Desulfurization Performance of Choline Chloride-Based Deep Eutectic Solvents in the Presence of Graphene Oxide
Abstract
:1. Introduction
2. Experimental Method
2.1. Chemicals
2.2. DES Preparation
2.3. Density and Viscosity
2.4. Fourier Transform Infrared Chromatography (FTIR)
2.5. Extractive Catalytic Oxidative Desulfurization Process
2.6. Extractive Catalytic Oxidative Desulfurization Parameters
2.6.1. Volume Ratio of DES to the Model Oil
2.6.2. Effect of Oxidant Amount
2.6.3. Catalyst Dosage
2.6.4. Effect of Temperature
2.6.5. Effect of Stirring Speed
2.6.6. Effect of Reaction Time
2.6.7. Multistage Extraction
2.6.8. Desulfurization in Real Diesel Fuel
3. Result and Discussion
3.1. DES Preparation
3.2. Density and Viscosity
3.3. Fourier Tansform Infrared Chromatography
3.4. Fuel Desulfurization Screening Results
3.5. Optimization of the Desulfurization Parameters
3.5.1. Volume Ratio of DES to the Model Oil
3.5.2. Effect of Oxidant Amount
3.5.3. Catalyst Dosage
3.5.4. Effect of Temperature
3.5.5. Effect of Stirring Speed
3.5.6. Effect of Reaction Time
3.6. Multistage Extraction
3.7. Desulfurization Performance in Real Diesel Fuel
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ibrahim, M.H.; Hayyan, M.; Hashim, M.A.; Hayyan, A. The role of ionic liquids in desulfurization of fuels: A review. Renew. Sustain. Energy Rev. 2017, 76, 1534–1549. [Google Scholar] [CrossRef]
- Bradford, M.A.; Wookey, P.A.; Ineson, P.; Lappin-Scott, H.M. Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil. Soil Biol. Biochem. 2001, 33, 93–102. [Google Scholar] [CrossRef]
- Silitonga, A.S.; Atabani, A.E.; Mahlia, T.M.I. Review on fuel economy standard and label for vehicle in selected ASEAN countries. Renew. Sustain. Energy Rev. 2012, 16, 1683–1695. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Saidur, R.; Memon, L.A.; Zulkifli, N.W.M.; Masjuki, H.H. A review on fuel economy standard for motor vehicles with the implementation possibilities in Malaysia. Renew. Sustain. Energy Rev. 2010, 14, 3092–3099. [Google Scholar] [CrossRef]
- Majid, M.F.; Mohd Zaid, H.F.; Kait, C.F.; Jumbri, K.; Yuan, L.C.; Rajasuriyan, S. Futuristic advance and perspective of deep eutectic solvent for extractive desulfurization of fuel oil: A review. J. Mol. Liq. 2020, 306, 112870. [Google Scholar] [CrossRef]
- Soleimani, M.; Bassi, A.; Margaritis, A. Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol. Adv. 2007, 25, 570–596. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Chowdhury, R.; Bhattacharjee, C.; Pan, S. Simultaneous production of biosurfactant and ULSD (ultra low sulfur diesel) using Rhodococcus sp. in a chemostat. Fuel 2013, 113, 107–112. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Chowdhury, R.; Bhattacharjee, C. Mathematical modeling of production of bio-surfactant through bio-desulfurization of hydrotreated diesel in a fermenter. AIP 2010, 1298, 232–237. [Google Scholar]
- Ju, F.; Wang, M.; Wu, T.; Ling, H. The role of NiO in reactive adsorption desulfurization over NiO/ZnO-Al₂O₃-SiO₂ adsorbent. Catalysts 2019, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Hu, H.; Ye, Z.; Huang, Q.; Chen, X. Adsorption desulfurization performance and adsorption-diffusion study of B₂O₃ modified Ag-CeOₓ/TiO₂-SiO₂. J. Hazard. Mater. 2019, 362, 424–435. [Google Scholar] [CrossRef]
- Mohd Zaid, H.F.; Chong, F.K.; Abdul Mutalib, M.I. Extractive deep desulfurization of diesel using choline chloride-glycerol eutectic-based ionic liquid as a green solvent. Fuel 2017, 192, 10–17. [Google Scholar] [CrossRef]
- Gano, Z.S.; Mjalli, F.S.; Al-Wahaibi, T.; Al-Wahaibi, Y.; AlNashef, I.M. Extractive desulfurization of liquid fuel with FeCl₃ based deep eutectic solvents: Experimental design and optimization by central-composite design. Chem. Eng. Process. Process Intensif. 2015, 93, 10–20. [Google Scholar] [CrossRef]
- Betiha, M.A.; Rabie, A.M.; Ahmed, H.S.; Abdelrahman, A.A.; El-Shahat, M.F. Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives: An update review. Egypt. J. Pet. 2018, 27, 715–730. [Google Scholar] [CrossRef]
- Andevary, H.H.; Akbari, A.; Omidkhah, M. High efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim] FeCl₄ as catalyst/extractant. Fuel Process. Technol. 2019, 185, 8–17. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Shaterian, M.; Aghmasheh, M. Catalytic oxidative desulphurization of gasoline using amphiphilic polyoxometalate polymer nanocomposite as an efficient, reusable, and green organic–inorganic hybrid catalyst. Environ. Technol. 2020, 41, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Lü, H.; Li, P.; Liu, Y.; Hao, L.; Ren, W.; Zhu, W.; Deng, C.; Yang, F. Synthesis of a hybrid Anderson-type polyoxometalate in deep eutectic solvents (DESs) for deep desulphurization of model diesel in ionic liquids (ILs). Chem. Eng. J. 2017, 313, 1004–1009. [Google Scholar] [CrossRef]
- Julião, D.; Gomes, A.C.; Pillinger, M.; Lopes, A.D.; Valença, R.; Ribeiro, J.C.; Gonçalves, I.S.; Balula, S.S. Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvents. J. Mol. Liq. 2020, 309, 113093. [Google Scholar] [CrossRef]
- Görmez, F.; Görmez, Ö.; Gözmen, B.; Kalderis, D. Degradation of chloramphenicol and metronidazole by electro-Fenton process using graphene oxide-Fe₃O₄ as heterogeneous catalyst. J. Environ. Chem. Eng. 2019, 7, 102990. [Google Scholar] [CrossRef]
- Rezvani, M.A.; Shokri Aghbolagh, Z.; Hosseini Monfared, H.; Khandan, S. Mono Mn(II)-substituted phosphotungstate modified graphene oxide as a high-performance nanocatalyst for oxidative demercaptanization of gasoline. J. Ind. Eng. Chem. 2017, 52, 42–50. [Google Scholar] [CrossRef]
- Chandran, D.; Khalid, M.; Walvekar, R.; Mubarak, N.M.; Dharaskar, S.; Wong, W.Y.; Gupta, T.C.S.M. Deep eutectic solvents for extraction-desulphurization: A review. J. Mol. Liq. 2019, 275, 312–322. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jangir, A.K.; Patel, D.; More, R.; Parmar, A.; Kuperkar, K. New insight into experimental and computational studies of Choline chloride-based ‘green’ ternary deep eutectic solvent (TDES). J. Mol. Struct. 2019, 1181, 295–299. [Google Scholar] [CrossRef]
- Liu, X.; Xu, D.; Diao, B.; Zhang, L.; Gao, J.; Liu, D.; Wang, Y. Choline chloride based deep eutectic solvents selection and liquid-liquid equilibrium for separation of dimethyl carbonate and ethanol. J. Mol. Liq. 2019, 275, 347–353. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, J.X.; Tang, Y.L.; Wang, J.; Yang, Z. Assessing the toxicity and biodegradability of deep eutectic solvents. Chemosphere 2015, 132, 63–69. [Google Scholar] [CrossRef]
- Mbous, Y.P.; Hayyan, M.; Hayyan, A.; Wong, W.F.; Hashim, M.A.; Looi, C.Y. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges. Biotechnol. Adv. 2017, 35, 105–134. [Google Scholar] [CrossRef] [PubMed]
- Abo-Hamad, A.; Hayyan, M.; AlSaadi, M.A.H.; Hashim, M.A. Potential applications of deep eutectic solvents in nanotechnology. Chem. Eng. J. 2015, 273, 551–567. [Google Scholar] [CrossRef]
- Lima, F.; Gouvenaux, J.; Branco, L.C.; Silvestre, A.J.D.; Marrucho, I.M. Towards a sulfur clean fuel: Deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents. Fuel 2018, 234, 414–421. [Google Scholar] [CrossRef]
- Stefanovic, R.; Webber, G.B.; Page, A.J. Polymer solvation in choline chloride deep eutectic solvents modulated by the hydrogen bond donor. J. Mol. Liq. 2019, 279, 584–593. [Google Scholar] [CrossRef]
- Makoś, P.; Boczkaj, G. Deep eutectic solvents based highly efficient extractive desulfurization of fuels–Eco-friendly approach. J. Mol. Liq. 2019, 296, 111916. [Google Scholar] [CrossRef]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Zainal-Abidin, M.H.; Hayyan, M.; Hayyan, A.; Jayakumar, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, H.; Ayoub, M.; Sufian, S.; Lal, B.; Uemura, Y. Thermal stability and FT-IR analysis of Phosphonium-based deep eutectic solvents with different hydrogen bond donors. J. Mol. Liq. 2017, 242, 395–403. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman characteristic group frequencies. Tables and charts. J. Raman Spectrosc. 2004, 35, 905. [Google Scholar]
- Larkin, P. Infrared and Raman Spectroscopy; Principles and Spectral Interpretation; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780123869845. [Google Scholar]
- Delgado-Mellado, N.; Larriba, M.; Navarro, P.; Rigual, V.; Ayuso, M.; García, J.; Rodríguez, F. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. J. Mol. Liq. 2018, 260, 37–43. [Google Scholar] [CrossRef]
- Wilfred, C.D.; Kiat, C.F.; Man, Z.; Bustam, M.A.; Mutalib, M.I.M.; Phak, C.Z. Extraction of dibenzothiophene from dodecane using ionic liquids. Fuel Process. Technol. 2012, 93, 85–89. [Google Scholar] [CrossRef]
- Mokhtar, W.N.A.W.; Bakar, W.A.W.A.; Ali, R.; Kadir, A.A.A. Deep desulfurization of model diesel by extraction with N,N-dimethylformamide: Optimization by Box–Behnken design. J. Taiwan Inst. Chem. Eng. 2014, 45, 1542–1548. [Google Scholar] [CrossRef]
- Khezeli, T.; Daneshfar, A. Synthesis and application of magnetic deep eutectic solvents: Novel solvents for ultrasound assisted liquid-liquid microextraction of thiophene. Ultrason. Sonochem. 2017, 38, 590–597. [Google Scholar] [CrossRef]
- Mao, C.; Zhao, R.; Li, X. Phenylpropanoic acid-based DESs as efficient extractants and catalysts for the removal of sulfur compounds from oil. Fuel 2017, 189, 400–407. [Google Scholar] [CrossRef]
- Li, Z.; Cui, Y.; Li, C.; Shen, Y. Deep desulfurization of fuels based on deep eutectic theory. Sep. Purif. Technol. 2019, 219, 9–15. [Google Scholar] [CrossRef]
- Ahmed Rahma, W.S.; Mjalli, F.S.; Al-Wahaibi, T.; Al-Hashmi, A.A. Polymeric-based deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions. Chem. Eng. Res. Des. 2017, 120, 271–283. [Google Scholar] [CrossRef]
DES | Temperature (°C) | Stirring Speed (rpm) | Time (min) |
---|---|---|---|
ChCl-GLY | 60 | 500 | 60 |
ChCl-EG | |||
ChCl-TEG | |||
ChCl-PEG | 80 | 500 | 90 |
Equipment Model | HPLC Agilent 1200 Infinity Series |
---|---|
Columns | Reversed-phase ZORBAX SB-C18 (4.6 × 150 mm) |
Detector | Ultraviolet-visible detector |
Mobile phase | Methanol: water: isopropanol (90:8:2) with flow rate of 1 mL min−1 |
Injection volume | 1 µL |
Detection wavelength | 310 nm |
DES | Mole Ratio | Physical Appearance |
---|---|---|
ChCl-GLY | 1:1 | Highly viscous liquid |
1:2 | Transparent viscous liquid | |
1:3 | Clear transparent liquid | |
1:4 | Clear transparent liquid | |
ChCl-EG | 1:1 | Transparent liquid with white precipitate |
1:2 | Clear transparent liquid | |
1:3 | Clear transparent liquid | |
1:4 | Clear transparent liquid | |
ChCl-TEG | 1:1 | Highly viscous liquid |
1:2 | Transparent liquid with white precipitate | |
1:3 | Clear transparent liquid | |
1:4 | Clear transparent liquid | |
ChCl-PEG | 1:1 | White sticky semisolid |
1:2 | White sticky semisolid | |
1:3 | Highly viscous liquid | |
1:4 | Clear transparent liquid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, C.Y.; Majid, M.F.; Rajasuriyan, S.; Mohd Zaid, H.F.; Jumbri, K.; Chong, F.K. Desulfurization Performance of Choline Chloride-Based Deep Eutectic Solvents in the Presence of Graphene Oxide. Environments 2020, 7, 97. https://doi.org/10.3390/environments7110097
Lim CY, Majid MF, Rajasuriyan S, Mohd Zaid HF, Jumbri K, Chong FK. Desulfurization Performance of Choline Chloride-Based Deep Eutectic Solvents in the Presence of Graphene Oxide. Environments. 2020; 7(11):97. https://doi.org/10.3390/environments7110097
Chicago/Turabian StyleLim, Chiau Yuan, Mohd Faridzuan Majid, Sarrthesvaarni Rajasuriyan, Hayyiratul Fatimah Mohd Zaid, Khairulazhar Jumbri, and Fai Kait Chong. 2020. "Desulfurization Performance of Choline Chloride-Based Deep Eutectic Solvents in the Presence of Graphene Oxide" Environments 7, no. 11: 97. https://doi.org/10.3390/environments7110097
APA StyleLim, C. Y., Majid, M. F., Rajasuriyan, S., Mohd Zaid, H. F., Jumbri, K., & Chong, F. K. (2020). Desulfurization Performance of Choline Chloride-Based Deep Eutectic Solvents in the Presence of Graphene Oxide. Environments, 7(11), 97. https://doi.org/10.3390/environments7110097