Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Site Description
2.2. Spiking of Thallium into Haplic Chernozem and Experimental Conditions
2.3. Determination of Biological Indicators
2.4. Statistical Analyses
3. Results
3.1. Influence of Thallium on Microbiological Indices
3.2. Influence of Thallium on the Activity of Enzymes of Soil
3.3. Influence of Thallium on the Germination Rate of Radish
3.4. Integrated Index of the Biological State of Soil Contaminated with Thallium
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minnikova, T.; Kolesnikov, S.; Minkina, T.; Mandzhieva, S. Assessment of Ecological Condition of Haplic Chernozem Calcic Contaminated with Petroleum Hydrocarbons during Application of Bioremediation Agents of Various Natures. Land 2021, 10, 169. [Google Scholar] [CrossRef]
- Sushkova, S.; Minkina, T.; Deryabkina, I.; Rajput, V.; Antonenko, E.; Nazarenko, O.; Yadav, B.K.; Hakki, E.; Mohan, D. Environmental pollution of soil with PAHs in energy producing plants zone. Sci. Total. Environ. 2018, 655, 232–241. [Google Scholar] [CrossRef]
- Chaplygin, V.A.; Rajput, V.D.; Mandzhieva, S.S.; Minkina, T.M.; Nevidomskaya, D.G.; Nazarenko, O.G.; Kalinitchenko, V.P.; Singh, R.; Maksimov, A.Y.; Popova, V.A. Comparison of Heavy Metal Content in Artemisia austriaca in Various Impact Zones. ACS Omega 2020, 5, 23393–23400. [Google Scholar] [CrossRef] [PubMed]
- Minnikova, T.; Denisova, T.; Mandzhieva, S.; Kolesnikov, S.; Minkina, T.; Chaplygin, V.; Burachevskaya, M.; Sushkova, S.; Bauer, T. Assessing the effect of heavy metals from the Novocherkassk power station emissions on the biological activity of soils in the adjacent areas. J. Geochem. Explor. 2016, 174, 70–78. [Google Scholar] [CrossRef]
- Minkina, T.M.; Motuzova, G.V.; Mandzhieva, S.; Nazarenko, O.G.; Burachevskaya, M.; Antonenko, E.M. Fractional and group composition of the Mn, Cr, Ni, and Cd compounds in the soils of technogenic landscapes in the impact zone of the Novocherkassk Power Station. Eurasian Soil Sci. 2013, 46, 375–385. [Google Scholar] [CrossRef]
- Xiao, E.; Ning, Z.; Sun, W.; Jiang, S.; Fan, W.; Ma, L.; Xiao, T. Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks. Environ. Pollut. 2020, 268, 115834. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, X.; Sun, Y.; Tsang, D.; Qi, J.; Zhang, W.; Li, N.; Yin, M.; Wang, J.; Lippold, H.; et al. Thallium pollution in China and removal technologies for waters: A review. Environ. Int. 2019, 126, 771–790. [Google Scholar] [CrossRef]
- D’Orazio, M.; Campanella, B.; Bramanti, E.; Ghezzi, L.; Onor, M.; Vianello, G.; Vittori-Antisari, L.; Petrini, R. Thallium pollution in water, soils and plants from a past-mining site of Tuscany: Sources, transfer processes and toxicity. J. Geochem. Explor. 2019, 209, 106434. [Google Scholar] [CrossRef]
- Belzile, N.; Chen, Y. Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Appl. Geochem. 2017, 84, 218–243. [Google Scholar] [CrossRef]
- Karbowska, B. Presence of thallium in the environment: Sources of contaminations, distribution and monitoring methods. Environ. Monit. Assess. 2016, 188, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vodyanitskii, Y.N. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasian Soil Sci. 2013, 46, 793–801. [Google Scholar] [CrossRef]
- Lin, H.; Liu, C.; Li, B.; Dong, Y. Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. J. Hazard. Mater. 2020, 402, 123829. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Wei, X.; Chen, Y.; Beiyuan, J.; She, J.; Wang, L.; Liu, J.; Liu, Y.; Wang, J.; et al. Effects of thallium exposure on intestinal microbial community and organ functions in zebrafish (Danio rerio). Elem. Sci. Anthr. 2021, 9, 00092. [Google Scholar] [CrossRef]
- Mazur, R.; Sadowska, M.; Kowalewska, Ł.; Abratowska, A.; Kalaji, H.M.; Mostowska, A.; Garstka, M.; Krasnodębska-Ostręga, B. Overlapping toxic effect of long term thallium exposure on white mustard (Sinapis alba L.) photosynthetic activity. BMC Plant Biol. 2016, 16, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, A.J.; Viraraghavan, T. Thallium: A review of public health and environmental concerns. Environ. Int. 2005, 31, 493–501. [Google Scholar] [CrossRef]
- Campanella, B.; Casiot, C.; Onor, M.; Perotti, M.; Petrini, R.; Bramanti, E. Thallium release from acid mine drainages: Speciation in river and tap water from Valdicastello mining district (northwest Tuscany). Talanta 2017, 171, 255–261. [Google Scholar] [CrossRef]
- Liu, J.; Ren, S.; Zhou, Y.; Tsang, D.C.; Lippold, H.; Wang, J.; Yin, M.; Xiao, T.; Luo, X.; Chen, Y. High contamination risks of thallium and associated metal(loid)s in fluvial sediments from a steel-making area and implications for environmental management. J. Environ. Manag. 2019, 250, 109513. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, J.; Chen, Y.; Shen, C.-C.; Jiang, X.; Xie, X.; Chen, D.; Lippold, H.; Wang, C. Thallium dispersal and contamination in surface sediments from South China and its source identification. Environ. Pollut. 2016, 213, 878–887. [Google Scholar] [CrossRef]
- Jia, Y.; Xiao, T.; Zhou, G.; Ning, Z. Thallium at the interface of soil and green cabbage (Brassica oleracea L. var. capitata L.): Soil–plant transfer and influencing factors. Sci. Total. Environ. 2013, 450-451, 140–147. [Google Scholar] [CrossRef]
- Xiao, T.; Yang, F.; Li, S.; Zheng, B.; Ning, Z. Thallium pollution in China: A geo-environmental perspective. Sci. Total. Environ. 2012, 421–422, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Bačeva, K.; Stafilov, T.; Šajn, R.; Tănăselia, C.; Makreski, P. Distribution of chemical elements in soils and stream sediments in the area of abandoned Sb–As–Tl Allchar mine, Republic of Macedonia. Environ. Res. 2014, 133, 77–89. [Google Scholar] [CrossRef]
- Grösslová, Z.; Vaněk, A.; Oborná, V.; Mihaljevic, M.; Ettler, V.; Trubac, J.; Drahota, P.; Penížek, V.; Pavlů, L.; Sracek, O.; et al. Thallium contamination of desert soil in Namibia: Chemical, mineralogical and isotopic insights. Environ. Pollut. 2018, 239, 272–280. [Google Scholar] [CrossRef]
- Pavoni, E.; Petranich, E.; Adami, G.; Baracchini, E.; Crosera, M.; Emili, A.; Lenaz, D.; Higueras, P.; Covelli, S. Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommissioned zinc-lead mine (Northeastern Italian Alps). J. Environ. Manag. 2017, 186, 214–224. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xiao, T.; Bao, Z.; Lippold, H.; Luo, X.; Yin, M.; Ren, J.; Chen, Y.; Linghu, W. Geochemical dispersal of thallium and accompanying metals in sediment profiles from a smelter-impacted area in South China. Appl. Geochem. 2018, 88, 239–246. [Google Scholar] [CrossRef]
- Kolesnikov, S.I.; Tsepina, N.I.; Sudina, L.; Minnikova, T.V.; Kazeev, K.S.; Akimenko, Y.V. Silver Ecotoxicity Estimation by the Soil State Biological Indicators. Appl. Environ. Soil Sci. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- McFeters, G.A.; Yu, F.P.; Pyle, B.H.; Stewart, P. Physiological assessment of bacteria using fluorochromes. J. Microbiol. Methods 1995, 21, 1–13. [Google Scholar] [CrossRef]
- Val’kov, V.F.; Kolesnikov, S.I.; Kazeev, K.S.; Tashchiev, S.S. Influence of heavy metal pollution on microscopic fungi and Azotobacter of common chernozem. Russ. J. Ecol. 1997, 28, 345–346. [Google Scholar]
- Liu, Y.; Zeng, G.; Zhong, H.; Wang, Z.; Liu, Z.; Cheng, M.; Liu, G.; Yang, X.; Liu, S. Effect of rhamnolipid solubilization on hexadecane bioavailability: Enhancement or reduction? J. Hazard. Mater. 2017, 322, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Kaczynski, P.; Łozowicka, B.; Hrynko, I.; Wołejko, E. Behaviour of mesotrione in maize and soil system and its influence on soil dehydrogenase activity. Sci. Total Environ. 2016, 571, 1079–1088. [Google Scholar] [CrossRef]
- Kolesnikov, S.I.; Yaroslavtsev, M.V.; Spivakova, N.A.; Kazeev, K. Comparative assessment of the biological tolerance of chernozems in the south of Russia towards contamination with Cr, Cu, Ni, and Pb in a model experiment. Eurasian Soil Sci. 2013, 46, 176–181. [Google Scholar] [CrossRef]
- Kolesnikov, S.; Tsepina, N.; Minnikova, T.; Kazeev, K.; Mandzhieva, S.; Sushkova, S.; Minkina, T.; Mazarji, M.; Singh, R.; Rajput, V. Influence of Silver Nanoparticles on the Biological Indicators of Haplic Chernozem. Plants 2021, 10, 1022. [Google Scholar] [CrossRef] [PubMed]
- Stpniewska, Z.; Wolińska, A.; Ziomek, J. Response of soil catalase activity to chromium contamination. J. Environ. Sci. 2009, 21, 1142–1147. [Google Scholar] [CrossRef]
- Pandey, S.N. Accumulation heavy metals (cadmium, cromium, copper, nickel and zinc) in Raphanus salivus L. and Spinacia olerac L. Plants Irrigated with Industrial Effluents. J. Environ. Biol. 2006, 27, 381–384. [Google Scholar]
- Kolesnikov, S.I.; Zharkova, M.G.; Kazeev, K.; Kutuzova, I.V.; Samokhvalova, L.S.; Naleta, E.V.; Zubkov, D.A. Ecotoxicity assessment of heavy metals and crude oil based on biological characteristics of chernozem. Russ. J. Ecol. 2014, 45, 157–166. [Google Scholar] [CrossRef]
- Plekhanova, I.O.; Zolotareva, O.A.; Tarasenko, I.D.; Yakovlev, A.S. Assessment of ecotoxicity of soils contaminated by heavy metals. Eurasian Soil Sci. 2019, 52, 1274–1288. [Google Scholar] [CrossRef]
- Nikolaeva, O.V.; Terekhova, V.A. Improvement of laboratory phytotest for the ecological evaluation of soils. Eurasian Soil Sci. 2017, 50, 1105–1114. [Google Scholar] [CrossRef]
- Aponte, H.; Meli, P.; Butler, B.; Paolini, J.; Matus, F.; Merino, C.; Cornejo, P.; Kuzyakov, Y. Meta-analysis of heavy metal effects on soil enzyme activities. Sci. Total. Environ. 2020, 737, 139744. [Google Scholar] [CrossRef]
- Gorbov, S.N.; Gorovtsov, A.V.; Bezuglova, O.S.; Anisimova, M.A.; Skripnikov, P.N.; Tishchenko, S.A.; Marschner, B. Enzyme activity of soils in urban landscapes of the lower Don area, Southern Russia. Land Degrad. Dev. 2020, 32, 1618–1631. [Google Scholar] [CrossRef]
- Mandzhieva, S.S.; Goncharova, L.Y.; Batukaev, A.A.; Minkina, T.M.; Bauer, T.V.; Shertnev, A.K.; Chaplygin, V.A.; Sushkova, S.N.; Poluektov, E.V.; Burachevskaya, M.V.; et al. Current State of Haplic Chernozems in Specially Protected Natural Areas of the Steppe Zone. Online J. Biol. Sci. 2017, 17, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Chernova, O.V.; Bezuglova, O.S. Principles and Features of the Compilation of the Red Data Book of Soils of the Steppe Regions (on Example of the Rostov Oblast). Arid. Ecosyst. 2018, 8, 28–37. [Google Scholar] [CrossRef]
- Ralph, L.; Twiss, M.R. Comparative toxicity of thallium(I), thallium(III), and cadmium(II) to the unicellular alga Chlorella isolated from Lake Erie. Bull. Environ. Contam. Toxicol. 2002, 68, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.-H.; Lin, T.-S. Acute toxicity of trivalent thallium compounds to Daphnia magna. Ecotoxicol. Environ. Saf. 2005, 61, 432–435. [Google Scholar] [CrossRef]
- Kazeev, K.S.; Kolesnikov, S.I.; Akimenko, Y.V.; Dadenko, E.V. Metody Biodiagnostiki Nazemnyh Ekosistem; Publishing House SFedU: Rostov-on-Don, Russia, 2016; 356p. [Google Scholar]
- Galstyan, A.S. Unification of methods for studying the activity of soil enzymes. Eurasian Soil Sci. 1978, 2, 107–114. [Google Scholar]
- Nannipieri, P.; Giagnoni, L.; Renella, G.; Puglisi, E.; Ceccanti, B.; Masciandaro, G.; Fornasier, F.; Moscatelli, M.C.; Marinari, S. Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils 2012, 48, 743–762. [Google Scholar] [CrossRef]
- Kolesnikov, S.I.; Kazeev, K.S.; Akimenko, Y.V. Development of regional standards for pollutants in the soil using biological parameters. Environ. Monit. Assess. 2019, 191, 1–10. [Google Scholar] [CrossRef]
- Wick, S.; Baeyens, B.; Fernandes, M.M.; Göttlicher, J.; Fischer, M.; Pfenninger, N.; Plötze, M.; Voegelin, A. Thallium sorption and speciation in soils: Role of micaceous clay minerals and manganese oxides. Geochim. Cosmochim. Acta 2020, 288, 83–100. [Google Scholar] [CrossRef]
- Xiao, T.; Guha, J.; Boyle, D.; Liu, C.-Q.; Chen, J. Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou, China. Sci. Total. Environ. 2004, 318, 223–244. [Google Scholar] [CrossRef]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Kadmiri, I.M. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Loria, A.; Cristescu, M.E.; Gonzalez, A. Mixed evidence for adaptation to environmental pollution. Evol. Appl. 2019, 12, 1259–1273. [Google Scholar] [CrossRef] [Green Version]
- Minkina, T.; Fedorenko, G.; Nevidomskaya, D.; Konstantinova, E.; Pol’Shina, T.; Fedorenko, A.; Chaplygin, V.; Mandzhieva, S.; Dudnikova, T.; Hassan, T. The Morphological and Functional Organization of Cattails Typha laxmannii Lepech. and Typha australis Schum. and Thonn. under Soil Pollution by Potentially Toxic Elements. Water 2021, 13, 227. [Google Scholar] [CrossRef]
- Sharma, R.; Agrawal, M. Biological effects of heavy metals: An overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar] [PubMed]
- Lukin, S.V.; Selyukova, S.V. Ecological Assessment of the Content of Cadmium in Soils and Crops in Southwestern Regions of the Central Chernozemic Zone, Russia. Eurasian Soil Sci. 2018, 51, 1547–1553. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.; Sarkar, A.; Singh, S.; Singh, P.; Araujo, A.; Singh, R.P. Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances. Front. Environ. Sci. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- She, J.; Liu, J.; He, H.; Zhang, Q.; Lin, Y.; Wang, J.; Yin, M.; Wang, L.; Wei, X.; Huang, Y.; et al. Microbial response and adaption to thallium contamination in soil profiles. J. Hazard. Mater. 2021, 423, 127080. [Google Scholar] [CrossRef] [PubMed]
- Al-Najar, H.; Kaschl, A.; Schulz, R.; Römheld, V. Effect of thallium fractions in the soil and pollution origins on tl uptake by hyperaccumulator plants: A key factor for the assessment of phytoextraction. Int. J. Phytoremediat. 2005, 7, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, C.; Robinson, B.; Brooks, R. Uptake of thallium by vegetables: Its significance for human health, phytoremediation, and phytomining. J. Plant Nutr. 2001, 24, 1205–1215. [Google Scholar] [CrossRef]
Indicator | Degree of Sensitivity 1 | Informative Value 2 |
---|---|---|
Number of soil bacteria | 57 | −0.70 |
Azotobacter spp. abundance | 59 | −0.83 |
Activity of catalase | 88 | −0.90 |
Activity of dehydrogenases | 79 | −0.88 |
Germination rate of radish | 93 | −0.94 |
IIBS | 75 | −0.87 |
Properties | Degree of Violation of Ecosystem Functions | |||
---|---|---|---|---|
Minimal | Slight | Moderate | Maximal | |
Degree of soil IIBS reduction 1 | <5% | 5–10% | 10–25% | >25% |
Violated ecosystem functions 2 | - | Informational | Chemical, physico-chemical, biochemical, holistic | Physics |
Thallium content, mg/kg | <1.4 | 1.4–2.5 | 2.5–20 | >20 |
Soil remediation methods | Not required | Phytoremediation | Chemical reclamation | Removing contaminated soil |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesnikov, S.; Minnikova, T.; Minkina, T.; Rajput, V.D.; Tsepina, N.; Kazeev, K.; Zhadobin, A.; Nevedomaya, E.; Ter-Misakyants, T.; Akimenko, Y.; et al. Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study. Environments 2021, 8, 119. https://doi.org/10.3390/environments8110119
Kolesnikov S, Minnikova T, Minkina T, Rajput VD, Tsepina N, Kazeev K, Zhadobin A, Nevedomaya E, Ter-Misakyants T, Akimenko Y, et al. Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study. Environments. 2021; 8(11):119. https://doi.org/10.3390/environments8110119
Chicago/Turabian StyleKolesnikov, Sergey, Tatiana Minnikova, Tatiana Minkina, Vishnu D. Rajput, Natalya Tsepina, Kamil Kazeev, Alexander Zhadobin, Elena Nevedomaya, Tigran Ter-Misakyants, Yulia Akimenko, and et al. 2021. "Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study" Environments 8, no. 11: 119. https://doi.org/10.3390/environments8110119
APA StyleKolesnikov, S., Minnikova, T., Minkina, T., Rajput, V. D., Tsepina, N., Kazeev, K., Zhadobin, A., Nevedomaya, E., Ter-Misakyants, T., Akimenko, Y., Mandzhieva, S., Sushkova, S., Ranjan, A., Asylbaev, I., Popova, V., & Tymoshenko, A. (2021). Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study. Environments, 8(11), 119. https://doi.org/10.3390/environments8110119