bull. 1992, 104, 915–927. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Hierarchical clustering. Cluster Analysis, 5th ed.; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2011; pp. 71–110. [Google Scholar]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Sugar, C.A.; James, G.M. Finding the number of clusters in a dataset: An information-theoretic approach. J. Am. Stat. Assoc. 2003, 98, 750–763. [Google Scholar] [CrossRef]
- Milligan, G.W.; Cooper, M.C. A study of standardization of variables in cluster analysis. J. Classif. 1988, 5, 181–204. [Google Scholar] [CrossRef]
- Müllner, D. fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python. J. Stat. Softw. 2013, 53, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, R.L.; Wright, A. Rule-based classification systems using classification and regression tree (CART) analysis. Photogramm. Eng. Remote Sens. 2001, 67, 1137–1142. [Google Scholar]
- Prasanth, S.S.; Magesh, N.S.; Jitheshlal, K.V.; Chandrasekar, N.; Gangadhar, K. Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Appl. Water Sci. 2012, 2, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Rauf, R.; Muhammad, S.; Qasim, M.; Din, I. Arsenic and heavy metals health risk assessment through drinking water consumption in the Peshawar District, Pakistan. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 581–596. [Google Scholar] [CrossRef]
- Ullah, Z.; Khan, H.; Waseem, A.; Mahmood, Q.; Farooq, U. Water quality assessment of the River Kabul at Peshawar, Pakistan: Industrial and urban wastewater impacts. J. Water Chem. Technol. 2013, 35, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Pakistan Environmental Protection Agency. National Standards for Drinking Water Quality (NSDWG). 2008. Available online: http://www.freshwateraction.net/sites/freshwateraction.net/files/Drinking%20water%20in%20Pakistan.pdf (accessed on 21 September 2019).
- Bodrud-Doza, M.; Islam, A.T.; Ahmed, F.; Das, S.; Saha, N.; Rahman, M.S. Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Sci. 2016, 30, 19–40. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Kawamura, A.; Tong, T.N.; Nakagawa, N.; Amaguchi, H.; Gilbuena, R., Jr. Clustering spatio—Seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta, Vietnam. J. Hydrol. 2015, 522, 661–673. [Google Scholar] [CrossRef]
- Hussain, M.; Ahmed, S.M.; Abderrahman, W. Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia. J. Environ. Manag. 2008, 86, 297–307. [Google Scholar] [CrossRef] [PubMed]
- McGarial, K.; Cushman, S.; Stafford, S. Multivariate Statistics for Wildlife and Ecology Research; Springer: New York, NY, USA, 2000. [Google Scholar]
- Bien, J.; Tibshirani, R. Hierarchical clustering with prototypes via minimax linkage. J. Am. Stat. Assoc. 2011, 106, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Liu, Z.; Wang, G. An automatic method to determine the number of clusters using decision-theoretic rough set. Int. J. Approx. Reason. 2014, 55, 101–115. [Google Scholar] [CrossRef]
- Subramani, T.; Elango, L.; Damodarasamy, S.R. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ. Geol. 2005, 47, 1099–1110. [Google Scholar] [CrossRef]
- Logeshkumaran, A.; Magesh, N.S.; Godson, P.S.; Chandrasekar, N. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Appl. Water Sci. 2015, 5, 335–343. [Google Scholar]
- Ullah, H.; Khan, I.; Ullah, I. Impact of sewage contaminated water on soil, vegetables, and underground water of peri-urban Peshawar, Pakistan. Environ. Monit. Assess. 2012, 184, 6411–6421. [Google Scholar] [CrossRef]
- Pakistan Council of Research in Water Resources (PCRWR). Water Quality Status of Major Cities of Pakistan 2015–2016. Available online: http://www.pcrwr.gov.pk/Publications/Reports/Water%20Quality%20Statu%20of%20Major%20Cities%20of%20Pakistan%202015-16.pdf (accessed on 27 September 2019).
- Tariq, S.R.; Shah, M.H.; Shaheen, N.; Khalique, A.; Manzoor, S.; Jaffar, M. Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: A case study from Peshawar, Pakistan. J. Environ. Manag. 2006, 79, 20–29. [Google Scholar] [CrossRef]
- Maier, H.R.; Dandy, G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res. 1996, 32, 1013–1022. [Google Scholar] [CrossRef]
Total Samples | Min | Max | Mean | SD | NSDWQ Pak 1 | WHO 2 | |
---|---|---|---|---|---|---|---|
105 | 7.1 | 8.08 | 7.73 | 0.20 | 6.5–8.5 | 6.5–8.5 | |
105 | 389 | 1695 | 809.43 | 250.72 | - | - | |
105 | 216 | 765 | 393.00 | 178.43 | <1000 | <1000 | |
Alkalinity (mg/L as CaCO3 3) | 105 | 134 | 540 | 328.89 | 81.79 | - | - |
Total Hardness (mg/L as CaCO3) | 105 | 186 | 770 | 372.38 | 104.22 | <500 | - |
Ca Hardness (mg/L as CaCO3) | 105 | 60 | 368 | 189.52 | 49.45 | - | 100–300 |
Mg Hardness (mg/L as CaCO3) | 105 | 64 | 430 | 182.85 | 80.32 | - | <Ca hardness |
Turbidity (NTU) | 105 | 0.16 | 7.36 | 0.88 | 1.26 | 5 | 5 |
Nitrate (mg/L as nitrate) | 105 | 3.59 | 41.73 | 20.01 | 12.24 | ≤50 | 50 |
Chloride (mg/L) | 105 | 13.30 | 95.00 | 30.13 | 15.75 | <250 | 250 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan, S.; Iqbal, J.; Maltamo, M.; Bacha, M.S.; Shahab, A.; Valbuena, R. A Simple Approach of Groundwater Quality Analysis, Classification, and Mapping in Peshawar, Pakistan. Environments 2019, 6, 123. https://doi.org/10.3390/environments6120123
Adnan S, Iqbal J, Maltamo M, Bacha MS, Shahab A, Valbuena R. A Simple Approach of Groundwater Quality Analysis, Classification, and Mapping in Peshawar, Pakistan. Environments. 2019; 6(12):123. https://doi.org/10.3390/environments6120123
Chicago/Turabian StyleAdnan, Syed, Javed Iqbal, Matti Maltamo, Muhammad Suleman Bacha, Asfandyar Shahab, and Ruben Valbuena. 2019. "A Simple Approach of Groundwater Quality Analysis, Classification, and Mapping in Peshawar, Pakistan" Environments 6, no. 12: 123. https://doi.org/10.3390/environments6120123
APA StyleAdnan, S., Iqbal, J., Maltamo, M., Bacha, M. S., Shahab, A., & Valbuena, R. (2019). A Simple Approach of Groundwater Quality Analysis, Classification, and Mapping in Peshawar, Pakistan. Environments, 6(12), 123. https://doi.org/10.3390/environments6120123