Vehicular Emission: Estimate of Air Pollutants to Guide Local Political Choices. A Case Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Emissions from Vehicular Traffic, on a Provincial Scale, Extended to the Whole Calabria Region
3.2. Emissions from Vehicular Traffic, on a Municipal Scale, Extended Only to the Province of Catanzaro
3.3. Hypothetical Scenario
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stern, A.C. Air Pollution, 3rd ed.; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Moretti, S.; Salmatonidis, A.; Querol, X.; Tassone, A.; Andreoli, V.; Bencardino, M.; Pirrone, N.; Sprovieri, F.; Naccarato, A. Contribution of Volcanic and Fumarolic Emission to the Aerosol in Marine Atmosphere in the Central Mediterranean Sea: Results from Med-Oceanor 2017 Cruise Campaign. Atmosphere 2020, 11, 149. [Google Scholar] [CrossRef] [Green Version]
- Di Filippo, P.; Pomata, D.; Riccardi, C.; Buiarelli, F.; Gallo, V. Oxygenated polycyclic aromatic hydrocarbons in size-segregated urban aerosol. J. Aerosol. Sci. 2015, 87, 126–134. [Google Scholar] [CrossRef]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Zhuo, S.; Du, W.; Shen, G.; Li, B.; Liu, J.; Cheng, H.; Xing, B.; Tao, S. Estimating relative contributions of primary and secondary sources of ambient nitrated and oxygenated polycyclic aromatic hydrocarbons. Atmos. Environ. 2017, 159, 126–134. [Google Scholar] [CrossRef]
- Bathmanabhan, S.; Nagendra, S.; Madanayak, S. Analysis and interpretation of particulate matter–PM10, PM2.5 and PM1 emissions from the heterogeneous traffic near an urban roadway. Atmos. Pollut. Res. 2010, 1, 184–194. [Google Scholar]
- Wrobel, A.; Rokita, E.; Maenhaut, W. Transport of traffic–related aerosols in urban areas. Sci. Total Environ. 2000, 257, 199–211. [Google Scholar] [CrossRef]
- Dinoi, A.; Cesari, D.; Marinoni, A.; Bonasoni, P.; Riccio, A.; Chianese, E.; Tirimberio, G.; Naccarato, A.; Sprovieri, F.; Andreoli, V.; et al. Inter-comparison of carbon content in PM2.5 and PM10 collected at five measurement sites in Southern Italy. Atmosphere 2017, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Bencardino, M.; Andreoli, V.; D’Amore, F.; De Simone, F.; Mannarino, V.; Castagna, J.; Moretti, S.; Naccarato, A.; Sprovieri, F.; Pirrone, N. Carbonaceous aerosols collected at the observatory of Monte Curcio in the Southern Mediterranean Basin. Atmosphere 2019, 10, 592. [Google Scholar] [CrossRef] [Green Version]
- Smit, R.; Ntziachristos, L.; Boulter, P. Validation of road vehicle and traffic emission models–A review and meta-analysis. Atmos. Environ. 2010, 44, 2943–2953. [Google Scholar] [CrossRef]
- Filice, M.; De Luca, P.; Guido, G.P. Particulate matter pollution in university area: Traffic flow analysis. Environ. Eng. Manag. J. 2009, 8, 1407–1412. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. R. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rönkkö, T.; Pirjola, L.; Ntziachristos, L.; Heikkilä, J.; Karjalainen, P.; Hillamo, R.; Keskinen, J. Vehicle Engines Produce Exhaust Nanoparticles Even When Not Fueled. Environ. Sci. Technol. 2014, 48, 2043–2050. [Google Scholar] [CrossRef] [PubMed]
- Klems, J.P.; Pennington, M.R.; Zordan, C.A.; McFadden, L.; Johnston, M.V. Apportionment of Motor Vehicle Emissions from Fast Changes in Number Concentration and Chemical Composition of Ultrafine Particles Near a Roadway Intersection. Environ. Sci. Technol. 2011, 45, 5637–5643. [Google Scholar] [CrossRef] [PubMed]
- Heeb, N.V.; Forss, A.M.; Weilenmann, M. Pre- and post-catalyst-, fuel-, velocity- and acceleration-dependent benzene emission data of gasoline-driven EURO-2 passenger cars and light duty vehicles. Atmos. Environ. 2002, 36, 4745–4756. [Google Scholar] [CrossRef]
- Zhao, H.; Ge, Y.; Wang, X.; Tan, J.; Wang, A.; You, K. Effects of Fuel Sulfur Content and Diesel Oxidation Catalyst on PM Emitted from Light-Duty Diesel Engine. Energ. Fuel. 2010, 24, 985–991. [Google Scholar] [CrossRef]
- Heeb, N.V.; Saxe, C.J.; Forss, A.M.; Brühlmann, S. Trends of NO-, NO2-, and NH3-emissions from gasoline-fueled Euro-3- to Euro-4-passenger cars. Atmos. Environ. 2008, 42, 2543–2554. [Google Scholar] [CrossRef]
- Crea, N. L’innovazione dell’automobile. In XXI Secolo- Gli Spazi e le Arti; Treccani: Roma, Italy, 2010. [Google Scholar]
- Lico, D.; Vuono, D.; Siciliano, C.; Nagy, J.B.; De Luca, P. Removal on unleaded gasoline from water by multi-walled carbon nanotubes. J. Environ. Manag. 2019, 237, 636–643. [Google Scholar] [CrossRef]
- Kryl, D.; Kočí, P.; Kubíček, M.; Marek, M.; Maunula, T.; Härkönen, M. Catalytic Converters for Automobile Diesel Engines with Adsorption of Hydrocarbons on Zeolites. Ind. Eng. Chem. Res. 2005, 44, 9524–9534. [Google Scholar] [CrossRef]
- Perdana, I.; Creaser, D.; Bendiyasa, I.; Rochmadi, M.; Tyoso, B.W. Modelling NOx adsorption in a thin NaZSM-5 film supported on a cordierite monolith. Chem. Eng. Sci. 2007, 62, 3882–3893. [Google Scholar] [CrossRef]
- Keav, S.; Matam, S.K.; Ferri, D.; Weidenkaff, A. Structured Perovskite-Based Catalysts and Their Application as Three-Way Catalytic Converters—A Review. Catalysts 2014, 4, 226–255. [Google Scholar] [CrossRef] [Green Version]
- De Luca, P.; Bernaudo, I.; Elliani, R.; Tagarelli, A.; Nagy, J.B.; Macario, A. Industrial Waste Treatment by ETS-10 Ion Exchanger Material. Materials 2018, 11, 2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Raffele, G.; Aloise, A.; De Luca, P.; Vuono, D.; Tagarelli, A.; BNagy, J. Kinetic and thermodynamic effects during the adsorption of heavy metals on ETS-4 and ETS-10 microporous materials. J. Porous Mater. 2016, 23, 400. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, H.Y.; Zhu, H.W.; Huang, J.; Shi, L.A.; Yu, S.H. Advanced sorbents for oil-spill cleanup: Recent Advances and Future Perspectives. Adv. Mater. 2016, 28, 10459–10490. [Google Scholar] [CrossRef] [PubMed]
- De Luca, P.; Mastroianni, C.B.; Nagy, J. Synthesis of self-bonded pellets of ETS-4 phase by new methodology of preparation. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012003. [Google Scholar] [CrossRef] [Green Version]
- Srivastaval, A.; Srivastaval, A.N.; Talapatra, S.; Vajtai, R.; Ajayan, P.M. Carbon nanotube filters. Nat. Mater. 2004, 3, 610–614. [Google Scholar] [CrossRef]
- Vivanco, M.G.; De Fatima, A.M. Validation of the emission inventory in the Sao Paulo metropolitan area of Brazil, based on ambient concentrations ratios of CO, NMOG and NOx and on a photochemical model. Atmos. Environ. 2006, 40, 1189–1198. [Google Scholar] [CrossRef]
- De Luca, P.; Chiodo, A.B.; Nagy, J. Activated ceramic materials with deposition of photocatalytic titano-silicate micro-crystal. Sustain. Chem. 2011, 154, 155–165. [Google Scholar]
- Srikanth, B.; Goutham, R.; Narayan, R.B.; Ramprasath, A.; Sankaranarayanan, A.R. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J. Environ. Manag. 2017, 200, 60–78. [Google Scholar] [CrossRef]
- Giglio, A.; Ammendola, A.; Battistella, S.; Naccarato, A.; Simeon, E.; Tagarelli, A.; Giulianini, P.G. Apis mellifera ligustica, Spinola 1806 as bioindicator for detecting environmental contamination: A preliminary study of heavy metal pollution in Trieste, Italy. Environ. Sci. Pollut. Res. 2017, 24, 659–665. [Google Scholar] [CrossRef]
- Talarico, F.; Brandmayr, P.; Giulianini, P.G.; Ietto, F.; Naccarato, A.; Perrotta, E.; Tagarelli, A.; Giglio, A. Effects of metal pollution on survival and physiological responses in Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae). Eur. J. Soil. Biol. 2014, 61, 80–89. [Google Scholar] [CrossRef]
- Janssens, I.A.; Freibauer, A.; Ciais, P.; Smith, P.; Nabuurs, G.J.; Folberth, G.; Schlamadinger, B.; Hutjes, R.W.A.; Ceulemans, R.; Schulze, E.D.; et al. Europe’s terrestrial biosphere absorbs 7–12% of European anthropogenic CO2 emissions. Science 2003, 300, 1538–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reche, C.; Querol, X.; Alastuey, A.; Viana, M.; Pey, J.; Moreno, T.; Rodríguez, S.; González, Y.; Fernández-Camacho, R.; de la Rosa, J.; et al. New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. Atmos. Chem. Phys. 2011, 11, 6207–6227. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, M.; Levin, H.; Wolkoff, P. Volatile organic compounds and indoor air. J Allergy Clin. Immunol. 1994, 94, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Hotz, P.; Carbonnelle, P.; Haufroid, V.; Tschopp, A.; Buchet, J.P.; Lauwerys, R. Biological monitoring of vehicle mechanics and other workers exposed to low concentrations of benzene. Int. Arch. Occup. Environ. Health 1997, 70, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Lavanya, R. The 2015 Paris Agreement: Interplay between Hard, Soft and Non-Obligations. J. Environ. Law. 2015, 28, 337–358. [Google Scholar] [CrossRef] [Green Version]
- Colvile, R.N.; Hutchinson, E.J.; Mindell, J.S.; Warren, R.F. The transport sector as a source of air pollution. Atmos. Environ. 2001, 35, 1537–1565. [Google Scholar] [CrossRef] [Green Version]
- Eggleston, H.S.; Gorissen, N.; Joumard, R.; Rijkeboer, R.C.; Samaras, Z.C.; Zierock, H. CORINAIR Working Group on Emission Factors for Calculating 1990 Emissions from Road Traffic. Volume I: Methodology and Emission Factors. Volume II: Copert. Computer Program to Calculate Emissions from Road Traffic, Report EUR 12260 EN; Office for Official Publications of the European Communities: Brussels, Belgium, 1993.
- Corinair Expert Group. Technical Annexes Volume 2: Default Emission Factors Handbook, (EUR 13232/EUR 12586); European Commission, Directorate-General, Environment, Nuclear Safety and Civil Protection: Brussels, Belgium, 1994. [Google Scholar]
- Andrias, A.; Samaras, Z.; Zachariadis, T.; Ziarwik, K.M. Assessment of random and systematic errors associated with the CORINAIR/COPERT methodology for estimating VOCs emitted from road traffic. In Proceedings of the TNO/EURASAP Workshop on the Reliability of VOC Emission Databases, Delft, The Netherlands, 9–10 June 1993. [Google Scholar]
- Available online: www.sviluppoeconomico.gov.it/index.php/it/mercato-e-consumatori (accessed on 22 April 2020).
Provinces | Area (Km2) | Number of Inhabitants | Number of Vehicles | Population Density (Inhabitants/Km2) | Vehicles Density (Vehicles/km2) |
---|---|---|---|---|---|
Catanzaro | 2391 | 363,979 | 300,471 | 152.23 | 125.67 |
Cosenza | 6710 | 731,649 | 557,631 | 109.04 | 83.10 |
Crotone | 1717 | 171,863 | 122,526 | 100.10 | 71.36 |
Reggio Calabria | 3183 | 559,675 | 431,103 | 175.83 | 135.44 |
Vibo Valentia | 1139 | 162,697 | 127,909 | 142.84 | 112.30 |
n | City | Vehicles | Surface [km²] | Density [Vehicles/Surface] | n | City | Vehicles | Surface [km²] | Density [Vehicles/Surface] |
---|---|---|---|---|---|---|---|---|---|
1 | ALBI | 624 | 29.64 | 21.05 | 41 | MARTIRANO | 609 | 14.57 | 41.80 |
2 | AMARONI | 1371 | 9.88 | 138.77 | 42 | MARTIRANO LOMBARDO | 297 | 19.00 | 15.63 |
3 | AMATO | 661 | 20.00 | 33.05 | 43 | MIGLIERINA | 524 | 13.00 | 40.31 |
4 | ANDALI | 516 | 17.00 | 30.35 | 44 | MONTAURO | 1435 | 11.50 | 124.78 |
5 | ARGUSTO | 399 | 7.00 | 57.00 | 45 | MONTEPAONE | 4911 | 16.90 | 1.00 |
6 | BADOLATO | 2547 | 34.10 | 74.69 | 46 | MOTTA SANTA LUCIA | 526 | 25.00 | 21.04 |
7 | BELCASTRO | 1497 | 52.00 | 28.79 | 47 | NOCERA TERINESE | 3388 | 46.20 | 73.33 |
8 | BORGIA | 5225 | 42.00 | 124.40 | 48 | OLIVADI | 381 | 7.00 | 54.43 |
9 | BOTRICELLO | 3570 | 15.48 | 230.62 | 49 | PALERMITI | 957 | 18.00 | 53.17 |
10 | CARAFFA | 1671 | 25.02 | 66.79 | 50 | PENTONE | 1310 | 12.00 | 109.17 |
11 | CARDINALE | 1518 | 30.12 | 50.40 | 51 | PETRIZZI | 782 | 21.00 | 37.24 |
12 | CARLOPOLI | 1145 | 16.41 | 69.77 | 52 | PETRONA’ | 1972 | 45.50 | 43.34 |
13 | CATANZARO | 74,178 | 102.30 | 725.10 | 53 | PIANOPOLI | 3201 | 24.00 | 133.38 |
14 | CENADI | 431 | 11.92 | 36.16 | 54 | PLATANIA | 1535 | 24.00 | 63.96 |
15 | CENTRACHE | 329 | 7.96 | 41.33 | 55 | S.ANDREA JONIO | 1403 | 20.00 | 70.15 |
16 | CERVA | 772 | 21.37 | 36.13 | 56 | S.CATERINA JONIO | 1460 | 41.00 | 35.61 |
17 | CHIARAVALLE | 4214 | 23.83 | 176.84 | 57 | SAN FLORO | 456 | 18.00 | 25.33 |
18 | CICALA | 662 | 9.22 | 71.80 | 58 | SAN MANGO D’AQUINO | 1117 | 7.00 | 159.57 |
19 | CONFLENTI | 1177 | 29.34 | 40.12 | 59 | SAN PIETRO A MAIDA | 3119 | 16.30 | 191.35 |
20 | CORTALE | 1560 | 30.01 | 51.98 | 60 | SAN PIETRO APOSTOLO | 1257 | 11.51 | 109.21 |
21 | CROPANI | 3358 | 43.00 | 78.09 | 61 | SAN SOSTENE | 1032 | 31.00 | 33.29 |
22 | CURINGA | 5043 | 51.47 | 97.98 | 62 | SAN VITO SULLO JONIO | 1243 | 17.00 | 73.12 |
23 | DAVOLI | 4401 | 25.70 | 171.25 | 63 | SATRIANO | 2627 | 22.00 | 119.41 |
24 | DECOLLATURA | 2468 | 50.35 | 49.02 | 64 | SELLIA | 322 | 12.81 | 25.14 |
25 | FALERNA | 3018 | 23.90 | 126.28 | 65 | SELLIA MARINA | 6021 | 40.90 | 147.21 |
26 | FEROLETO ANTICO | 1958 | 21.00 | 93.24 | 66 | SERRASTRETTA | 2356 | 41.00 | 57.46 |
27 | FOSSATO SERRALTA | 374 | 11.85 | 31.56 | 67 | SERSALE | 3248 | 53.00 | 61.28 |
28 | GAGLIATO | 430 | 7.04 | 61.08 | 68 | SETTINGIANO | 2421 | 14.00 | 172.93 |
29 | GASPERINA | 1507 | 6.87 | 219.36 | 69 | SIMERI-CRICHI | 1203 | 46.70 | 25.76 |
30 | GIMIGLIANO | 2458 | 33.55 | 73.26 | 70 | SORBO SAN BASILE | 591 | 58.00 | 10.19 |
31 | GIRIFALCO | 4241 | 43.10 | 98.40 | 71 | SOVERATO | 7129 | 7.70 | 925.84 |
32 | GIZZERIA | 3931 | 35.90 | 109.50 | 72 | SOVERIA MANNELLI | 2721 | 20.00 | 136.05 |
33 | GUARDAVALLE | 3592 | 60.40 | 59.47 | 73 | SOVERIA SIMERI | 3644 | 22.28 | 163.55 |
34 | ISCA SULLO IONIO | 1138 | 22.00 | 51.73 | 74 | SQUILLACE | 2420 | 34.33 | 70.49 |
35 | JACURSO | 425 | 21.00 | 20.24 | 75 | STALETTI’ | 1760 | 12.11 | 145.33 |
36 | LAMEZIA TERME | 53,407 | 162.40 | 328.86 | 76 | TAVERNA | 1664 | 131.22 | 12.68 |
37 | MAGISANO | 908 | 31.00 | 29.29 | 77 | TIRIOLO | 2880 | 28.89 | 99.69 |
38 | MAIDA | 4288 | 58.20 | 73.68 | 78 | TORRE DI RUGGIERO | 851 | 35.37 | 24.06 |
39 | MARCEDUSA | 338 | 15.68 | 21.56 | 79 | VALLEFIORITA | 3326 | 18.83 | 176.63 |
40 | MARCELLINARA | 2000 | 20.00 | 100.00 | 80 | ZAGARISE | 1257 | 48.00 | 26.19 |
Pollutants | Real Emissions [t] | Hypothetical Emissions without Euro 0 [t] | Percentage Reduction (%) |
---|---|---|---|
CO | 12496.08 | 3637.71 | 70.89 |
VOC | 1209.01 | 598.69 | 50.48 |
NMVOC | 1138.99 | 555.69 | 51.21 |
CH4 | 70.017 | 42.99 | 38.59 |
NO | 2166.49 | 1495.33 | 30.99 |
NO2 | 16.10 | 15.24 | 5.86 |
N2O | 491.12 | 15.25 | 96.89 |
NH3 | 59.62 | 68.44 | −14.79 |
PM2.5 | 172.15 | 125.82 | 26.91 |
PM10 | 195.12 | 147.19 | 24.56 |
PMexhaust | 144.26 | 99.90 | 30.75 |
CO2 | 626645.30 | 560830.10 | 10.50 |
SO2 | 3.88 | 3.84 | 1.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazza, S.; Aiello, D.; Macario, A.; De Luca, P. Vehicular Emission: Estimate of Air Pollutants to Guide Local Political Choices. A Case Study. Environments 2020, 7, 37. https://doi.org/10.3390/environments7050037
Mazza S, Aiello D, Macario A, De Luca P. Vehicular Emission: Estimate of Air Pollutants to Guide Local Political Choices. A Case Study. Environments. 2020; 7(5):37. https://doi.org/10.3390/environments7050037
Chicago/Turabian StyleMazza, Sergio, Donatella Aiello, Anastasia Macario, and Pierantonio De Luca. 2020. "Vehicular Emission: Estimate of Air Pollutants to Guide Local Political Choices. A Case Study" Environments 7, no. 5: 37. https://doi.org/10.3390/environments7050037
APA StyleMazza, S., Aiello, D., Macario, A., & De Luca, P. (2020). Vehicular Emission: Estimate of Air Pollutants to Guide Local Political Choices. A Case Study. Environments, 7(5), 37. https://doi.org/10.3390/environments7050037