Mapping Forest Fire Risk at a Local Scale—A Case Study in Andalusia (Spain)
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Data
- Due to failure of the Scan-Line Corrector (SLC) on board Landsat 7 ETM+ on 31 May 2003, a gap-filling process was executed using the triangulation method available in ENVI.
- Re-projection of the image to the used CRS.
- Transformation of DNs (digital numbers) into radiance values;
- Correction of atmospheric effects to eliminate distortions that might cause an atmospheric effect in the image; for this correction the FLAASH module (Fast Line of Sight Atmospheric Analysis of Spectral Hypercube) in ENVI has been used [38].
3. Methodology
3.1. Obtaining Natural Hazard
3.1.1. Slope Gradient
3.1.2. Type of Combustible
3.1.3. Vegetation Moisture Stress
3.2. Obtaining Induced Hazard
- Electric power lines and substations: Downed lines or vegetation coming into direct contact with those infrastructures as well as substation short circuits;
- Transport infrastructures (roads, paths, trails and railway): Eventual accidents, garbage accumulated on or by platforms, lit cigarette butts or railway sparks;
- Dumps: Uncontrolled burning of garbage and the proliferation of illegal dumps in or near forest areas;
- Recreational areas and lookout points: Garbage accumulation, lit cigarette butts or badly extinguished barbecues in such areas, which are often situated in forest areas for recreational use;
- Population centres and scattered rural buildings: Badly extinguished hearths, the burning of stubble or agricultural waste, plant destruction by farming interests, disputes, hunting interests, etc.
- Calculation of the Euclidean distance around all elements, establishing the corresponding maximums;
- Standardisation of values between 1 and 5;
- Values were inverted, due to the inverse relationship between hazard and distance;
- Weighing of the values (according to Table 6).
- Calculation of time (in seconds) of travel (T) on foot depending on slope gradient (Δh/Δd), applying the Naismith Rule [51]:T = 0.746 + ((3600 × [(Δh/Δd)])/609.6),
- Calculation of distance (in metres) depending on the time established above;
- Standardisation, inversion and weighing of values as set out in Table 6;
3.3. Obtaining Final Hazard
3.4. Vulnerability
- Electric power infrastructures: power lines and electrical substations;
- Roads, as they are people’s main safe evacuation routes;
- Built-up surfaces: main and secondary urban centres, scattered rural buildings, dispersed settlements and industrial areas.
3.5. Obtaining Final Forest Fire Risk
4. Results
4.1. Natural Forest Fire Hazard
4.2. Induced Forest Fire Hazard
4.3. Final Forest Fire Hazard
4.4. Vulnerability
4.5. Short-Term Forest Fire Risk
5. Discussion and Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- UNISDR. Wildfire Hazard and Risk Assessment. Available online: https://www.unisdr.org/files/52828_06wildfirehazardandriskassessment.pdf (accessed on 10 July 2018).
- MAPAMA. Incendios Forestales 01/01/2017–31/12/2017. AVANCE INFORMATIVO. Available online: https://www.mapa.gob.es/va/desarrollo-rural/estadisticas/iiff_2017_def_tcm39-446071.pdf (accessed on 20 January 2019).
- Araque, E. Medio siglo de grandes incendios forestales en Andalucía (1961–2011). Méditerranée 2013, 121, 41–52. [Google Scholar] [CrossRef]
- Verdú, F.; Salas, J. Caracterización de las variables biofísicas en los incendios forestales mayores de 25 ha. de la España peninsular (1991–2005). Bol. Asoc. Geógr. Esp. 2011, 57, 79–100. [Google Scholar]
- Lloret, F. Régimen de incendios y regeneración. In Ecología del Bosque Mediterráneo en un Mundo Cambiante; Valladares, F., Ed.; Ministerio de Medio Ambiente: Madrid, Spain, 2004; pp. 101–126. ISBN 978-84-80-14738-5. [Google Scholar]
- Martínez, J.; Martínez, J.; Martín, M.P. El factor humano en los incendios forestales: Un análisis de factores socio-económicos relacionados con la incidencia de incendios forestales en España. In Nuevas tecnologías para la Estimación del Riesgo de Incendios Forestales; Chuvieco, E., Martín, M.P., Eds.; Consejo Superior de Investigaciones Científicas (CSIC): Madrid, Spain, 2004; pp. 102–142. ISBN 978-84-00-08275-8. [Google Scholar]
- Prados, M.J. Naturbanización y patrones urbanos en los parques nacionales de Andalucía. Bol. Asoc. Geógr. Esp. 2012, 60, 19–44. [Google Scholar]
- Galiana, L. Las interfaces urbano-forestales: Un nuevo territorio de riesgo en España. Bol. Asoc. Geógr. Esp. 2012, 58, 205–226. [Google Scholar]
- WWF. Incendios Forestales ¿Por qué se Queman los Montes Españoles? Available online: http://assets.wwf.es/downloads/incendios_20051_1.pdf (accessed on 12 July 2018).
- Pacheco, C.E.; Aguado, I.; Nieto, H. Análisis de ocurrencia de incendios forestales causados por rayo en la España peninsular. Rev. Int. Cienc. Tecnol. Inf. Geogr. 2009, 9, 232–249. [Google Scholar]
- Vicente, F.J. Diseño de un Modelo de Riesgo Integral de Incendios Forestales Mediante Técnicas Multicriterio y su Automatización en SIG. Una Aplicación en la Comunidad Valenciana. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2012. [Google Scholar]
- Bachmann, A.; Allgöwer, B. A consistent wildland fire risk terminology is needed! Fire Manag. Today 2001, 61, 28–33. [Google Scholar]
- Cutter, S.L.; Boruff, B.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Gaither, C.J.; Poudyal, N.C.; Goodrick, S.; Bowker, J.M. Wildland fire risk and social vulnerability in the Southeastern United States: An exploratory spatial data analysis approach. For. Policy Econ. 2011, 13, 24–36. [Google Scholar] [CrossRef]
- Chuvieco, E.; Congalton, R. Application of remote sensing and Geographic Information System to forest fire hazard mapping. Remote Sens. Environ. 1989, 29, 147–159. [Google Scholar] [CrossRef]
- Cocero, D.; Riaño, D.; Meza, E.; Chuvieco, E. Cartografía del tipo y estado de los combustibles, In Nuevas Tecnologías para la Estimación del Riesgo de Incendios Forestales; Chuvieco, E., Martín, M.P., Eds.; Consejo Superior de Investigaciones Científicas (CSIC): Madrid, Spain, 2004; pp. 33–62. ISBN 978-84-00-08275-8.
- Teodoro, A.C.; Duarte, L. Forest fire risk maps: A GIS open source application—A case study in Norwest of Portugal. Int. J. Geogr. Inf. Sci. 2013, 27, 699–720. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martín, M.P. Nuevas Tecnologías para la Estimación del Riesgo de Incendios Forestales; Consejo Superior de Investigaciones Científicas (CSIC): Madrid, Spain, 2004; p. 192. ISBN 978-84-00-08275-8.
- Keane, R.E.; Drurya, S.A.; Karaua, E.C.; Hessburgb, P.F.; Reynolds, K.M. A method for mapping fire hazard and risk across multiple scales and its application in fire management. Ecol. Model. 2010, 221, 2–18. [Google Scholar] [CrossRef]
- Valdez, M.C.; Chang, K.T.; Chen, C.F.; Chiang, S.H.; Santos, J.L. Modelling the spatial variability of wildfire susceptibility in Honduras using remote sensing and geographical information systems. Geomat. Nat. Hazards Risk 2017, 8, 876–892. [Google Scholar] [CrossRef]
- Torres-Rojo, J.M.; Magaña-Torres, O.; Ramírez-Fuentes, G. Índice de peligro de incendios forestales de largo plazo. Agrociencia 2007, 41, 663–674. [Google Scholar]
- DaCamara, C.C.; Calado, T.J.; Ermida, S.L.; Trigo, I.F.; Amraoui, M.; Turkman, K.F. Calibration of the Fire Weather Index over Mediterranean Europe based on fire activity retrieved from MSG satellite imagery. Int. J. Wildland Fire 2014. [Google Scholar] [CrossRef]
- Chuvieco, E.; Giglio, L.; Justice, C. Global characterization of fire activity: Toward defining fire regimes from Earth observation data. Glob. Chang. Biol. 2008, 14, 1488–1502. [Google Scholar] [CrossRef]
- Meng, Y.; Deng, Y.; Shi, P. Mapping Forest Wildfire Risk of the World. In World Atlas of Natural Disaster Risk; Shi, P., Kasperson, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 261–275. ISBN 978-3-662-45429-9. [Google Scholar]
- Chuvieco, E.; Salas, J.; de la Riva, J.; Pérez, F.; Lana-Renault, N. Métodos para la integración de variables de riesgo: El papel de los sistemas de información geográfica. In Nuevas Tecnologías para la Estimación del Riesgo de Incendios Forestales; Chuvieco, E., Martín, M.P., Eds.; Consejo Superior de Investigaciones Científicas (CSIC): Madrid, Spain, 2004; pp. 143–158. ISBN 978-84-00-08275-8. [Google Scholar]
- Koutsias, N.; Allgöwer, B.; Kalabokidis, K.; Mallinis, G.; Balatsos, P.; Goldammer, J.G. Fire occurrence zoning from local to global scale in the European Mediterranean basin: Implications for multi-scale fire management and policy. iForest 2015, 9, 195–204. [Google Scholar] [CrossRef]
- Modugno, S.; Balzter, H.; Cole, B.; Borrelli, P. Mapping regional patterns of large forest fires in Wildland-Urban Interface areas in Europe. J. Environ. Manag. 2016, 172, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.N.; Lourenço, L.; CastroMeira, A.C. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci. Total Environ. 2016, 573, 1190–1202. [Google Scholar] [CrossRef] [PubMed]
- Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Martín, P.; Vilar, L.; Salas, J. Generación de un modelo de peligro de incendios forestales mediante teledetección y SIG. In Teledetección Hacia un Mejor Entendimiento de la Dinámica Global y Regional; Rivas, R., Crissoto, A., Sacido, M., Eds.; Martin: Buenos Aires, Argentina, 2007; pp. 19–26. ISBN 978-987-543-126-3. [Google Scholar]
- Bonazountas, M.; Kallidromitou, D.; Kassomenos, P.A.; Passas, N. Forest Fire Risk Analysis. Hum. Ecol. Risk Assess. 2005, 11, 617–626. [Google Scholar] [CrossRef]
- Mozumder, P.; Helton, R.; Berrens, R.P. Provision of a wildfire risk map: Informing residents in the wildland urban interface. Risk Anal. 2009, 29, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.M.; McGeea, T.K.; McFarlane, B.L. Implementation of wildfire risk management by local governments in Alberta, Canada. J. Environ. Plan. Manag. 2011, 54, 457–475. [Google Scholar] [CrossRef]
- Gazzard, R.; McMorrow, J.; Aylen, J. Wildfire policy and management in England: An evolving response from Fire and Rescue Services, forestry and cross-sector groups. Phil. Trans. R. Soc. B 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Witlock, N. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl. Acad. Sci. USA 2016, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed]
- Kocher, S.D.; Butsic, V. Governance of Land Use Planning to Reduce Fire Risk to Homes. Mediterranean France and California. Land 2017, 6, 24. [Google Scholar] [CrossRef]
- CMA (Consejería de Medio Ambiente). Plan INFOCA. Un Plan de Acción al Servicio del Monte Mediterráneo Andaluz; Consejería de Medio Ambiente: Sevilla, Spain, 2003; p. 353. ISBN 84-95785-88-9.
- Chuvieco, E. Teledetección Ambiental; La Observación de la Tierra desde el Espacio: Ariel, Barcelona, 2010; p. 528. ISBN 978-84-34-43498-1. [Google Scholar]
- Aguilar, H.; Mora, R.; Vargas, C. Metodología para la corrección atmosférica de imágenes ASTER, RAPIDEYE, SPOT 2 y LANDSAT 8 con el módulo FLAASH del software ENVI. Rev. Geogr. Am. Cent. 2017, 53, 39–59. [Google Scholar]
- Brizuela, A.; Aguirre, C.; Velasco, I. Aplicación de métodos de corrección atmósferica de datos Landsat 5 para análisis multitemporal. In Teledetección Hacia un Mejor Entendimiento de la Dinámica Global y Regional; Rivas, R., Crissoto, A., Sacido, M., Eds.; Martin: Buenos Aires, Argentina, 2007; pp. 207–214. ISBN 978-987-543-126-3. [Google Scholar]
- Chuvieco, E.; Martin, P.; Salas, J.; Martínez, J. Geografía e incendios forestales. Ser. Geogr. 1998, 7, 11–18. [Google Scholar]
- Allgöwer, B.; Carlson, J.D.; Van Wagtendonk, J.W. Introduction to fire danger rating and remote sensing. Will remote sensing enhance wildland fire danger rating? In Wildland Fire Danger Estimation and Mapping. The Role of Remote Sensing Data; Chuvieco, E., Ed.; World Scientific Publishing: Singapore, 2003; pp. 1–19. ISBN 978-981-238-569-7. [Google Scholar]
- Duff, T.J.; Keane, R.E.; Penman, T.D.; Tolhurst, K.G. Revisiting Wildland Fire Fuel Quantification Methods: The Challenge of Understanding a Dynamic, Biotic Entity. Forests 2017, 8, 351. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Research paper INT-115; USDA Forest Service: Ogden, UT, USA, 1972; p. 48.
- Dean, A.M.; Smith, G.M. An evaluation of per-parcel landcover mapping using maximum likelihood class probabilities. Int. J. Remote Sens. 2003, 24, 2905–2920. [Google Scholar] [CrossRef]
- Dean, A.M.; Yamaguchi, Y. Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environ. Monit. Assess 2009, 150, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Salas, J.; Cocero, D. El concepto de peligro de incendio. Sistemas actuales de estimación del peligro. In Nuevas Tecnologías para la Estimación del Riesgo de Incendios Forestales; Chuvieco, E., Martín, M.P., Eds.; Consejo Superior de Investigaciones Científicas (CSIC): Madrid, Spain, 2004; pp. 23–32. ISBN 978-84-00-08275-8. [Google Scholar]
- Yebra, M.; Santis, A.; Chuvieco, E. Estimación del peligro de incendios a partir de teledetección y variables meteorológicas: Variación temporal del contenido de humedad del combustible. Recur. Rurais Rev. Inst. Biodivers. Agrar. Desenvolv. Rural 2005, 1, 9–19. [Google Scholar]
- Gilalbert, M.A.; González-Piquera, J.; García-Haro, J. Acerca de los índices de vegetación. Rev. Teledetec. 1997, 8, 1–10. [Google Scholar]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Riaño, D.; Salas, J.; Chuvieco, E. Cartografía de modelos de combustible con teledetección: Aportaciones a un desarrollo ambiental sostenible. Estud. Geogr. 2001, 243, 309–333. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Cocero, D.; Salas, J.; Chuvieco, E. El sensor SPOT-VEGETATION, una alternativa a la estimación de la humedad de la vegetación. In Teledetección: Medio Ambiente y Cambio Global; Martínez, J.A., Rosell, J.I., Eds.; Universitat de Lleida-Ed. Milenio: Lleida, Spain, 2001; pp. 179–182. ISBN 978-84-9743-001-2. [Google Scholar]
- Bhuiyan, C.; Singh, R.P.; Kogan, F.N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Observ. Geoinf. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Kogan, F.N. Drought of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Kogan, F.N.; Gitelson, A.; Zakarin, E.; Spivak, L.; Lebed, L. AVHRR-Based Spectral Vegetation Index for Quantitative Assessment of Vegetation State and Productivity: Calibration and Validation. Photogramm. Eng. Remote Sens. 2003, 69, 899–906. [Google Scholar] [CrossRef]
- Márquez, J.; Vallejo, I.; Álvarez, J.I. Estimación del tiempo de demora en rutas pedestres: Comparación de algoritmos. GeoFocus 2015, 15, 47–74. [Google Scholar]
- Márquez, J.; Vallejo, I.; Álvarez, J.I. Estimated travel time for walking trails in natural areas. Geogr. Tidsskr.-Dan. J. Geogr. 2017, 117, 53–62. [Google Scholar] [CrossRef]
Data Description | Source | Format Type |
---|---|---|
Digital Elevation Model with 5-metre spatial resolution | IGN 1 | Raster |
Pages 1035, 1036 and 1050 of the 0.5 metre RGB photography of PNOA 07–10 | Line@ 2 | Raster |
Landsat 7 ETM+ imagery corresponding to scene Path 201/Row 034 | USGS 3 | Raster |
Map of Plant Uses and Coverage (2007) | REDIAM 4 | Vector data (polygon features) |
Information of the Andalusian Forest Plan (2007) | ||
WMS Service for Areas affected by fire obtained by means of remote sensing (1975–2014) | REDIAM 4 | OGC service |
Urban system, roads *, paths *, railways *, power lines *, power stations, urban solid waste facilities, land uses, administrative divisions, economic/production fabric and services (2013) | DERA 5 | Vector data (polygon and lines * features) |
Fuel Model 1 | Hazard Class Per Combustibility | Numeric Value |
---|---|---|
No combustible | Very low | 1 |
8-5 | Low | 2 |
9-1-3 | Moderate | 3 |
7-6-2 | High | 4 |
4 | Very high | 5 |
VCI Range | Numeric Index | Dryness Level |
---|---|---|
(0–20) | 5 | Extreme |
(20–40) | 4 | Severe |
(40–60) | 3 | Moderate |
(60–80) | 2 | Light |
(80–100) | 1 | Very light |
Slope Intervals (%) and Their Hazard Classification | ||||||
---|---|---|---|---|---|---|
0–10% | 10–20% | 20–30% | 30–50% | >50% | ||
Fuel Models (FM) and Their Hazard Classification | (1) | (2) | (3) | (4) | (5) | |
Other natural spaces | (1) | 1 | 2 | 3 | 3 | 4 |
FM 5 and 8 | (2) | 1 | 2 | 3 | 4 | 5 |
FM 1, 2, 9 and 11 | (3) | 1 | 3 | 4 | 4 | 5 |
FM 6 and 7 | (4) | 1 | 3 | 4 | 5 | 5 |
FM 4 | (5) | 2 | 3 | 4 | 5 | 5 |
Moisture Stress Intervals and Their Hazard Classification | Structural Hazard (from Table 4) | |||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | ||
100–80 | (1) | 1 | 2 | 3 | 3 | 4 |
80–60 | (2) | 1 | 2 | 3 | 4 | 5 |
60–40 | (3) | 1 | 3 | 4 | 4 | 5 |
40–20 | (4) | 1 | 3 | 4 | 5 | 5 |
20–0 | (5) | 2 | 3 | 4 | 5 | 5 |
Causative Element | Weighting Coefficient | Distance (m) | Time (s) |
---|---|---|---|
Electric power lines | 0.1 | 50 | - |
Electricity substations | 0.05 | 50 | - |
Paths | 0.15 | 50 | 90 |
Roads without shoulder | 0.15 | 50 | 90 |
Roads with shoulder (regional) | 0.15 | 50 | - |
Railway | 0.05 | 50 | - |
Dumps | 0.15 | 50 | - |
Recreation areas and lookout points | 0.15 | 100 | 150 |
Settlements | 0.2 | 200 | 150 |
Vulnerable Elements | Type | Value |
---|---|---|
Built-up surfaces | Main and secondary urban centres | 5 |
Scattered rural buildings | ||
Dispersed settlements | ||
Industrial fabric | ||
Energy infrastructures | Power lines | 2 |
Electrical substation | ||
Routes of communication | Roads | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallejo-Villalta, I.; Rodríguez-Navas, E.; Márquez-Pérez, J. Mapping Forest Fire Risk at a Local Scale—A Case Study in Andalusia (Spain). Environments 2019, 6, 30. https://doi.org/10.3390/environments6030030
Vallejo-Villalta I, Rodríguez-Navas E, Márquez-Pérez J. Mapping Forest Fire Risk at a Local Scale—A Case Study in Andalusia (Spain). Environments. 2019; 6(3):30. https://doi.org/10.3390/environments6030030
Chicago/Turabian StyleVallejo-Villalta, Ismael, Estefanía Rodríguez-Navas, and Joaquín Márquez-Pérez. 2019. "Mapping Forest Fire Risk at a Local Scale—A Case Study in Andalusia (Spain)" Environments 6, no. 3: 30. https://doi.org/10.3390/environments6030030
APA StyleVallejo-Villalta, I., Rodríguez-Navas, E., & Márquez-Pérez, J. (2019). Mapping Forest Fire Risk at a Local Scale—A Case Study in Andalusia (Spain). Environments, 6(3), 30. https://doi.org/10.3390/environments6030030