Assessing the Ecotoxicity of Soil Affected by Wildfire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Collection of Samples
2.2. Experimental Design
2.3. Phytotoxicity Test
- AOECD—represents a mean of germinated seeds or a mean of root length in the control OECD soil
- Btest—represents a mean of germinated seeds or a mean of root length in the test soil (amended burnt soil)
- Comment: negative values represent stimulation effect while positive values shows inhibition effect.
- Aburnt—represents a mean of germinated seeds or a mean of root length in the unamended burnt soil
- Btest—represents a mean of germinated seeds or a mean of root length in the test soil (amended burnt soil)
- Comment: negative values represent stimulation effect while positive values shows inhibition effect.
2.4. Pot Experiment
2.5. Data Treatment
3. Results and Discussion
3.1. Results of the Phytotoxicity Test
3.2. Results of Pot Experiment
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
Appendix A. Results of Two-Way Analysis of Variance
Appendix B. Results of Tukey’s HSD Test
Tukey’s HSD Test; Variable: Above Ground Biomass Yield (g); Intergroup Error = 0.00002; sv = 36.000 | ||||||
---|---|---|---|---|---|---|
Factor I—Fertilization | 100% Unburnt Soil | 100% BS | BS + 3% w/w Bentonite | BS + 3% w/w Diatomite | BS + 3% w/w Biochar | BS + 3% w/w Compost |
100% unburnt soil | 0.000132 | 0.000132 | 0.000132 | 0.992701 | 0.000132 | |
100% BS | 0.000132 | 0.000142 | 0.139994 | 0.000132 | 0.987639 | |
BS + 3% w/w bentonite | 0.000132 | 0.000142 | 0.022802 | 0.000132 | 0.000133 | |
BS + 3% w/w diatomite | 0.000132 | 0.139994 | 0.022802 | 0.000132 | 0.033794 | |
BS + 3% w/w biochar | 0.992701 | 0.000132 | 0.000132 | 0.000132 | 0.000132 | |
BS + 3% w/w compost | 0.000132 | 0.987639 | 0.000133 | 0.033794 | 0.000132 |
Tukey’s HSD Test; Variable: Root Yield (g); Intergroup Error = 0.00001; sv = 36.000 | ||||||
---|---|---|---|---|---|---|
Factor I—Fertilization | 100% Unburnt Soil | 100% BS | BS + 3% w/w Bentonite | BS + 3% w/w Diatomite | BS + 3% w/w Biochar | BS + 3% w/w Compost |
100% unburnt soil | 0.350649 | 0.041734 | 0.001931 | 0.086758 | 0.000137 | |
100% BS | 0.350649 | 0.000262 | 0.000134 | 0.000508 | 0.003454 | |
BS + 3% w/w bentonite | 0.041734 | 0.000262 | 0.847804 | 0.999555 | 0.000132 | |
BS + 3% w/w diatomite | 0.001931 | 0.000134 | 0.847804 | 0.672901 | 0.000132 | |
BS + 3% w/w biochar | 0.086758 | 0.000508 | 0.999555 | 0.672901 | 0.000132 | |
BS + 3% w/w compost | 0.000137 | 0.003454 | 0.000132 | 0.000132 | 0.000132 |
References
- Wong-Parodi, G. When climate change adaptation becomes a “looming threat″ to society: Exploring views and responses to California wildfires and public safety power shutoffs. Energy Res. Soc. Sci. 2020, 70, 101757. [Google Scholar] [CrossRef]
- Aponte, C.; de Groot, W.J.; Wotton, B.M. Forest fires and climate change: Causes, consequences and management options. Int. J. Wildland Fire 2016, 25. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H. Fire effects on soils: The human dimension. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150171. [Google Scholar] [CrossRef] [Green Version]
- Agoston, R. The effects of global climate change on fire service Human resource view. Procedia Eng. 2018, 211, 1–7. [Google Scholar] [CrossRef]
- Pereira, P.; Francos, M.; Brevik, E.C.; Taguas, E.; Bogunovic, I. Post-fire soil management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Pereira, P.; Cerdà, A.; Martin, D.A.; Úbeda, X.; Depellegrin, D.; Novara, A.; Martínez-Murillo, J.F.; Brevik, E.C.; Menshov, O.; Rodrigo-Comino, J.; et al. Short-term low-severity spring grassland fire impacts on soil extractable elements and soil ratios in Lithuania. Sci. Total Environ. 2017, 578, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Francos, M.; Úbeda, X.; Pereira, P.; Alcañiz, M. Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Sci. Total Environ. 2018, 615, 664–671. [Google Scholar] [CrossRef]
- Abraham, J.; Dowling, K.; Florentine, S.K. Controlled burn and immediate mobilization of potentially toxic elements in soil, from a legacy mine site in Central Victoria, Australia. Sci. Total Environ. 2018, 616, 1022–1034. [Google Scholar] [CrossRef]
- Pereira, P.; Úbeda, X. Spatial distribution of heavy metals released from ashes after a wildfire. J. Environ. Eng. Landsc. Manag. 2010, 18, 13–22. [Google Scholar] [CrossRef]
- De Santiago-Martín, A.; Van Oort, F.; González, C.; Quintana, J.R.; Lafuente, A.L.; Lamy, I. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils. Environ. Toxicol. Chem. 2015, 34, 37–44. [Google Scholar] [CrossRef]
- Faboya, O.L.; Sojinu, S.O.; Oguntuase, B.J.; Sonibare, O.O. Impact of forest fires on polycyclic aromatic hydrocarbon concentrations and stable carbon isotope compositions in burnt soils from tropical forest. Sci. Afr. 2020, 8, e00331. [Google Scholar] [CrossRef]
- Campos, I.; Abrantes, N.; Pereira, P.; Micaelo, A.C.; Vale, C.; Keizer, J.J. Forest fires as potential triggers for production and mobilization of polycyclic aromatic hydrocarbons to the terrestrial ecosystem. Land Degrad. Dev. 2019, 30, 2360–2370. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlachogianni, T. Ecotoxicity Test Methods and Ecological Risk Assessment. Aquatic and Terrestrial Ecotoxi-cology Tests under the Guidelines of International Organizations. Ecosystems 2015, 1, 1–29. [Google Scholar]
- Van der Vliet, L.; Velicogna, J.; Princz, J.; Scroggins, R. Phytotoxkit: A critical look at a rapid assessment tool. Environ. Toxicol. Chem. 2011, 31, 316–323. [Google Scholar] [CrossRef]
- Titah, H.S.; Purwanti, I.F.; Pratikno, H.; Chimayati, R.L.; Handayanu, H. Preliminary Phytotoxicity Test on Salinity Against Mangrove Plants of Rhizophora mucronate. J. Ecol. Eng. 2019, 20, 126–134. [Google Scholar] [CrossRef]
- Maiti, S.K.; Ahirwal, J. Ecological Restoration of Coal Mine Degraded Lands. Phytomanag. Pollut. Sites 2019, 83–111. [Google Scholar] [CrossRef]
- MicroBioTests Inc. Phytotoxkit. Seed Germination and Early Growth Microbiotest with Higher Plants; Standard Operation Procedure: Nazareth, Belgium, 2014. [Google Scholar]
- Barroso, P.M.; Vaverková, M.D. Fire Effects on Soils—A Pilot Scale Study on the Soils Affected by Wildfires in the Czech Republic. J. Ecol. Eng. 2020, 21, 248–256. [Google Scholar] [CrossRef]
- Blok, C.; Aguilera, M.; Van Os, E.A. Validation of a new phytotoxicity test (Phytotoxkit) against an established four-week growing test with pre-grown plant plugs. Acta Hortic. 2009, 819, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Svobodová, M.; Cagaš, B. Morphology and Life Cycle of Grasses. In Proceedings of the Professional Seminar Management of Football Turf, Prague, Czech Republic, 1 February 2013. (In Czech). [Google Scholar]
- Ehrenbergová, J. Varieties, Seeds and Seedlings, 1st ed.; Mendelova univerzita v Brně: Brno, Czech Republic, 2014; pp. 66–73. ISBN 978-80-7509-003-4. (In Czech) [Google Scholar]
- Schneider, H.; Mölder, I.; Annighöfer, P.; Terwei, A.; Zerbe, S.; Ammer, C. Pot experiments with woody species—A review. Forestry. Int. J. For. Res. 2014, 87, 482–491. [Google Scholar]
- Malinowski, M.; Wolny-Koładka, K.A.; Vaverková, M.D. Effect of biochar addition on the OFMSW composting process under real conditions. Waste Manag. 2019, 84, 364–372. [Google Scholar] [CrossRef]
- Khoeini, M.; Bazgir, S.; Tamizifar, M.; Nemati, A.; Arzani, K. Investigation of the modification process and morphology of organosilane modified nanoclay. Ceram. Silik. 2009, 53, 254–259. [Google Scholar]
- Radziemska, M.; Gusiatin, Z.M.; Bilgin, A. Potential of using immobilizing agents in aided phytostabilization on simulated con-tamination of soil with lead. Ecol. Eng. 2017, 102, 490–500. [Google Scholar] [CrossRef]
- Beschta, R.L.; Rhodes, J.J.; Kauffman, J.B.; Gresswell, R.E.; Minshall, G.W.; Karr, J.R.; Perry, D.A.; Hauer, F.R.; Frissell, C.A. Postfire Management on Forested Public Lands of the Western United States. Conserv. Biol. 2004, 18, 957–967. [Google Scholar] [CrossRef]
- Aksakal, E.; Angin, I.; Taşkın, Ö. Effects of diatomite on soil physical properties. Catena 2012, 88, 1–5. [Google Scholar] [CrossRef]
- Angin, I.; Kose, M.; Aslantaş, R. Effect of diatomite on growth of strawberry. Pak. J. Bot. 2011, 43, 573–577. [Google Scholar]
- Wang, M.; Zhu, Y.; Cheng, L.; Andserson, B.; Zhao, X.; Wang, D.; Ding, A. Review on utilization of biochar for met-al-contaminated soil and sediment remediation. J. Environ. Sci. 2018, 63, 156–173. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars′ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Poll. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Visioli, G.; Conti, F.D.; Menta, C.; Bandiera, M.; Malcevschi, A.; Jones, D.L.; Vamerali, T. Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays. Environ. Monit. Assess. 2016, 188, 166. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Yu, B.; Luo, K.; Liu, X.; Bai, L. Reduced sulfentrazone phytotoxicity through increased adsorption and anionic species in biochar-amended soils. Environ. Sci. Pollut. Res. 2016, 23, 9956–9963. [Google Scholar] [CrossRef]
- Guerrero, C.; Gómez, I.; Moral, R.; Mataix-Solera, J.; Mataix-Beneyto, J.; Hernández, T. Reclamation of a burned forest soil with municipal waste compost: Macronutrient dynamic and improved vegetation cover recovery. Bioresour. Technol. 2001, 76, 221–227. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Cai, P.; Liang, W.; Huang, Q. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J. Hazard. Mater. 2009, 163, 563–567. [Google Scholar] [CrossRef]
- Yu, H.Y.; Ding, W.X.; Luo, J.F.; Donnison, A.; Zhang, J.B. Long-term effect of compost and inorganic fertilizer on activities of carbon-cycle enzymes in aggregates of an intensively cultivated sandy loam. Soil Use Manag. 2012, 28, 347–360. [Google Scholar] [CrossRef]
- Elbl, J.; Sláma, P.; Vaverková, M.D.; Plošek, L.; Adamcová, D.; Škarpa, P.; Kynický, J.; Havlíček, Z.; Dvořáčková, H.; Brtnický, M.; et al. Jatropha seed cake and organic waste compost: The potential for improvement of soil fertility. Ecol. Chem. Eng. S 2016, 23, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Vítězová, M.; Mach, P.; Vítěz, T.; Lošák, T. Development of microbial community in the course of composting of garden waste. Acta Univ. Agric. Silvic. Mendel. Brun. 2012, 60, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Zhang, X.C. Effect of Biochar on pH of Alkaline Soils in the Loess Plateau: Results from Incubation Experiments. Int. J. Agric. Biol. 2012, 14, 745–750. [Google Scholar]
- Castro, A.; González-Prieto, S.J.; Villar, M.C.; Carballas, T. Lowest effective and optimum poultry manure dose for reclaiming burnt soils: Pot experiments. Biol. Fertil. Soils 2000, 32, 494–499. [Google Scholar] [CrossRef]
- Villar, M.; Petříková, V.; Díaz-Raviña, M.; Carballas, T. Recycling of organic wastes in burnt soils: Combined application of poultry manure and plant cultivation. Waste Manag. 2004, 24, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Vaverková, M.D.; Adamcová, D. Can Vegetation Indicate a Municipal Solid Waste Landfill′s Impact on the Environment? Pol. J. Environ. Stud. 2014, 23, 501–509. [Google Scholar]
- Vaverková, M.D.; Adamcová, D. Long-Term Temperature Monitoring of a Municipal Solid Waste Landfill. Pol. J. Environ. Stud. 2015, 24, 1373–1378. [Google Scholar] [CrossRef]
Treatment | Tested Plant Species | Model Soil |
---|---|---|
100% BS | Sinapis alba L., Lepidium sativum L. | OECD |
BS + 3% w/w biochar | Sinapis alba L., Lepidium sativum L. | OECD/BS |
BS + 6% w/w biochar | Sinapis alba L., Lepidium sativum L. | OECD/BS |
BS + 9% w/w biochar | Sinapis alba L., Lepidium sativum L. | OECD/BS |
BS + 15% w/w biochar | Sinapis alba L., Lepidium sativum L. | OECD/BS |
BS + 3% w/w compost | Lepidium sativum L. | OECD/BS |
BS + 6% w/w compost | Lepidium sativum L. | OECD/BS |
BS + 9% w/w compost | Lepidium sativum L. | OECD/BS |
BS + 15% w/w compost | Lepidium sativum L. | OECD/BS |
BS + 3% w/w diatomite | Sinapis alba L. | OECD/BS |
BS + 6% w/w diatomite | Sinapis alba L. | OECD/BS |
BS + 9% w/w diatomite | Sinapis alba L. | OECD/BS |
BS + 15% w/w diatomite | Sinapis alba L. | OECD/burn soil |
Treatment | Description | Total No. of Repetition | Indicator Plant |
---|---|---|---|
100% unburnt soil | Soil collected from a place adjacent to the fire-affected area | 3 for each indicator plant | Lolium perenne L., Festuca rubra L., Brassica juncea L. |
100% burnt soil | Control | 3 for each indicator plant | Lolium perenne L., Festuca rubra L., Brassica juncea L. |
Burnt soil amended with 3% w/w bentonite | 6 g of bentonite per pot | 3 for each indicator plant | Lolium perenne L., Festuca rubra L., Brassica juncea L. |
Burnt soil amended with 3% w/w diatomite | 6 g of diatomite per pot | 3 for each indicator plant | Lolium perenne L., Festuca rubra L., Brassica juncea L. |
Burnt soil amended with 3% w/w biochar | 6 g of biochar per pot | 3 for each indicator plant | Lolium perenne L., Festuca rubra L., Brassica juncea L. |
Soil Amendment | Chemical Composition |
---|---|
Bentonite | SiO2—61.28% w/w; Fe2O3—17.79% w/w; Al2O5—13.01% w/w; CaO—4.54% w/w; Na2O—2.70% w/w; MgO—2.10% w/w; K2O—1.24% w/w [23] |
Biochar | Carbon—80.97% d.m.; Nitrogen—0.61% d.m.; Cd—0.5 mg·kg−1 d.m.; Cr—0.1 mg·kg−1 d.m.; Cu—6.8 mg·kg−1 d.m. [24] |
Compost | C:N max 30; Cd—2 mg·kg−1; Pb—100 mg·kg−1; Hg—1 mg·kg−1; As—20 mg·kg−1; Cr—100 mg·kg−1; Mo—20 mg·kg−1; Ni—50 mg·kg−1; Cu—150 mg·kg−1; Zn—600 mg·kg−1 |
Diatomite | SiO2—54.72% w/w; Fe2O3—25.50% w/w; Al2O5—14.82% w/w; C2O—4.18% w/w; MgO—0.79% w/w [25] |
Treatment | After 3 Days | After 6 Days | ||||
---|---|---|---|---|---|---|
Stimul. Inhibition (%) | ±SE | HSD * | Stimul. Inhibition (%) | ±SE | HSD * | |
100% BS | 9.23 | 1.04 | C | −9.57 | 3.17 | A |
BS + 3% w/w diatomite | 30.66 | 6.41 | B,C | −5.73 | 4.07 | A |
BS + 6% w/w diatomite | 23.37 | 5.44 | B,C | 12.72 | 8.77 | A |
BS + 9% w/w diatomite | 26.94 | 6.64 | B,C | −0.17 | 4.26 | A |
BS + 15% w/w diatomite | 31.68 | 6.93 | B,C | 9.97 | 8.66 | A |
BS + 3% w/w biochar | 16.17 | 3.58 | A,B | 8.92 | 5.30 | A |
BS + 6% w/w biochar | 26.48 | 2.52 | B,C | 3.02 | 4.90 | A |
BS + 9% w/w biochar | 18.11 | 2.07 | B,C | 7.52 | 3.96 | A |
BS + 15% w/w biochar | 29.39 | 8.63 | A,B | −2.01 | 8.68 | A |
Treatment | After 3 Days | After 6 Days | ||||
---|---|---|---|---|---|---|
Stimul. Inhibition (%) | ±SE | HSD * | Stimul. Inhibition (%) | ±SE | HSD * | |
BS + 3% w/w diatomite | 23.61 | 7.06 | A | 16.87 | 4.83 | A |
BS + 6% w/w diatomite | 15.57 | 5.99 | A | 11.49 | 4.47 | A |
BS + 9% w/w diatomite | 19.51 | 7.32 | A | 15.60 | 3.61 | A |
BS + 15% w/w diatomite | 24.73 | 7.64 | A | 6.90 | 7.92 | A |
BS + 3% w/w biochar | 7.64 | 3.94 | A | 3.51 | 3.72 | A |
BS + 6% w/w biochar | 19.00 | 2.78 | A | 20.34 | 8.00 | A |
BS + 9% w/w biochar | 9.78 | 2.28 | A | 8.58 | 3.89 | A |
BS + 15% w/w biochar | 22.20 | 9.51 | A | 17.83 | 7.90 | A |
Treatment | After 3 Days | After 6 Days | ||||
---|---|---|---|---|---|---|
Stimul. Inhibition (%) | ±SE | HSD | Stimul. Inhibition (%) | ±SE | HSD | |
100% BS | −4.42 | 6.81 | A | 19.01 | 6.91 | A |
BS + 3% w/w compost | 6.14 | 17.38 | A | 24.03 | 3.95 | A |
BS + 6% w/w compost | 21.01 | 5.96 | A | 25.36 | 7.51 | A * |
BS + 9% w/w compost | 22.48 | 9.64 | A | 29.23 | 10.07 | A |
BS + 15% w/w compost | 12.65 | 12.89 | A | 24.09 | 9.47 | A |
BS + 3% w/w biochar | −2.33 | 10.98 | A | 18.70 | 12.06 | A |
BS + 6% w/w biochar | 7.13 | 7.13 | A | 24.55 | 4.15 | A * |
BS + 9% w/w biochar | 8.60 | 5.90 | A | 30.78 | 5.65 | A * |
BS + 15% w/w biochar | 12.29 | 20.27 | A | 34.56 | 8.00 | A |
Treatment | After 3 Days | After 6 Days | ||||
---|---|---|---|---|---|---|
Stimul. Inhibition (%) | ±SE | HSD * | Stimul. Inhibition (%) | ±SE | HSD * | |
BS + 3% w/w compost | 10.12 | 16.64 | A | 6.21 | 4.88 | A |
BS + 6% w/w compost | 24.35 | 5.71 | A | 7.85 | 9.28 | A |
BS + 9% w/w compost | 25.76 | 9.24 | A | 12.62 | 12.44 | A |
BS + 15% w/w compost | 16.35 | 12.34 | A | 6.28 | 11.69 | A |
BS + 3% w/w biochar | 2.00 | 10.51 | A | −8.42 | 16.25 | A |
BS + 6% w/w biochar | 11.06 | 6.83 | A | 6.85 | 5.12 | A |
BS + 9% w/w biochar | 12.94 | 5.90 | A | 7.99 | 7.55 | A |
BS + 15% w/w biochar | 16.00 | 19.41 | A | 12.91 | 10.75 | A |
Sample | pH [-] |
---|---|
100% unburnt soil | 7.62 |
100% burnt soil | 7.60 |
Burnt soil amended with 3% w/w bentonite | 7.55 |
Burnt soil amended with 3% w/w diatomite | 7.61 |
Burnt soil amended with 3% w/w biochar | 7.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barroso, P.M.; Vaverková, M.D.; Elbl, J. Assessing the Ecotoxicity of Soil Affected by Wildfire. Environments 2021, 8, 3. https://doi.org/10.3390/environments8010003
Barroso PM, Vaverková MD, Elbl J. Assessing the Ecotoxicity of Soil Affected by Wildfire. Environments. 2021; 8(1):3. https://doi.org/10.3390/environments8010003
Chicago/Turabian StyleBarroso, Petra Martínez, Magdalena Daria Vaverková, and Jakub Elbl. 2021. "Assessing the Ecotoxicity of Soil Affected by Wildfire" Environments 8, no. 1: 3. https://doi.org/10.3390/environments8010003
APA StyleBarroso, P. M., Vaverková, M. D., & Elbl, J. (2021). Assessing the Ecotoxicity of Soil Affected by Wildfire. Environments, 8(1), 3. https://doi.org/10.3390/environments8010003