Climate Change Mitigation Policies in the Transportation Sector in Rio de Janeiro, Brazil
Abstract
:1. Introduction
1.1. Rio de Janeiro State’s Economy and Energy System
1.2. Light-Duty Passenger Vehicle Transportation Sector
2. Materials and Methods
2.1. Model’s Algebraic Formulation
2.2. Definition of Scenarios
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Parameter | Source |
---|---|
Capital Cost 1 | [25,48,49,72,73,74,75,76,77,78,79,80,81,82,83,84] |
Fixed Cost 1 | [33,66,67,72,74,75,79,80,82,83,84,85,86,87,88,89] |
Variable Cost 1 | [37,72,75,90,91,92,93,94,95,96] |
Capacity Factor For simplification, used only for variable renewable power plants
| [32,97,98,99] |
Operational Life | [51,68,72,75,77,80,85,100,101,102] |
Residual Capacity | See Table 3 |
Efficiency of Power Plants
| [22,24,28,37,72,85,103,104,105,106] |
Efficiency of Vehicle Technologies
| [28,106,107] |
Efficiency of Transformation Plants and T&D | [22,37,74,108] |
Emission per Unit of Activity | [109] |
Emissions Penalty | [54] |
Transportation Demand To calculate passenger kilometers of RJ state’s vehicle fleet, the following steps were taken:
| [23,24,28] |
Electricity Demand | [37,97] |
References
- Pietzcker, R.C.; Longden, T.; Chen, W.; Fu, S.; Kriegler, E.; Kyle, P.; Luderer, G. Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models. Energy 2014, 64, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Bataille, C.; Waisman, H.; Briand, Y.; Svensson, J.; Vogt-Schilb, A.; Jaramillo, M.; Delgado, R.; Arguello, R.; Clarke, L.; Wild, T.; et al. Net-zero deep decarbonization pathways in Latin America: Challenges and opportunities. Energy Strategy Rev. 2020, 30, 100510. [Google Scholar] [CrossRef]
- Pan, X.; Wang, H.; Wang, L.; Chen, W. Decarbonization of China’s transportation sector: In light of national mitigation toward the Paris Agreement goals. Energy 2018, 155, 853–864. [Google Scholar] [CrossRef]
- Haasz, T.; Vilchez, J.J.G.; Kunze, R.; Deane, P.; Fraboulet, D.; Fahl, U.; Mulholland, E. Perspectives on decarbonizing the transport sector in the EU-28. Energy Strategy Rev. 2018, 20, 124–132. [Google Scholar] [CrossRef]
- Goes, G.V.; Gonçalves, D.N.S.; de Almeida D’Agosto, M.; de Mello Bandeira, R.A.; Grottera, C. Transport-energy-environment modeling and investment requirements from Brazilian commitments. Renew. Energy 2020, 157, 303–311. [Google Scholar] [CrossRef]
- Schäfer, A.; Heywood, J.B.; Jacoby, H.D.; Waitz, I.A. Transportation in a Climate-Constrained World; The MIT Press: Cambridge, MA, USA, 2009; ISBN 9780262255455. [Google Scholar]
- Daly, H.E.; Ramea, K.; Chiodi, A.; Yeh, S.; Gargiulo, M.; Gallachóir, B.O. Incorporating travel behaviour and travel time into TIMES energy system models. Appl. Energy 2014, 135, 429–439. [Google Scholar] [CrossRef]
- Tattini, J.; Gargiulo, M.; Karlsson, K. Reaching carbon neutral transport sector in Denmark – Evidence from the incorporation of modal shift into the TIMES energy system modeling framework. Energy Policy 2018, 113, 571–583. [Google Scholar] [CrossRef]
- García-Olivares, A.; Solé, J.; Osychenko, O. Transportation in a 100% renewable energy system. Energy Convers. Manag. 2018, 158, 266–285. [Google Scholar] [CrossRef]
- Dominković, D.F.; Bačeković, I.; Pedersen, A.S.; Krajačić, G. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition. Renew. Sustain. Energy Rev. 2018, 82, 1823–1838. [Google Scholar] [CrossRef]
- Teske, S.; Pregger, T.; Simon, S.; Naegler, T. High renewable energy penetration scenarios and their implications for urban energy and transport systems. Curr. Opin. Environ. Sustain. 2018, 30, 89–102. [Google Scholar] [CrossRef]
- Zhang, R.; Long, Y.; Wu, W.; Li, G. How do transport policies contribute to a low carbon city? An integrated assessment using an urban computable general equilibrium model. Energy Procedia 2018, 152, 606–611. [Google Scholar] [CrossRef]
- Lorenzi, G.; Baptista, P. Promotion of renewable energy sources in the Portuguese transport sector: A scenario analysis. J. Clean. Prod. 2018, 186, 918–932. [Google Scholar] [CrossRef]
- Brozynski, M.T.; Leibowicz, B.D. Decarbonizing power and transportation at the urban scale: An analysis of the Austin, Texas Community Climate Plan. Sustain. Cities Soc. 2018, 43, 41–54. [Google Scholar] [CrossRef]
- Glitman, K.; Farnsworth, D.; Hildermeier, J. The role of electric vehicles in a decarbonized economy: Supporting a reliable, affordable and efficient electric system. Electr. J. 2019, 32, 106623. [Google Scholar] [CrossRef]
- Ahmadi, P. Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles. J. Clean. Prod. 2019, 225, 1209–1219. [Google Scholar] [CrossRef]
- Paulino, F.; Pina, A.; Baptista, P. Evaluation of Alternatives for the Passenger Road Transport Sector in Europe: A Life-Cycle Assessment Approach. Environments 2018, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Hannula, I.; Reiner, D.M. Near-Term Potential of Biofuels, Electrofuels, and Battery Electric Vehicles in Decarbonizing Road Transport. Joule 2019, 3, 2390–2402. [Google Scholar] [CrossRef]
- CONTRAN. RESOLUÇÃO N° 396; 2011. Available online: https://antigo.infraestrutura.gov.br/images/Resolucoes/RESOLUCAO_CONTRAN_393_11.pdf (accessed on 29 September 2020).
- BNEF. Battery Pack Prices Fall as Market Ramps up with Market Average at $156 kWh in 2019; BNEF: Shanghai, China, 2019. [Google Scholar]
- Sistema de Emissões de Gases de Efeito Estufa (SEEG)—Observatório do Clima. Base de Dados de Estimativa de Emissões de Gases de Efeito Estufa no Brasil 19702016. V7.0. Available online: http://seeg.eco.br/download (accessed on 10 September 2020).
- Governo do Estado do Rio de Janeiro. Balanço Energético do Estado do Rio de Janeiro 20152016; Governo do Estado do Rio de Janeiro: Rio de Janeiro, Brazil, 2016.
- MMA. Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários; MMA: Brasília, Brazil, 2013. [Google Scholar]
- Pereira, A.O., Jr.; Santos, L.; Oliveira, L.D.B. Implicações Econômicas e Sociais de Cenários de Mitigação de Gases de Efeito Estufa no Brasil até 2030: Projeto IES-Brasil—Cenários de Mitigação de GEE do Setor de Transporte (Demanda de Energia); IES Brasil: Rio de Janeiro, Brazil, 2015. [Google Scholar]
- IBGE. Pesquisa Nacional por Amostra de Domicílios Contínua—PNAD Contínua: Características Gerais dos Domicílios. Available online: https://www.ibge.gov.br/estatisticas/sociais/habitacao/17270-pnad-continua.html?=&t=o-que-e (accessed on 23 July 2020).
- Our World in Data. Motor Vehicle Ownership, Per 1000 Inhabitants. 2014. Available online: https://ourworldindata.org/grapher/motor-vehicle-ownership-per-1000-inhabitants?tab=table&year=latest&time=2014.latest (accessed on 10 September 2020).
- IBGE. Tabela 6579—População Residente Estimada. Available online: https://sidra.ibge.gov.br/pesquisa/EstimaPop/tabelas (accessed on 29 June 2020).
- DETRAN-RJ. Frota de Veículos—Estado do Rio de Janeiro. 2016; Unpublished work. [Google Scholar]
- IBGE. Tabela 5938—Produto Interno Bruto a Preços Correntes. Available online: https://sidra.ibge.gov.br/pesquisa/pib-munic/tabelas (accessed on 29 June 2020).
- IBGE. Sistemas de Contas Regionais. Available online: https://cidades.ibge.gov.br/brasil/rj/pesquisa/10060/60147 (accessed on 29 June 2020).
- U.S. Energy Information Administration. International Energy Statistics: Annual Petroleum and Other Liquids Production. Available online: https://www.eia.gov/international/data/world (accessed on 1 July 2020).
- EPE. Balanço Energético Nacional 2017: Ano Base 2016; EPE: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- EPE. Plano Decenal de Expansão de Energia 2029; EPE: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- INB. Nuclear Fuel Cycle. Available online: http://www.inb.gov.br/en-us/Nossas-Atividades/nuclear-fuel-cycle (accessed on 2 August 2020).
- EPE. Balanço Energético Nacional 2017: Relatório Síntese, Ano Base 2016; EPE: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- EPE. Nota Técnica PR 04/18: Potencial dos Recursos Energéticos no Horizonte 2050; EPE: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- EPE. Anuário Estatístico de Energia Elétrica; EPE: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- ANFAVEA. Anuário da Indústria Automobilística Brasileira 2019; ANFAVEA: São Paulo, Brazil, 2019. [Google Scholar]
- Dos Santos, L.V.; De Barros Grassi, M.C.; Gallardo, J.C.M.; Pirolla, R.A.S.; Calderón, L.L.; De Carvalho-Netto, O.V.; Parreiras, L.S.; Camargo, E.L.O.; Drezza, A.L.; Missawa, S.K.; et al. Second-Generation Ethanol: The Need is Becoming a Reality. Ind. Biotechnol. 2016, 12, 40–57. [Google Scholar] [CrossRef]
- Bruce da Silva, T.; Febraro, J.; Delgado, F.; Costa, E. Electric Vehicles—Cadernos FGV Energia; FGV: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- EPE. Plano Nacional de Energia—2050. Available online: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/Plano-Nacional-de-Energia-2050 (accessed on 2 July 2020).
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M.; et al. OSeMOSYS: The Open Source Energy Modeling System. An introduction to its ethos, structure and development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- EMBRAPA; Rossetto, R. Planejamento da Colheita. Available online: http://www.agencia.cnptia.embrapa.br/gestor/cana-de-acucar/arvore/CONTAG01_97_22122006154841.html (accessed on 22 July 2020).
- ONS. Energia Natural Afluente por Subsistema, Subsistema SE/CO. Available online: http://www.ons.org.br/Paginas/resultados-da-operacao/historico-da-operacao/energia_afluente_subsistema.aspx (accessed on 1 July 2020).
- Neto, G.W.D.F. Modelagem e Simulação do Processo de Produção de Coque Metalúrgico. Master’s Thesis, Universidade Federal De Campina Grande, Campina Grande, Brazil, 2019. [Google Scholar]
- ANEEL. Empreendimentos em Operação. Available online: https://www.aneel.gov.br/dados/geracao (accessed on 22 July 2020).
- ANEEL. Geração Distribuída. Available online: http://www2.aneel.gov.br/scg/gd/VerGD.asp?pagina=58&acao=buscar&login=&NomPessoa=&IdAgente=&DatConexaoInicio=01/01/1980&DatConexaoFim=31/12/2018 (accessed on 23 July 2020).
- Santos, C.; Weiss, M.; Zimmermann, G. Heterogeneity and the Energy Consumption of Brazilian Households: A Structural Analysis. Braz. Rev. Econ. 2019, 39, 59–84. [Google Scholar] [CrossRef]
- Eletrobrás/Procel. Avaliação do Mercado de Eficiência Energética no Brasil: Pesquisa de Posse de Equipamentos e Hábitos de Uso—Ano base 2005, Classe Residencial, Relatório Sudeste; Eletrobrás: Rio de Janeiro, Brazil, 2007. [Google Scholar]
- KTH-dESA. OSeMOSYS Documentation (Release 0.0.1). 2020. Available online: https://buildmedia.readthedocs.org/media/pdf/osemosys/latest/osemosys.pdf (accessed on 29 September 2020).
- Moksnes, N.; Welsch, M.; Gardumi, F.; Shivakumar, A.; Broad, O.; Howells, M.; Taliotis, C.; Sridharan, V. 2015 OSeMOSYS User Manual; DESA/15/11; KTH Royal Institute of Technology: Stockholm, Sweden, 2015. [Google Scholar]
- BNEF. Electric Vehicle Outlook 2020: Executive Summary. 2020. Available online: https://bnef.turtl.co/story/evo-2020/pdf (accessed on 29 September 2020).
- IEA. Global EV Outlook 2020; OECD: Paris, France, 2020; ISBN 9789264616226. [Google Scholar]
- Stiglitz, J.E.; Stern, N.; Duan, M.; Edenhofer, O.; Giraud, G.; Heal, G.M.; la Rovere, E.L.; Morris, A.; Moyer, E.; Pangestu, M.; et al. Report of the High-Level Commission on Carbon Prices; International Bank for Reconstruction and Development and International Development Association/The World Bank: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Varian, H.R. Intermediate Microeconomics: A Modern Approach, 8th ed.; W. W. Norton & Company: New York, NY, USA, 2010; ISBN 9780393934243. [Google Scholar]
- Grainger, C.A.; Kolstad, C.D. Who pays a price on carbon? Environ. Resour. Econ. 2010, 46, 359–376. [Google Scholar] [CrossRef] [Green Version]
- Dissou, Y.; Siddiqui, M.S. Can carbon taxes be progressive? Energy Econ. 2014, 42, 88–100. [Google Scholar] [CrossRef]
- Goulder, L.H.; Hafstead, M.A.C.; Kim, G.R.; Long, X. Impacts of a carbon tax across US household income groups: What are the equity-efficiency trade-offs? J. Public Econ. 2019, 175, 44–64. [Google Scholar] [CrossRef]
- Marron, D.B.; Toder, E.J. Tax Policy Issues in Designing a Carbon Tax. Am. Econ. Rev. 2014, 104, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Stiglitz, J.E. Addressing climate change through price and non-price interventions. Eur. Econ. Rev. 2019, 119, 594–612. [Google Scholar] [CrossRef]
- Parry, I. Putting a price on pollution. Financ. Dev. 2019, 56, 16–19. [Google Scholar]
- Ember. European Union Allowance (EUA) Price. Available online: https://ember-climate.org/carbon-price-viewer/ (accessed on 10 September 2020).
- OECD. COVID–19 and the Low-Carbon Transition. Impacts and Possible Policy Responses; OECD: Paris, France, 2020. [Google Scholar]
- Hepburn, C.; Stern, N.; Stiglitz, J.E. “Carbon pricing” special issue in the European economic review. Eur. Econ. Rev. 2020, 127, 103440. [Google Scholar] [CrossRef]
- Burke, J.; Fankhauser, S.; Bowen, A. Policy Brief—Pricing Carbon during the Economic Recovery from the COVID-19 Pandemic; London School of Economics and Political Science: London, UK, 2020. [Google Scholar]
- AutoCustos. Calculadora dos Custos do Automóvel. Available online: https://autocustos.info/br (accessed on 25 July 2020).
- Delucchi, M.A.; Lipman, T.E. An analysis of the retail and lifecycle cost of battery-powered electric vehicles. Transp. Res. Part D Transp. Environ. 2001, 6, 371–404. [Google Scholar] [CrossRef] [Green Version]
- SINDIPEÇAS; ABIPEÇAS. Relatório da Frota Circulante; Sindicato Nacional da Indústria de Componentes para Veículos Automotores—Sindipeças e Associação Brasileira da Indústria de Autopeças—Abipeças: São Paulo, Brazil, 2019. [Google Scholar]
- Fridstrøm, L. From innovation to penetration: Calculating the energy transition time lag for motor vehicles. Energy Policy 2017, 108, 487–502. [Google Scholar] [CrossRef]
- Papadis, E.; Tsatsaronis, G. Challenges in the decarbonization of the energy sector. Energy 2020, 205, 118025. [Google Scholar] [CrossRef]
- Cecco, L. How to Make a Carbon Tax Popular? Give the Proceeds to the People; London School of Economics and Political Science: London, UK, 2018. [Google Scholar]
- MME. Capítulo 4—Geração Termelétrica—Petróleo e Derivados. In Plano Nacional de Energia (PNE) 2030; Ministério de Minas e Energia (MME): Brasília-DF-DF, Brazil, 2007; p. 206. [Google Scholar]
- Simbolotti, G.; Tosato, G. IEA ETSAP—Technology Brief E03: Nuclear Power; IEA-ETSAP: Paris, France, 2010. [Google Scholar]
- De Oliveira, A.L.; de Silva, A.J.L.; Miller, L.P. Partida da Turbina de Topo do AF3. In Proceedings of the 36° Seminário de Balanços Energéticos Globais e Utilidades e 30° Encontro de Produtores e Consumidores de Gases Industriais, Rio de Janeiro, Brazil, 17–21 August 2015; p. 15. [Google Scholar]
- IRENA. The Power to Change: Solar and Wind Cost Reduction Potential to 2025; IRENA: Abu Dhabi, UAE, 2016. [Google Scholar]
- IRENA. Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (a Global Energy Transformation Paper); IRENA: Abu Dhabi, UAE, 2019. [Google Scholar]
- IRENA. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (a Global Energy Transformation: Paper); IRENA: Abu Dhabi, UAE, 2019. [Google Scholar]
- EPE. Nota Técnica PR 07/18: Premissas e Custos da Oferta de Energia Elétrica no horizonte 2050; EPE: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- ANFAVEA. Anuário da Indústria Automobilística Brasileira 2020; ANFAVEA: São Paulo, Brazil, 2020. [Google Scholar]
- Vaillancourt, K.; Simbolotti, G.; Tosato, G. IEA ETSAP—Technology Brief P04: Oil Refineries; IEA-ETSAP: Paris, France, 2014. [Google Scholar]
- Simbolotti, G.; Gielen, D. IEA-ETSAP and IRENA—Technology-Policy Brief P10: Production of Liquid Biofuels; IEA-ETSAP: Paris, France, 2013. [Google Scholar]
- EPE. Capítulo 8—Oferta de Biocombustíveis. In Plano Decenal de Energia (PDE) 2029; Empresa de Pesquisa Energética (EPE): Rio de Janeiro, Brazil, 2019; p. 21. [Google Scholar]
- Assessoria de Imprensa Usiminas. Nova Coqueria da Usiminas Inicia operação na usina de Ipatinga (MG); Assessoria de Imprensa Usiminas: Belo Horizonte, Brazil, 2010. [Google Scholar]
- Ripardo, S. CST Escolhe Consórcio Europeu Para Construir Novo Alto-Forno. 2004. Available online: https://www.infomet.com.br/site/noticias-ler.php?bsc=ativar&cod=19521 (accessed on 18 February 2004).
- Lako, P.; Simbolotti, G.; Tosato, G. IEA ETSAP—Technology Brief E04: Combined Heat and Power; IEA-ETSAP: Paris, France, 2010. [Google Scholar]
- Russell, C.S.; Vaughan, W.J.; Future, R. For the Steel Production: Processes, Products, and Residuals; RFF Press Series; Resources for the Future: Washington, DC, USA, 1976; ISBN 9780801818240. [Google Scholar]
- Light-RJ. Composição da Tarifa. Available online: http://www.light.com.br/para-residencias/Sua-Conta/composicao-da-tarifa.aspx (accessed on 25 July 2020).
- Enel-RJ. Entenda a Sua Conta. Available online: https://www.enel.com.br/pt/Para_Voce/entenda_sua_conta.html (accessed on 25 July 2020).
- Energisa Nova Friburgo. Composição da Tarifa de Energia Elétrica. Available online: https://www.energisa.com.br/Paginas/informacoes/sua-conta/composicao-tarifa.aspx (accessed on 25 July 2020).
- ANP. Anuário Estatístico Brasileiro do Petróleo, Gás Natural e Biocombustíveis 2019; ANP: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- EPE. Nota Técnica PR 09/18: Premissas e Custos da Oferta de Combustíveis no horizonte 2050; EPE: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Labriet, M.; Simbolotti, G.; Tosato, G. IEA-ETSAP—Technology Brief P09: Biomass Production and Logistics; IEA-ETSAP: Paris, France, 2013. [Google Scholar]
- ANP. Boletim Anual de Preços 2016: Preços do Petróleo, Gás Natural e Combustíveis nos Mercados Nacional e Internacional; ANP: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- Ministério da Economia. Comex Stat (SISCOMEX): Exportação e Importação Municípios. Available online: http://comexstat.mdic.gov.br/pt/municipio (accessed on 25 July 2020).
- EPE. Balanço Energético Nacional 2019: Ano Base 2018; EPE: Rio de Janeiro, Brazil, 2019. [Google Scholar]
- ONS. IPMO—Informe do Programa Mensal de Operação. PMO Dezembro—24/12/2016 a 30/12/2016; ONS: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- ONS. Geração de Energia. Available online: http://www.ons.org.br/Paginas/resultados-da-operacao/historico-da-operacao/geracao_energia.aspx (accessed on 23 July 2020).
- ONS. Dados da Geração Solar Fotovoltaica no SIN: Geração Média Horária. Available online: http://www.ons.org.br/Paginas/resultados-da-operacao/boletim-geracao-solar.aspx (accessed on 23 July 2020).
- ONS. Boletim Mensal de Geração Solar Fotovoltaica Março/2020; ONS: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- IDEC. Ciclo de Vida de Eletroeletrônicos; IDEC: São Paulo, Brazil, 2013. [Google Scholar]
- CGEE. Série Documentos Técnicos—n. 9: Siderurgia no Brasil 20102025; CGEE: Brasília-DF, Brazil, 2010. [Google Scholar]
- Tolmasquim, M.T. Energia Termelétrica: Gás Natural, Biomassa, Carvão, Nuclear; EPE: Rio de Janeiro, Brazil, 2016; ISBN 978-85-60025-05-3. [Google Scholar]
- Lako, P.; Simbolotti, G.; Tosato, G. IEA ETSAP—Technology Brief E05: Biomass for Heat and Power; IEA-ETSAP: Paris, France, 2010. [Google Scholar]
- Eletronuclear. Informações de Angra 1. Available online: https://www.eletronuclear.gov.br/Nossas-Atividades/Paginas/Informacoes-de-Angra-1.aspx (accessed on 23 July 2020).
- Eletronuclear. Informações de Angra 2. Available online: https://www.eletronuclear.gov.br/Nossas-Atividades/Paginas/Informacoes-de-Angra-2.aspx (accessed on 23 July 2020).
- D’Agosto, M.A.; Schmitz, D.N.; Goes, G.V. Cenários de Emissão de Gases de Efeito Estufa até 2050 no Setor de Transportes: Referência e 1.5 °C. In Implicações Econômicas e Sociais dos Cenários de Mitigação de GEE no Brasil até 2050: Projeto IES-Brasil, Cenário 1.5 °C; Rovere, E.L.L., Wills, W., Dubeux, C.B.S., Pereira, A.O., Jr., D’Agosto, M.A., Walter, M.K.C., Grottera, C., et al., Eds.; COPPE/UFRJ: Rio de Janeiro, Brazil, 2018; p. 69. [Google Scholar]
- Lavigne, D. OSeMOSYS Energy Modeling Using an Extended UTOPIA Model. Univers. J. Educ. Res. 2017, 5, 162–169. [Google Scholar] [CrossRef] [Green Version]
- EPE. Metodologia para Cálculo da Oferta de Gás Natural Seco e Derivados; EPE: Rio de Janeiro, Brazil, 2016. [Google Scholar]
- IPCC. Volume 2: Energy. In IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES Japan: Hayama, Japan, 2006; ISBN 4-88788-032-4. [Google Scholar]
Source | Installed Capacity (MW) | Generation (TWh) |
---|---|---|
Natural gas | 4490 | 6.7 |
Diesel | 129.4 | 2.4 |
Light fuel oil | 490 | 0.6 |
Coke oven gas | 21 | 2.3 |
Uranium | 1990 | 13.4 |
Sugarcane bagasse | 44 | 0.1 |
Total | 7164 | 25.4 |
Source | RJ State (MW) | Percentage of RJ’s Total | Brazil (MW) | Percentage of Brazil’s Total |
---|---|---|---|---|
Hydropower | 1184 | 14.1 | 96,925 | 64.4 |
Wind onshore | 28.1 | 0.3 | 10,124 | 6.7 |
Utility solar PV | - | - | 24.0 | 0.02 |
Rooftop solar PV | 5.05 | 0.1 | 56.9 | 0.04 |
Hydropower | 1184 | 14.1 | 96,925 | 64.4 |
Wind onshore | 28.1 | 0.3 | 10,124 | 6.7 |
Utility solar PV | - | - | 24.0 | 0.02 |
Technology | Capacity in 2016 | Unit | Source |
---|---|---|---|
Primary production and reserves | |||
Oil primary production and reserves | 438 [Reserves: 110,000] | PJ | [22] |
Natural gas primary production and reserves | 387 [Reserves: 16,500] | PJ | [22] |
Sugarcane bagasse primary production | 8.3 | PJ | [22] |
Sugarcane juice primary production | 1.9 | PJ | [22] |
Hydro reserves | 34 | PJ | [44] |
Solar reserves | 85 | PJ | [36] |
Wind reserves | 32 | PJ | [36] |
Imports | |||
Oil imports | 132 | PJ | [22] |
Coal imports | 110 | PJ | [22] |
Sugarcane bagasse imports | 0.004 | PJ | [22] |
Diesel imports | 2 | PJ | [22] |
Dry natural gas imports | 12 | PJ | [22] |
Coking coal imports | 33 | PJ | [22] |
Ethanol imports | 24.4 | PJ | [22] |
Uranium imports | 198 | PJ | [22] |
Electricity imports | 92 | PJ | [22] |
Transformation plants | |||
Oil refinery | 578 | PJ | [22] |
Natural gas processing plant | 282 | PJ | [22] |
Coking plant | 46 | PJ | [45] |
Distillery plant | 8.4 | PJ | [22] |
Power plants 1 | |||
Light fuel oil power plant | 0.49 | GW | [46] |
Natural gas open-cycle power plant | 3.3 | GW | [46] |
Natural gas combined-cycle power plant | 1.2 | GW | [46] |
Blast furnace combined heat and power (CHP) plant | 0.021 | GW | [46] |
Sugarcane bagasse power plant | 0.049 | GW | [46] |
Hydropower plant | 1.184 | GW | [46] |
Wind power plant | 0.028 | GW | [46] |
Distributed generation photovoltaic (DGPV) solar power plant | 0.005 | GW | [47] |
Nuclear power plant | 2.0 | GW | [46] |
Electricity transmission and distribution (T&D) | |||
Transmission lines | - | - | - |
Distribution system | - | - | - |
Vehicle technologies | |||
Electric vehicles | 0.004 | Million cars | [28] |
Gasoline vehicles | 1.54 | Million cars | [28] |
Diesel vehicles | 0.01 | Million cars | [28] |
Ethanol vehicles | 0.86 | Million cars | [28] |
Natural gas vehicles | 0.98 | Million cars | [28] |
Other technologies | |||
Technologies that use electricity | 55 | GW | [25,48,49] |
Seasons | ||
---|---|---|
Daily Time Brackets | Summer: Oct–March | Winter: Apr–Sep |
Day: 06:00–17:00 | Summer Day | Winter Day |
Peak: 17:00–21:00 | Summer Peak | Winter Peak |
Night: 21:00–06:00 | Summer Night | Winter Night |
Scenario | Description |
---|---|
RES | Current policies scenario; EV adoption picks up only in 2049 |
RES + CO2 price | RES + carbon pricing |
PNE Alt | Alternative official policy scenario in which EV adoption picks up in 2041 |
PNE Alt + CO2 price | PNE Alt + carbon pricing |
EV 2035 | EV adoption picks up in 2035 |
EV 2035 + CO2 price | EV 2035 + carbon pricing |
EV 2030 | EV adoption picks up in 2030 |
EV 2030 + CO2 price | EV 2030 + carbon pricing |
EV 2025 | EV adoption picks up in 2025 |
EV 2025 + CO2 price | EV 2025 + carbon pricing |
Electricity Source 1 | Real Amount Generated (TWh) | Amount Generated in the Model (TWh) | Error (%) |
---|---|---|---|
Hydropower | 5 | 5 | 0% |
Wind onshore | 0.07 | 0.07 | 0% |
Natural gas | 6.7 | 6.7 | 0% |
Nuclear | 13.4 | 13.4 | 0% |
Light fuel oil | 0.6 | 0.6 | 0% |
Sugarcane bagasse | 0.1 | 0.1 | 0% |
Imports | 25.51 | 23.12 | −9% |
Scenario | Overall Cost (Million USD) | Overall CO2 Emissions (Mton) | Overall Electricity Generated (TWh) |
---|---|---|---|
EV 2025 | 327,864 | 100 | 3077 |
EV 2030 | 347,066 | 100 | 3008 |
EV 2035 | 361,841 | 100 | 2996 |
PNE Alt | 381,829 | 100 | 2987 |
RES | 399,817 | 100 | 2985 |
EV 2025 + CO2 price | 1,338,290 | 52.593 | 3140 |
EV 2030 + CO2 price | 1,362,468 | 52.593 | 3112 |
EV 2035 + CO2 price | 1,377,064 | 52.593 | 3102 |
PNE Alt + CO2 price | 1,401,775 | 52.595 | 3098 |
RES + CO2 price | 1,422,531 | 52.595 | 3096 |
Scenario | EVs (Mcars) | EVs (Mcars), No Fossil Fuel Power Plants |
---|---|---|
RES | 47 | 35 |
RES + CO2 price | 76 | 68 |
EV 2025 | 67 | 60 |
EV 2025 + CO2 price | 87 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, T.B.d.; Baptista, P.; Silva, C.A.S.; Santos, L. Climate Change Mitigation Policies in the Transportation Sector in Rio de Janeiro, Brazil. Environments 2020, 7, 99. https://doi.org/10.3390/environments7110099
Silva TBd, Baptista P, Silva CAS, Santos L. Climate Change Mitigation Policies in the Transportation Sector in Rio de Janeiro, Brazil. Environments. 2020; 7(11):99. https://doi.org/10.3390/environments7110099
Chicago/Turabian StyleSilva, Tatiana Bruce da, Patrícia Baptista, Carlos A. Santos Silva, and Luan Santos. 2020. "Climate Change Mitigation Policies in the Transportation Sector in Rio de Janeiro, Brazil" Environments 7, no. 11: 99. https://doi.org/10.3390/environments7110099
APA StyleSilva, T. B. d., Baptista, P., Silva, C. A. S., & Santos, L. (2020). Climate Change Mitigation Policies in the Transportation Sector in Rio de Janeiro, Brazil. Environments, 7(11), 99. https://doi.org/10.3390/environments7110099