Source Apportionment of PM2.5, PAH and Arsenic Air Pollution in Central Bohemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Laboratory Analyses
- gravimetric analysis: PM2.5 mass
- thermo-optical transmission: organic and elemental carbon (OC/EC)
- spectrometric analysis: ammonia (NH4+)
- optical emission spectrometry with inductively coupled plasma (ICP-OES): Na+, K+, Ca2+, Mg2+
- ion chromatography with conductivity detection (IC-CD): sulfates and nitrates (SO42−, NO3−)
- gas chromatography with mass detection (GC-MS). The internal standard method is used to determine the concentrations of analytes:
- ○
- PAH (benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbF), benzo[e]pyrene (BeP), benzo[ghi]perylene (BghiPRL), benzo[j]fluoranthene (BjF), benzo[k]fluoranthene (BkF), coronene (COR), chrysene (CRY), fluoranthene (FLU), indeno [1,2,3-cd]pyrene (I123cdP), picene (PIC), perylene (PRL), pyrene (PYR), retene (RET)),
- ○
- hopanes (17α(H)-22,29,30-trisnorhopane, 17α(H),21β(H)-30-norhopane, 17α(H),21β(H)-hopane, 17β(H),21α(H)-hopane, 22S-17α(H),21β(H)- homohopane, 22R-17α(H),21β(H)-homohopane),
- ○
- steranes (ααα 20S-cholestane, αββ (20R)-cholestane, ααα 20R-cholestane, αββ 20R 24S-methylcholestane, αββ 20R 24R-ethylcholestane, ααα 20R 24R-ethylcholestane)
- high-performance anion-exchange chromatography with pulsed amperometric detection (IC HPAE-PAD): levoglucosan, mannosan, galactosan
- energy dispersive X-ray fluorescence (ED XRF): Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd, Sb, Ba, Pb, Cl
- continuous analyzer measurement:
- ○
- UV-fluorescence (Teledyne Advanced Pollution Instrumentation T100): SO2
- ○
- chemiluminescence (Teledyne Advanced Pollution Instrumentation T200): nitrogen oxides (NO, NO2, NOx)
- ○
- optoelectronic method (FIDAS 200): PM2.5
3. Results
3.1. Wind Speed and Direction at the Sampling Sites
3.2. Measured Concentrations
3.3. Positive Matrix Factorization (PMF) Model Results
3.4. Identified PMF Factors
4. Discussion
4.1. Discussion of PMF Results Interpretation
4.2. Discussion on Organic Molecular Markers Concentrations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- CHMI. Air Pollution in the Czech Republic in 2019, 1st ed.; Czech Hydrometeorological Institute: Prague, Czech Republic, 2020; ISBN 9788076530133. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/19groc/gr19en/19_rocenka_uko_EN_v3.pdf (accessed on 25 May 2021).
- CHMI. Air Pollution and Atmospheric Deposition in Data, the Czech Republic, 2016. Summary Tabular Survey. 2017. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2016_enh/index_GB.html (accessed on 25 May 2021).
- CHMI. Air Pollution and Atmospheric Deposition in Data, the Czech Republic, 2017. Summary Tabular Survey. 2018. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2017_enh/index_GB.html (accessed on 25 May 2021).
- CHMI. Air Pollution and Atmospheric Deposition in Data, the Czech Republic, 2018. Summary Tabular Survey. 2019. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2018_enh/index_GB.html (accessed on 25 May 2021).
- CHMI. Air Pollution and Atmospheric Deposition in Data, the Czech Republic, 2019. Summary Tabular Survey. 2020. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2019_enh/index_GB.html (accessed on 25 May 2021).
- Zákon, Č. 201/2012 Sb. ze dne 2. Května 2012 o Ochraně Ovzduší (Act No. 201/2012 Coll. of 2 May 2012 on Air Protection); Tiskárna Ministerstva vnitra: Praha, Czech Republic, 2012; pp. 2785–2848. (In Czech) [Google Scholar]
- CHMI. Air Pollution in the Czech Republic in 2016, 1st ed.; Czech Hydrometeorological Institute: Prague, Czech Republic, 2017; ISBN 9788087577721. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/16groc/gr16en/KO_rocenka_2016.pdf (accessed on 25 May 2021).
- TAČR (Technology Agency of the Czech Republic). Analysis of PAH and Selected Organic Markers from Ambient Air in Small Municipalities. Project from Programme BETA 2 Is Realized in Years 2018–2021 (Measurement and Analysis of Air Pollution with Emphasis on Evaluating the Share of Individual Groups of Sources. TITSMZP704). 2018. Available online: https://starfos.tacr.cz/en/result/RIV%2F00020699%3A_____%2F19%3AN0000194 (accessed on 11 October 2021).
- TAČR (Technology Agency of the Czech Republic). Evaluation of the Effectiveness of Air Quality Improvement Programs in Small Settlements—Winter 2017/2018—Summary Report on Measurement Results and Basic Evaluation of Results. Project from Programme BETA2 Is Realized in Years 2018–2021 (Measurement and Analysis of Air Pollution with Emphasis on Evaluating the Share of Individual Groups of Sources. TITSMZP704). 2018. Available online: https://starfos.tacr.cz/cs/result/RIV%2F00020699%3A_____%2F18%3AN0000184 (accessed on 11 October 2021).
- CHMI. Air Pollution in the Czech Republic in 2017, 1st ed.; Czech Hydrometeorological Institute: Prague, Czech Republic, 2018; ISBN 9788087577837. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/17groc/gr17en/KO_rocenka_2017.pdf (accessed on 25 May 2021).
- CHMI. Air Pollution in the Czech Republic in 2018, 1st ed.; Czech Hydrometeorological Institute: Prague, Czech Republic, 2019; ISBN 9788087577950. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/18groc/gr18en/KO_rocenka_2018.pdf (accessed on 25 May 2021).
- TAČR (Technology Agency of the Czech Republic). Measurement and Analysis of Air Pollution with Emphasis on Evaluating the Share of Individual Groups of Sources. TITSMZP704, Project from Programme BETA 2 Is Realized in Years 2018–2021. 2018. Available online: https://starfos.tacr.cz/en/project/TITSMZP704#project-main (accessed on 11 October 2021).
- Road and Motorway Directorate of the Czech Republic. National Traffic Census. 2016. Available online: http://scitani2016.rsd.cz/pages/informations/default.aspx (accessed on 9 August 2021).
- Contini, D.; Cesari, D.; Conte, M.; Donateo, A. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Sci. Total Environ. 2016, 560, 131–140. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. Positive Matrix Factorization (PMF), Fundamentals and User Guide; U. S. EPA: Washington, DC, USA, 2014. Available online: https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf (accessed on 9 August 2021).
- Lebrato, M.; Garbe-Schönberg, D.; Müller, M.N.; Blanco-Ameijeiras, S.; Feely, R.A.; Lorenzoni, L.; Molinero, J.-C.; Bremer, K.; Jones, D.O.B.; Iglesias-Rodriguez, D.; et al. Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean. Proc. Natl. Acad. Sci. USA 2020, 117, 22281. [Google Scholar] [CrossRef]
- Amato, F.; Alastuey, A.; de la Rosa, J.; Gonzalez Castanedo, Y.; Sánchez de la Campa, A.M.; Pandolfi, M.; Lozano, A.; Contreras González, J.; Querol, X. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. Atmos. Chem. Phys. 2014, 14, 3533–3544. [Google Scholar] [CrossRef] [Green Version]
- Bouška, V.; Pešek, J. Quality parameters of lignite of the North Bohemian Basin in the Czech Republic in comparison with the world average lignite. Int. J. Coal Geol. 1999, 40, 211–235. [Google Scholar] [CrossRef]
- Pešek, J.; Bencko, V.; Sýkorová, I.; Vašíček, M.; Michna, O.; Martínek, K. Some trace elements in coal of the Czech Republic, Environment and health protection implications. Cent. Eur. J. Public Health 2005, 2005, 153–158. [Google Scholar]
- Ehrnsperger, L.; Klemm, O. Source Apportionment of Urban Ammonia and its Contribution to Secondary Particle Formation in a Mid-size European City. Aerosol Air Qual. Res. 2021, 21, 200404. [Google Scholar] [CrossRef]
- The European Pollutant Release and Transfer Register (E-PRTR). Available online: https://www.eea.europa.eu/data-and-maps/data/industrial-reporting-under-the-industrial-3 (accessed on 10 August 2021).
- EP Power Europe (EPPE). Available online: https://www.eppowereurope.cz/en/business-areas/prehled-segmentu/ (accessed on 10 August 2021).
- Germany Looks to Step Up Coal Exit Timetable. Available online: https://ednh.news/germany-looks-to-step-up-coal-exit-timetable/ (accessed on 10 August 2021).
- IARC. Vol 105: Diesel and gasoline engine exhaust and some nitroarenes. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2013; Volume 105. [Google Scholar]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Dyke, P.H.; Foan, C.; Fiedler, H. PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere 2003, 50, 469–480. [Google Scholar] [CrossRef]
- Directive 2004/107/EC of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32004L0107 (accessed on 11 October 2021).
- Schauer, C.; Niessner, R.; Poschl, U. Polycyclic aromatic hydrocarbons in urban air particulate matter: Decadal and seasonal trends, chemical degradation, and sampling artifacts. Environ. Sci. Technol. 2003, 37, 2861–2868. [Google Scholar] [CrossRef]
- Alves, C.A. Characterisation of solvent extractable organic constituents in atmospheric particulate matter: An overview. An. Acad. Bras. Cienc. 2008, 80, 21–82. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.; Martins, N.; Tavares, J.; Pio, C.; Cerqueira, M.; Matos, M.; Silva, H.; Oliveira, C.; Camöes, F. Size distribution of polycyclic aromatic hydrocarbons in a roadway tunnel in Lisbon, Portugal. Chemosphere 2011, 83, 1588–1596. [Google Scholar] [CrossRef]
- Křůmal, K.; Mikuška, P.; Horák, J.; Hopan, F.; Kubaňová, L. Influence of boiler output and type on gaseous and particulate emissions from the combustion of coal for residential heating. Chemosphere 2021, 278, 130402. [Google Scholar] [CrossRef] [PubMed]
- Cecinato, A.; Guerriero, E.; Balducci, C.; Muto, V. Use of the PAH fingerprints for identifying pollution sources. Urban Clim. 2014, 10, 630–633. [Google Scholar] [CrossRef]
- Finardi, S.; Radice, P.; Cecinato, A.; Gariazzo, C.; Gherardi, M.; Romagnoli, P. Seasonal variation of PAHs concentration and source attribution through diagnostic ratios analysis. Urban Clim. 2017, 22, 19–34. [Google Scholar] [CrossRef]
- Simoneit, B.R.T. A review of biomarker compounds as source indicators and tracers for air pollution. Environ. Sci. Pollut. Res. 1999, 6, 159–169. [Google Scholar] [CrossRef]
- Schauer, J.J.; Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 1996, 30, 3837–3855. [Google Scholar] [CrossRef]
- Oros, D.R.; Simoneit, B.R.T. Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel 2000, 79, 515–536. [Google Scholar] [CrossRef]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.; Cass, G.R.; Simoneit, B.R.T. Sources of fine organic aerosol: 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol. 1993, 27, 636–651. [Google Scholar] [CrossRef]
- Fine, P.M.; Cass, G.R.; Simoneit, B.R.T. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the midwestern and western United States. Environ. Eng. Sci. 2004, 21, 387–409. [Google Scholar] [CrossRef]
- Engling, G.; Carrico, C.M.; Kreidenweis, S.M.; Collett, J.L., Jr.; Day, D.E.; Malm, W.C.; Lincoln, W.C.; Hao, W.M.; Iinuma, Y.; Herrmann, H. Determination of levoglucosan in biomass combustion aerosol by high-performance anionexchange chromatography with pulsed amperometric detection. Atmos. Environ. 2016, 40, 299–311. [Google Scholar] [CrossRef]
- Schmidl, C.; Marr, I.L.; Caseiro, A.; Kotianová, P.; Berner, A.; Bauer, H.; Kasper-Giebl, A.; Puxbaum, H. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmos. Environ. 2018, 42, 126–141. [Google Scholar] [CrossRef]
- Oros, D.R.; Radzi bin Abas, M.; Omar, N.Y.M.J.; Rahman, N.A.; Simoneit, B.R.T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning: 3. Grasses. Appl. Geochem. 2006, 21, 919–940. [Google Scholar] [CrossRef]
- Fabbri, D.; Torri, C.; Simoneit, B.R.T.; Marynowski, L.; Rushdi, A.I.; Fabiańska, M.J. Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmos. Environ. 2009, 43, 2286–2295. [Google Scholar] [CrossRef]
Species | Summer | winter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Min (ng·m−3) | Max (ng·m−3) | Median (ng·m−3) | Percent BDL | Percent Missing | Min (ng·m−3) | Max (ng·m−3) | Median (ng·m−3) | Percent BDL | Percent Missing | |
PM2.5 | 5.2 × 103 | 2.8 × 104 | 1.2 × 104 | 0% | 0% | 1.6 × 103 | 7.8 × 104 | 2.1 × 104 | 0% | 0% |
OC | 1.6 × 103 | 8.3 × 103 | 3.4 × 103 | 0% | 13% | 1.7 × 103 | 3.7 × 104 | 6.8 × 103 | 0% | 1% |
EC | 5.7 × 101 | 8.2 × 102 | 2.7 × 102 | 0% | 13% | 2.5 × 102 | 1.1 × 104 | 1.8 × 103 | 0% | 1% |
OC1 | 5.2 × 102 | 2.8 × 103 | 1.1 × 103 | 0% | 13% | 5.6 × 102 | 1.7 × 104 | 2.0 × 103 | 0% | 1% |
OC2 | 2.1 × 102 | 1.7 × 103 | 5.9 × 102 | 0% | 13% | 2.4 × 102 | 5.3 × 103 | 8.7 × 102 | 0% | 1% |
OC3 | 2.5 × 102 | 2.2 × 103 | 6.7 × 102 | 0% | 13% | 2.9 × 102 | 3.6 × 103 | 9.8 × 102 | 0% | 1% |
OC4 | 2.2 × 102 | 8.3 × 102 | 4.6 × 102 | 0% | 13% | 2.0 × 102 | 1.7 × 103 | 7.6 × 102 | 0% | 1% |
EC1 | 1.0 × 102 | 1.3 × 103 | 3.2 × 102 | 0% | 13% | 2.4 × 102 | 8.4 × 103 | 2.0 × 103 | 0% | 1% |
EC2 | 6.7 × 101 | 7.3 × 102 | 2.1 × 102 | 0% | 13% | 2.1 × 102 | 7.7 × 103 | 1.6 × 103 | 0% | 1% |
EC3 | 6.2 × 101 | 6.3 × 102 | 2.2 × 102 | 0% | 13% | 2.1 × 101 | 1.1 × 103 | 3.2 × 102 | 0% | 1% |
EC4 | 8.2 × 100 | 1.5 × 102 | 2.8 × 101 | 0% | 13% | −1.3 × 101 | 4.0 × 102 | 7.7 × 101 | 0% | 1% |
Ca2+ | 1.1 × 102 | 3.1 × 102 | 1.7 × 102 | 0% | 0% | 6.2 × 101 | 6.0 × 102 | 1.5 × 102 | 0% | 0% |
K+ | 1.5 × 101 | 8.3 × 102 | 1.1 × 102 | 0% | 0% | 3.9 × 101 | 6.3 × 102 | 1.7 × 102 | 0% | 0% |
Mg2+ | 2.0 × 101 | 1.3 × 102 | 4.7 × 101 | 0% | 0% | 2.4 × 101 | 1.3 × 102 | 5.0 × 101 | 0% | 0% |
Na+ | 1.3 × 102 | 1.4 × 103 | 8.4 × 102 | 0% | 0% | 5.0 × 102 | 1.2 × 103 | 8.0 × 102 | 0% | 0% |
NH4+ | 8.1 × 10−1 | 1.5 × 103 | 4.0 × 102 | 0% | 0% | 4.9 × 101 | 4.0 × 103 | 1.3 × 103 | 0% | 0% |
NO3− | 1.6 × 102 | 1.2 × 103 | 4.0 × 102 | 0% | 0% | 3.3 × 102 | 1.1 × 104 | 2.5 × 103 | 0% | 0% |
SO42− | 7.0 × 102 | 6.3 × 103 | 2.1 × 103 | 0% | 0% | 5.2 × 102 | 7.1 × 103 | 1.9 × 103 | 0% | 0% |
Al | 9.7 × 101 | 4.5 × 102 | 1.8 × 102 | 63% | 0% | 3.2 × 101 | 3.7 × 102 | 4.6 × 101 | 0% | 0% |
As | 2.1 × 100 | 8.9 × 100 | 2.1 × 100 | 24% | 0% | 9.7 × 10−1 | 1.3 × 102 | 7.6 × 100 | 0% | 0% |
Ba | 4.2 × 10−1 | 1.2 × 101 | 2.6 × 100 | 3% | 0% | 1.5 × 10−1 | 6.6 × 100 | 1.2 × 100 | 0% | 0% |
Ca | 8.4 × 100 | 4.4 × 102 | 8.4 × 101 | 75% | 0% | 4.5 × 100 | 6.3 × 102 | 3.4 × 101 | 0% | 0% |
Cl | N/A | N/A | N/A | 0% | 100% | 3.9 × 101 | 1.6 × 103 | 1.9 × 102 | 0% | 0% |
Cr | 6.7 × 100 | 8.3 × 100 | 7.5 × 100 | 75% | 0% | 1.3 × 10−1 | 4.4 × 100 | 5.3 × 10−1 | 0% | 0% |
Cu | 4.4 × 10−1 | 8.7 × 100 | 1.5 × 100 | 31% | 0% | 8.7 × 10−1 | 1.2 × 101 | 3.4 × 100 | 0% | 0% |
Fe | 1.6 × 101 | 2.7 × 102 | 9.6 × 101 | 92% | 0% | 6.0 × 100 | 6.5 × 102 | 5.5 × 101 | 0% | 0% |
K | 8.9 × 100 | 3.7 × 102 | 6.3 × 101 | 76% | 0% | 3.2 × 101 | 6.0 × 102 | 2.0 × 102 | 0% | 0% |
Mg | 1.7 × 101 | 1.1 × 102 | 4.6 × 101 | 23% | 0% | 7.7 × 100 | 2.9 × 102 | 3.9 × 101 | 0% | 0% |
Mn | 5.5 × 10−1 | 6.3 × 100 | 2.1 × 100 | 10% | 0% | 1.5 × 10−1 | 1.2 × 101 | 1.8 × 100 | 0% | 0% |
Na | 4.9 × 100 | 1.1 × 102 | 2.9 × 101 | 11% | 0% | 1.6 × 101 | 2.0 × 102 | 5.8 × 101 | 0% | 0% |
Ni | 4.1 × 10−1 | 1.1 × 100 | 4.1 × 10−1 | 5% | 0% | 3.1 × 10−2 | 1.6 × 100 | 2.1 × 10−1 | 0% | 0% |
Pb | 6.9 × 10−1 | 2.0 × 101 | 1.8 × 100 | 24% | 0% | 1.9 × 100 | 4.6 × 101 | 1.2 × 101 | 0% | 1% |
S | 1.4 × 102 | 1.2 × 103 | 4.5 × 102 | 14% | 0% | 1.8 × 102 | 2.2 × 103 | 8.3 × 102 | 0% | 0% |
Sb | 1.1 × 10−1 | 2.9 × 100 | 6.0 × 10−1 | 24% | 0% | 1.9 × 101 | 1.3 × 102 | 2.7 × 101 | 0% | 0% |
Se | 3.0 × 10−1 | 1.9 × 100 | 8.8 × 10−1 | 8% | 0% | 7.8 × 10−2 | 3.1 × 100 | 7.8 × 10−1 | 0% | 0% |
Ti | 8.2 × 10−1 | 3.0 × 101 | 8.0 × 100 | 10% | 0% | 9.4 × 10−2 | 5.4 × 101 | 2.6 × 100 | 0% | 0% |
V | 2.8 × 10−1 | 1.8 × 100 | 2.8 × 10−1 | 0% | 0% | 2.7 × 10−2 | 2.2 × 100 | 2.6 × 10−1 | 0% | 0% |
Zn | 1.5 × 100 | 2.3 × 101 | 6.1 × 100 | 24% | 0% | 4.8 × 100 | 2.0 × 102 | 2.3 × 101 | 0% | 0% |
BaA | 1.5 × 10−2 | 3.5 × 10−1 | 1.5 × 10−2 | 74% | 0% | 2.4 × 10−1 | 4.3 × 101 | 3.7 × 100 | 0% | 0% |
BaP | 1.5 × 10−2 | 3.9 × 10−1 | 1.5 × 10−2 | 64% | 0% | 1.8 × 10−1 | 2.4 × 101 | 2.4 × 100 | 0% | 0% |
BbF | 1.5 × 10−2 | 4.4 × 10−1 | 4.0 × 10−2 | 36% | 0% | 3.7 × 10−1 | 1.8 × 101 | 2.8 × 100 | 0% | 0% |
BeP | 1.5 × 10−2 | 3.1 × 10−1 | 1.5 × 10−2 | 66% | 0% | 2.1 × 10−1 | 1.0 × 101 | 1.5 × 100 | 0% | 0% |
BghiPRL | 1.5 × 10−2 | 3.6 × 10−1 | 5.0 × 10−2 | 33% | 0% | 4.0 × 10−2 | 1.5 × 101 | 2.0 × 100 | 0% | 0% |
BjF | 1.5 × 10−2 | 2.7 × 10−1 | 1.5 × 10−2 | 81% | 0% | 2.0 × 10−1 | 1.2 × 101 | 1.6 × 100 | 0% | 0% |
BkF | 1.5 × 10−2 | 2.1 × 10−1 | 1.5 × 10−2 | 76% | 0% | 1.8 × 10−1 | 1.1 × 101 | 1.4 × 100 | 0% | 0% |
Coronene | 2.0 × 10−2 | 1.4 × 10−1 | 2.0 × 10−2 | 93% | 0% | 5.0 × 10−2 | 3.6 × 100 | 4.8 × 10−1 | 0% | 0% |
Chrysene | 1.5 × 10−2 | 3.0 × 10−1 | 1.5 × 10−2 | 59% | 0% | 2.6 × 10−1 | 3.1 × 101 | 3.5 × 100 | 0% | 0% |
Fluoranthene | 4.0 × 10−2 | 1.3 × 100 | 4.0 × 10−2 | 57% | 0% | 4.1 × 10−1 | 3.7 × 101 | 3.5 × 100 | 0% | 0% |
I123cdP | 1.5 × 10−2 | 4.3 × 10−1 | 5.0 × 10−2 | 33% | 0% | 3.2 × 10−1 | 2.2 × 101 | 2.7 × 100 | 0% | 0% |
Perylene | 1.5 × 10−2 | 8.0 × 10−2 | 1.5 × 10−2 | 99% | 0% | 5.0 × 10−2 | 4.4 × 100 | 5.0 × 10−1 | 0% | 0% |
Picene | 2.0 × 10−2 | 5.0 × 10−2 | 2.0 × 10−2 | 97% | 0% | 3.0 × 10−2 | 5.0 × 100 | 5.7 × 10−1 | 0% | 0% |
Pyrene | 3.0 × 10−2 | 5.0 × 10−1 | 3.0 × 10−2 | 74% | 0% | 3.6 × 10−1 | 3.7 × 101 | 3.6 × 100 | 0% | 0% |
Retene | 3.0 × 10−2 | 1.1 × 10−1 | 3.0 × 10−2 | 98% | 0% | 1.9 × 10−1 | 3.0 × 101 | 1.6 × 100 | 0% | 0% |
17α(H),21β(H)-22R-Homohopane | 3.5 × 10−2 | 2.2 × 10−1 | 3.5 × 10−2 | 14% | 0% | 1.4 × 10−1 | 1.5 × 101 | 1.8 × 100 | 0% | 0% |
17α(H),21β(H)-22S-Homohopane | 3.5 × 10−2 | 2.7 × 10−1 | 3.5 × 10−2 | 22% | 0% | 3.5 × 10−2 | 2.0 × 100 | 2.8 × 10−1 | 0% | 0% |
17α(H),21β(H)-30-Norhopane | 5.5 × 10−2 | 3.2 × 10−1 | 1.1 × 10−1 | 75% | 0% | 1.0 × 10−1 | 5.3 × 100 | 8.1 × 10−1 | 0% | 0% |
17α(H),21β(H)-Hopane | 7.0 × 10−2 | 5.0 × 10−1 | 1.4 × 10−1 | 68% | 0% | 5.5 × 10−2 | 4.3 × 100 | 6.5 × 10−1 | 0% | 0% |
17α(H)-22,29,30-Trisnorhopane | 3.5 × 10−2 | 1.3 × 10−1 | 3.5 × 10−2 | 19% | 0% | 7.0 × 10−2 | 4.3 × 100 | 6.5 × 10−1 | 0% | 0% |
17β(H),21α(H)-Hopane | 3.5 × 10−2 | 9.0 × 10−2 | 3.5 × 10−2 | 17% | 0% | 8.0 × 10−2 | 4.0 × 100 | 5.9 × 10−1 | 0% | 0% |
ααα 20R-Cholestane | 3.5 × 10−2 | 7.1 × 10−1 | 3.5 × 10−2 | 69% | 0% | 3.5 × 10−2 | 1.7 × 10−1 | 3.5 × 10−2 | 7% | 0% |
ααα 20R 24R-Ethylcholestane | 3.5 × 10−2 | 1.7 × 10−1 | 3.5 × 10−2 | 55% | 0% | 3.5 × 10−2 | 1.9 × 100 | 2.2 × 10−1 | 75% | 0% |
ααα 20S Cholestane | 3.5 × 10−2 | 3.5 × 10−2 | 3.5 × 10−2 | 76% | 0% | 3.5 × 10−2 | 1.3 × 10−1 | 3.5 × 10−2 | 95% | 0% |
αββ 20R Cholestane | 3.5 × 10−2 | 1.3 × 10−1 | 3.5 × 10−2 | 61% | 0% | 3.5 × 10−2 | 1.3 × 10−1 | 3.5 × 10−2 | 94% | 0% |
αββ 20R24R Ethylcholestane | 3.5 × 10−2 | 1.3 × 10−1 | 3.5 × 10−2 | 67% | 0% | 3.5 × 10−2 | 2.1 × 10−1 | 3.5 × 10−2 | 92% | 0% |
αββ 20R24S Methylcholestane | 3.5 × 10−2 | 1.8 × 10−1 | 3.5 × 10−2 | 58% | 0% | 3.5 × 10−2 | 2.1 × 10−1 | 3.5 × 10−2 | 77% | 0% |
Levoglucosan | 5.1 × 10−1 | 3.3 × 102 | 1.4 × 101 | 44% | 0% | 8.1 × 100 | 5.1 × 103 | 5.5 × 102 | 1% | 1% |
Mannosan | 1.8 × 100 | 8.4 × 101 | 3.5 × 100 | 84% | 0% | 3.5 × 100 | 8.9 × 102 | 1.1 × 102 | 5% | 1% |
Galactosan | 3.5 × 100 | 3.0 × 101 | 3.5 × 100 | 96% | 0% | 3.5 × 100 | 2.5 × 102 | 3.6 × 101 | 10% | 1% |
CO | 1.3 × 102 | 4.9 × 102 | 2.6 × 102 | 0% | 0% | 1.8 × 102 | 1.2 × 103 | 4.4 × 102 | 0% | 0% |
NO | 5.0 × 10−1 | 3.8 × 100 | 8.8 × 10−1 | 29% | 0% | 5.0 × 10−1 | 4.8 × 101 | 4.6 × 100 | 2% | 0% |
NO2 | 2.8 × 100 | 1.8 × 101 | 7.2 × 100 | 0% | 0% | 5.4 × 100 | 4.5 × 101 | 1.5 × 101 | 0% | 0% |
NOX | 3.5 × 100 | 2.1 × 101 | 8.8 × 100 | 0% | 0% | 6.7 × 100 | 1.2 × 102 | 2.3 × 101 | 0% | 0% |
SO2 | 1.3 × 100 | 6.2 × 100 | 1.8 × 100 | 35% | 0% | 2.1 × 100 | 2.6 × 101 | 6.8 × 100 | 0% | 0% |
Species | Summer | |||||
Libušín | Švermov | Zbečno | ||||
Mean (ng·m−3) | Median (ng·m−3) | Mean (ng·m−3) | Median (ng·m−3) | Mean (ng·m−3) | Median (ng·m−3) | |
PM2.5 | 11.4 × 103 | 11.6 × 103 | 12.4 × 103 | 12.1 × 103 | 11.9 × 103 | 11.7 × 103 |
Benzo[a]pyrene | 2.2 × 10−2 | BDL | 3.2 × 10−2 | BDL | 4.1 × 10−2 | 4.0 × 10−2 |
As | 2.3 × 100 | BDL | BDL | BDL | BDL | BDL |
Winter | ||||||
Libušín | Švermov | Zbečno | ||||
Mean (ng·m−3) | Median (ng·m−3) | Mean (ng·m−3) | Median (ng·m−3) | Mean (ng·m−3) | Median (ng·m−3) | |
PM2.5 | 22.3 × 103 | 21.4 × 103 | 25.4 × 103 | 22.3 × 103 | 22.8 × 103 | 19.6 × 103 |
Benzo[a]pyrene | 3.7 × 100 | 2.5 × 100 | 4.8 × 100 | 3.2 × 100 | 3.0 × 100 | 1.8 × 100 |
As | 8.0 × 100 | 7.5 × 100 | 7.7 × 100 | 6.9 × 100 | 1.5 × 101 | 8.0 × 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seibert, R.; Nikolova, I.; Volná, V.; Krejčí, B.; Hladký, D. Source Apportionment of PM2.5, PAH and Arsenic Air Pollution in Central Bohemia. Environments 2021, 8, 107. https://doi.org/10.3390/environments8100107
Seibert R, Nikolova I, Volná V, Krejčí B, Hladký D. Source Apportionment of PM2.5, PAH and Arsenic Air Pollution in Central Bohemia. Environments. 2021; 8(10):107. https://doi.org/10.3390/environments8100107
Chicago/Turabian StyleSeibert, Radim, Irina Nikolova, Vladimíra Volná, Blanka Krejčí, and Daniel Hladký. 2021. "Source Apportionment of PM2.5, PAH and Arsenic Air Pollution in Central Bohemia" Environments 8, no. 10: 107. https://doi.org/10.3390/environments8100107
APA StyleSeibert, R., Nikolova, I., Volná, V., Krejčí, B., & Hladký, D. (2021). Source Apportionment of PM2.5, PAH and Arsenic Air Pollution in Central Bohemia. Environments, 8(10), 107. https://doi.org/10.3390/environments8100107