Subtle Changes or Dramatic Perceptions of Air Pollution in Sydney during COVID-19
Abstract
:1. Introduction
2. Materials and Methods
- Concentration measurements are available from official air quality monitoring sites: https://www.dpie.nsw.gov.au/air-quality/air-quality-data-services/data-download-facility
- The satellite observations are available from the Copernicus Sentinel-5P Mapping Portal: https://maps.s5p-pal.com/ and also https://so2.gsfc.nasa.gov/no2/no2_index.html
- Counts to establish traffic flow are provided by Transport for NSW: https://opendata.transport.nsw.gov.au/node/2171/exploreapi
- Electricity generation data are available from the Australian Energy Market Operator: https://www.aemo.com.au/energy-systems/electricity/national-electricity-market-nem/data-nem/aggregated-data
- The number of COVID-19 cases in Sydney extracted from statistics are available from the NSW Government: https://data.nsw.gov.au/data/dataset/covid-19-cases-by-location
- Google Community Mobility Reports are available at: https://www.google.com/covid19/mobility
- Google trends was accessed using search terms at: https://trends.google.com/
3. Results
3.1. Ground Level Pollutant Concentrations
3.2. Column Density from Satellite Observations
3.3. Emissions, Human Mobility and Electricity Production
3.4. Icons and Media Visions
3.5. Popular Opinion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Site | 2019 | 2020 | t-Test | 2019 | 2020 | t-Test | ||||
---|---|---|---|---|---|---|---|---|---|---|
cNO2 | σNO2 | cNO2 | σNO2 | pNO2 | cPM2.5 | σPM2.5 | cPM2.5 | σPM2.5 | pPM2.5 | |
Randwick | 9.83 | 3.96 | 8.37 | 4.19 | 0.1371 | 9.58 | 5.29 | 8.22 | 3.21 | 0.120 |
Rozelle | 10.69 | 3.13 | 10.34 | 4.75 | 0.3740 | 8.80 | 4.82 | 7.11 | 3.20 | 0.059 |
Liverpool | 13.02 | 2.45 | 12.90 | 5.10 | 0.4545 | 10.66 | 6.94 | 9.22 | 3.94 | 0.163 |
Bringelly | 5.29 | 1.60 | 5.21 | 1.32 | 0.4307 | 7.93 | 4.00 | 8.48 | 3.34 | 0.285 |
Chullora | 11.99 | 2.62 | 12.73 | 4.17 | 0.2313 | 10.19 | 7.60 | 7.95 | 3.13 | 0.082 |
Earlwood | 10.86 | 2.44 | 10.24 | 4.71 | 0.2729 | 9.21 | 6.31 | 7.39 | 3.56 | 0.089 |
Richmond | 4.79 | 1.10 | 3.58 | 1.15 | 0.0004 | 8.12 | 3.46 | 8.90 | 3.39 | 0.197 |
Bargo | 7.93 | 2.35 | 8.60 | 3.99 | 0.2560 | 9.50 | 6.87 | 7.16 | 2.76 | 0.050 |
St Marys | 4.68 | 1.77 | 5.58 | 1.68 | 0.0398 | 7.35 | 2.90 | 8.22 | 2.72 | 0.129 |
Parramatta | 10.88 | 2.68 | 9.42 | 2.84 | 0.0294 | 7.56 | 3.77 | 7.36 | 2.97 | 0.413 |
Oakdale | 2.29 | 0.92 | 2.33 | 1.10 | 0.4507 | 8.31 | 3.94 | 9.52 | 1.87 | 0.079 |
Prospect | 10.16 | 2.64 | 9.97 | 3.02 | 0.4071 | 9.34 | 4.22 | 8.57 | 3.98 | 0.237 |
Campbelltown | 11.15 | 2.22 | 12.53 | 4.54 | 0.0799 | 12.99 | 12.17 | 7.75 | 2.96 | 0.021 |
Camden | 5.53 | 1.78 | 4.60 | 2.08 | 0.0430 | 9.53 | 10.08 | 8.12 | 2.81 | 0.238 |
Macquarie | 5.70 | 2.21 | 4.92 | 1.81 | 0.0780 | 6.82 | 3.24 | 6.22 | 2.62 | 0.216 |
References
- Leung, K.; Wu, J.T.; Liu, D.; Leung, G.M. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: A modelling impact assessment. Lancet 2020, 395, 1382–1393. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Lai, Y. Effect of fireworks, Chinese New Year and the COVID-19 lockdown on air pollution and public attitudes. Aerosol Air Qual. Res. 2020, 20, 2318–2331. [Google Scholar] [CrossRef]
- Mills Oakley, Melbourne. Available online: https://www.millsoakley.com.au/thinking/nsw-under-official-lockdown-full-details-of-new-government-directions-now-published/ (accessed on 1 January 2021).
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Li, Z.; Li, Y.; Dong, J.; van der A, R.; de Leeuw, G. Does reduction of emissions imply improved air quality? Atmos. Chem. Phys. Discuss. 2020. [Google Scholar] [CrossRef]
- Dutheil, F.; Baker, J.S.; Navel, V. COVID-19 as a factor influencing air pollution? Environ. Pollut. 2020, 263, 114466. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef]
- Wang, Q.; Su, M. A preliminary assessment of the impact of COVID-19 on environment–A case study of China. Sci. Total Environ. 2020, 728, 138915. [Google Scholar] [CrossRef]
- Yue, X.; Lei, Y.; Zhou, H.; Liu, Z.; Letu, H.; Cai, Z.; Lin, J.; Jiang, Z.; Liao, H. Changes of anthropogenic carbon emissions and air pollutants during the COVID-19 epidemic in China. Trans. Atmos. Sci. 2020, 43, 265–274. [Google Scholar]
- Seo, J.H.; Jeon, H.W.; Sung, U.J.; Sohn, J.R. Impact of the COVID-19 Outbreak on Air Quality in Korea. Atmosphere 2020, 11, 1137. [Google Scholar] [CrossRef]
- Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of lockdown measures to combat Covid-19 on air quality over western Europe. Sci. Total Environ. 2020, 741, 140426. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, K. Changes in US air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef] [PubMed]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef] [PubMed]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, H.; Díaz-López, S.; Jarre, E.; Pacheco, H.; Méndez, W.; Zamora-Ledezma, E. NO2 levels after the COVID-19 lockdown in Ecuador: A trade-off between environment and human health. Urban Clim. 2020, 34, 100674. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, Z.; Li, H.; Wang, Y.; Li, Y.; Zhu, Y.; Ooi, M.C.G.; An, J.; Shang, Y.; Zhang, D.; et al. The silver lining of COVID-19: Estimation of short-term health impacts due to lockdown in the Yangtze River Delta region, China. GeoHealth 2020, 4, e2020GH000272. [Google Scholar] [CrossRef]
- Lal, P.; Kumar, A.; Kumar, S.; Kumari, S.; Saikia, P.; Dayanandan, A.; Adhikari, D.; Khan, M.L. The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment. Sci. Total Environ. 2020, 732, 139297. [Google Scholar] [CrossRef]
- Ramasamy, D.; Jayakumar, S.; Somasundaram, M. Enchanted Improvements in Air Quality across India-A Study from COVID-19 Lockdown Perspective. Adalya 2020, 9. [Google Scholar] [CrossRef]
- Schiermeier, Q. Why pollution is plummeting in some cities-but not others? Nature 2020, 580, 313. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2. 5 analysis in the 50 most polluted capital cities in the world. Environ. Pollut. 2020, 266, 115042. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.M.; Shrestha, U.B.; Sharma, R.; Bhattarai, S.; Tran, H.N.T.; Rupakheti, M. Lockdown caused by COVID-19 pandemic reduces air pollution in cities worldwide. Eartharxi 2020. [Google Scholar] [CrossRef]
- Karuppasamy, M.B.; Seshachalam, S.; Natesan, U.; Ayyamperumal, R.; Karuppannan, S.; Gopalakrishnan, G.; Nazir, N. Air pollution improvement and mortality rate during COVID-19 pandemic in India: Global intersectional study. Air. Qual. Atmos. Health 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Ezani, E.; Brimblecombe, P.; Asha’ari, Z.H.; Fazil, A.A.; Ismail, S.N.S.; Ramly, Z.T.A.; Khan, M.F. Indoor exposure to PM2.5 during COVID-19 lockdown in suburban Malaysia. Aerosol Air Qual. Res. 2020, 20. [Google Scholar] [CrossRef]
- Nwanaji-Enwerem, J.C.; Allen, J.G.; Beamer, P.I. Another invisible enemy indoors: COVID-19, human health, the home, and United States indoor air policy. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 773–775. [Google Scholar] [CrossRef]
- Saha, J.; Chouhan, P. Indoor air pollution (IAP) and pre-existing morbidities among under-5 children in India: Are risk factors of coronavirus disease (COVID-19)? Environ. Pollut. 2020, 266, 115250. [Google Scholar] [CrossRef]
- Heederik, D.J.; Smit, L.A.; Vermeulen, R.C. Go slow to go fast: A plea for sustained scientific rigour in air pollution research during the COVID-19 pandemic. Eur. Respir. J. 2020, 56, 2001361. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Q.; Qiao, L.; Zhou, M.; Wang, S.; Lou, S.; Huang, D.; Wang, Q.; Jing, S.; Wang, H.; et al. Tracer-based characterization of source variations of PM2. 5 and organic carbon in Shanghai influenced by the COVID-19 Lockdown. Faraday Discuss. 2020. [Google Scholar] [CrossRef]
- Higham, J.E.; Ramírez, C.A.; Green, M.A.; Morse, A.P. UK COVID-19 lockdown: 100 days of air pollution reduction? Air Qual. Atmos. Health 2020, 1–8. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, J.L.; Yu, Y.; Mok, W.C.; Lee, C.F.; Yam, Y.S. Uncertainty in the impact of the COVID-19 pandemic on air quality in Hong Kong, China. Atmosphere 2020, 11, 914. [Google Scholar] [CrossRef]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ding, A.; Gao, J.; Zheng, B.; Zhou, D.; Qi, X.; Tang, R.; Wang, J.; Ren, C.; Nie, W.; et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 2020. [Google Scholar] [CrossRef]
- Lai, I.-C.; Brimblecombe, P. Long range transport of air pollutants to Taiwan during the COVID-19 lockdown in Hubei Province. Aerosol Air Qual. Res. 2020. [Google Scholar] [CrossRef]
- Shi, X.; Brasseur, G.P. Response in air quality to the reduction of Chinese economic activities during the COVID-19 Outbreak. Geophys. Res. Lett. 2020, 47, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hao, X.; Zhang, X.; Chen, F. Have traffic restrictions improved air quality? A shock from COVID-19. J. Clean. Prod. 2020, 279, 123622. [Google Scholar] [CrossRef] [PubMed]
- Hannam, P. The Sydney Morning Herald. Virus and Favourable Weather Deliver Clear Skies over Sydney. Available online: https://www.smh.com.au/environment/sustainability/virus-and-favourable-weather-delivers-clear-skies-over-sydney-20200422-p54m6z.html (accessed on 1 January 2021).
- Khaykin, S.; Legras, B.; Bucci, S.; Sellitto, P.; Isaksen, L.; Tencé, F.; Bekki, S.; Bourassa, A.; Rieger, L.; Zawada, D.; et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Comm. Earth Environ. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Leon, J. The Conversation. These 5 Images Show How Air Pollution Changed over Australia’s Major Cities before and after Lockdown. Available online: https://theconversation.com/these-5-images-show-how-air-pollution-changed-over-australias-major-cities-before-and-after-lockdown-136723 (accessed on 1 January 2021).
- WessaNet, Version 1.2.1, Free Statistics Software, Wessa, P., Office for Research Development and Education. 2020. Available online: https://www.wessa.net/ (accessed on 1 January 2021).
- Silver, B.; He, X.; Arnold, S.R.; Spracklen, D.V. The impact of COVID-19 control measures on air quality in China. Environ. Res. Lett. 2020, 15, 084021. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Lai, Y. Diurnal and weekly patterns of primary pollutants in Beijing under COVID-19 restrictions. Faraday Discuss. 2020. [Google Scholar] [CrossRef]
- Ulpiani, G.; Ranzi, G.; Santamouris, M. Experimental evidence of the multiple microclimatic impacts of bushfires in affected urban areas: The case of Sydney during the 2019/2020 Australian season. Environ. Res. Commun. 2020, 2, 065005. [Google Scholar] [CrossRef]
- Bauwens, M.; Compernolle, S.; Stavrakou, T.; Müller, J.F.; van Gent, J.; Eskes, H.; Levelt, P.F.; van der A, R.; Veefkind, J.P.; Vlietinck, J.; et al. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophys. Res. Lett. 2020, 47, e2020GL087978. [Google Scholar] [CrossRef]
- Lamsal, L.N.; Krotkov, N.A.; Vasilkov, A.; Marchenko, S.; Qin, W.; Yang, E.-S.; Fasnacht, Z.; Joiner, J.; Choi, S.; Haffner, D.; et al. OMI/Aura nitrogen dioxide standard product with improved surface and cloud treatments. Atmos. Meas. Tech. Discuss. 2020, 1–56. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Omidvarborna, H.; Sharma, A.; Sahani, J.; Abhijith, K.V.; Debele, S.E.; Zavala-Reyes, J.C.; Barwise, Y.; Tiwari, A. Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-off’during COVID-19 lockdown in Indian cities. Sustain. Cities Soc. 2020, 62, 102382. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef] [PubMed]
- EPA 2019. Air Emissions Inventory for the Greater Metropolitan Region in New South Wales; EPA 2019P1917; NSW Environment Protection Authority: Sydney, Australia, 2019. [Google Scholar]
- Wan, S.; Cui, K.; Wang, Y.-F.; Wu, J.-L.; Huang, W.-S.; Xu, K.; Zhang, J. Impact of the COVID-19 event on trip intensity and air quality in Southern China. Aerosol Air Qual. Res. 2020, 20, 1727–1747. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Lai, Y. Effect of sub-urban scale lockdown on air pollution in Beijing. Urban Clim. 2020, 34, 100725. [Google Scholar] [CrossRef]
- Scott, K. ABC Life. Surprising Facts about How We Spend Our Time. Available online: https://www.abc.net.au/life/surprising-facts-about-how-we-spend-our-time/10188202 (accessed on 1 January 2021).
- Sekar, A.; Jasna, R.S.; Binoy, B.V.; Mohan, P.; Varghese, G.K. Air quality change due to COVID-19 lockdown in India and its perception by public. Res. Square 2020. [Google Scholar] [CrossRef]
- Chen, K.; Wang, M.; Huang, C.; Kinney, P.L.; Anastas, P.T. Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. Lancet Planet. Health 2020, 4, e210–e212. [Google Scholar] [CrossRef]
- Achebak, H.; Petetin, H.; Quijal-Zamorano, M.; Bowdalo, D.; García-Pando, C.P.; Ballester, J. Reduction in air pollution and attributable mortality due to COVID-19 lockdown. Lancet Planet. Health 2020, 4, e268. [Google Scholar] [CrossRef]
- Cori, L.; Bianchi, F. Covid-19 and air pollution: Communicating the results of geographic correlation studies. Epidemiol. Prev. 2020, 44, 120–123. [Google Scholar]
- Cicala, S.; Holland, S.P.; Mansur, E.T.; Muller, N.Z.; Yates, A.J. Expected health effects of reduced air pollution from COVID-19 social distancing. In NBER Working Papers 27135; National Bureau of Economic Research, Inc: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Cartea, P.Á.M. Is there a hole in the ozone layer of your climate change? From scientific culture to popular culture. Mètode Sci. Stud. J. 2016, 6, 57–62. [Google Scholar]
- Svatonova, H.; Rybansky, M. Children observe the digital earth from above: How they read aerial and satellite images. IOP Conf. Ser. Earth Environ. Sci. 2014, 18, 012071. [Google Scholar] [CrossRef] [Green Version]
- Brimblecombe, P.; Zong, H. Citizen perception of APEC Blue and air pollution management. Atmos. Environ. 2019, 214, 116853. [Google Scholar] [CrossRef]
- Brimblecombe, P. A Journal in a Plague Year. City Environ. Interact. 2020, 4, 100028. [Google Scholar] [CrossRef]
- Manenti, R.; Mori, E.; Di Canio, V.; Mercurio, S.; Picone, M.; Caffi, M.; Brambilla, M.; Ficetola, G.F.; Rubolini, D. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: Insights from the first European locked down country. Biol. Conserv. 2020, 249, 108728. [Google Scholar] [CrossRef]
- Geard, N.; Cromer, D. The Conversation. Sydney’s Second Wave: Can It Avoid a Melbourne-Style Lockdown? Available online: https://theconversation.com/sydneys-second-wave-can-it-avoid-a-melbourne-style-lockdown-142652 (accessed on 1 January 2021).
- Barbieri, D.M.; Lou, B.; Passavanti, M.; Hui, C.; Lessa, D.A.; Maharaj, B.; Banerjee, A.; Wang, F.; Chang, K.; Naik, B.; et al. Survey data regarding perceived air quality in Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa, United States before and during Covid-19 restrictions. Data Brief 2020, 32, 106169. [Google Scholar] [CrossRef] [PubMed]
- Tangren, C.D. Scattering coefficient and particulate matter concentration in forest fire smoke. J. Air. Pollut. Control. Assoc. 1982, 32, 729–732. [Google Scholar] [CrossRef]
Commercial | Domestic Commercial | Industrial | Off-Road | On-Road | Total | |
---|---|---|---|---|---|---|
CO | 320 (<1) | 90,299 (43) | 5968 (3) | 22,465 (11) | 91,239 (43) | 210,291 |
NOx | 359 (1) | 2701 (5) | 7387 (13) | 15,734 (27) | 32,496 (55) | 58,676 |
PM10 | 682 (4) | 5744 (37) | 6040 (39) | 1111 (7) | 1838 (12) | 15,415 |
PM2.5 | 291 (3) | 5517 (55) | 1824 (18) | 1034 (10) | 1279 (13) | 9945 |
SO2 | 79 (1) | 124 (1) | 3057 (30) | 6790 (67) | 98 (1) | 10,148 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brimblecombe, P.; Lai, Y. Subtle Changes or Dramatic Perceptions of Air Pollution in Sydney during COVID-19. Environments 2021, 8, 2. https://doi.org/10.3390/environments8010002
Brimblecombe P, Lai Y. Subtle Changes or Dramatic Perceptions of Air Pollution in Sydney during COVID-19. Environments. 2021; 8(1):2. https://doi.org/10.3390/environments8010002
Chicago/Turabian StyleBrimblecombe, Peter, and Yonghang Lai. 2021. "Subtle Changes or Dramatic Perceptions of Air Pollution in Sydney during COVID-19" Environments 8, no. 1: 2. https://doi.org/10.3390/environments8010002
APA StyleBrimblecombe, P., & Lai, Y. (2021). Subtle Changes or Dramatic Perceptions of Air Pollution in Sydney during COVID-19. Environments, 8(1), 2. https://doi.org/10.3390/environments8010002