Effect of Biochar Application Depth on a Former Mine Technosol: Impact on Metal(Loid)s and Alnus Growth
Abstract
:1. Introduction
2. Material and Methods
2.1. Site of Study
2.2. Biochar and Iron Sulphate
2.3. Alnus
2.4. Mesocosms Settlement
2.5. Soil pore Water (SPW) and Plant Organs Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. SPW Chemico-Physical Properties
3.2. SPW Metal(Loid)s Concentration
3.3. Stems Dry Weight (DW)
3.4. Plant Organs Metal(Loid)s Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission; Joint Research Centre; Institute for Environment and Sustainability. Joint Research Centre. Institute for Environment and Sustainability. Progress in the Management of Contaminated Sites in Europe; Publications Office of the European Union: Luxembourg, 2014; Available online: https://data.europa.eu/doi/10.2788/4658 (accessed on 23 June 2021).
- Adedeji, O.H.; Olayinka, O.; Tope-Ajayi, O.; Adekoya, A. Assessing spatial distribution, potential ecological and human health risks of soil heavy metals contamination around a Trailer Park in Nigeria. Sci. Afr. 2020, 10, e00650. [Google Scholar] [CrossRef]
- Edogbo, B.; Okolocha, E.; Maikai, B.; Aluwong, T.; Uchendu, C. Risk analysis of heavy metal contamination in soil, vegetables and fish around Challawa area in Kano State, Nigeria. Sci. Afr. 2020, 7, e00281. [Google Scholar] [CrossRef]
- Gautam, P.K.; Gautam, R.K.; Banerjee, S.; Chattopadhyaya, M.C.; Pandey, J.D. Heavy metals in the environment: Fate, transport, toxicity and remediation technologies. Heavy Met. Environ. 2016, 60, 101–130. [Google Scholar]
- Ghosh, D.; Maiti, S.K. Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: A review. Int. J. Phytoremediation 2020, 23, 559–576. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Bakshi, S.; Banik, C.; Rathke, S.J.; Laird, D.A. Arsenic sorption on zero-valent iron-biochar complexes. Water Res. 2018, 137, 153–163. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Dietary exposure to inorganic arsenic in the European population. EFSA J. 2014, 12. [Google Scholar] [CrossRef]
- Hamby, D. Site remediation techniques supporting environmental restoration activities—A review. Sci. Total Environ. 1996, 191, 203–224. [Google Scholar] [CrossRef]
- Mulligan, C.; Yong, R.; Gibbs, B. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Eng. Geol. 2001, 60, 193–207. [Google Scholar] [CrossRef]
- Shao, Y.; Yan, T.; Wang, K.; Huang, S.; Yuan, W.; Qin, F.G. Soil heavy metal lead pollution and its stabilization remediation technology. Energy Rep. 2020, 6, 122–127. [Google Scholar] [CrossRef]
- Zine, H.; Midhat, L.; Hakkou, R.; El Adnani, M.; Ouhammou, A. Guidelines for a phytomanagement plan by the phytostabilization of mining wastes. Sci. Afr. 2020, 10, e00654. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Nandillon, R.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere 2019, 222, 810–822. [Google Scholar] [CrossRef] [Green Version]
- Lebrun, M.; Nandillon, R.; Miard, F.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Application of amendments for the phytoremediation of a former mine technosol by endemic pioneer species: Alder and birch seedlings. Environ. Geochem. Health 2021, 43, 77–89. [Google Scholar] [CrossRef]
- Nandillon, R.; Lebrun, M.; Miard, F.; Gaillard, M.; Sabatier, S.; Villar, M.; Bourgerie, S.; Morabito, D. Capability of amendments (biochar, compost and garden soil) added to a mining technosol contaminated by Pb and As to allow poplar seed (Populus nigra L.) germination. Environ. Monit. Assess. 2019, 191, 465. [Google Scholar] [CrossRef]
- Nagula, S.; Ramanjaneyulu, A.V. Biochar-The New Black Gold. Biot. Res. Today 2020, 2, 425–427. [Google Scholar]
- Mary, G.S.; Sugumaran, P.; Niveditha, S.; Ramalakshmi, B.; Ravichandran, P.; Seshadri, S. Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int. J. Recycl. Org. Waste Agric. 2016, 5, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Wen, J.; Wang, Q.; Xing, L.; Hu, X. Mobilization or immobilization? The effect of HDTMA-modified biochar on as mobility and bioavailability in soil. Ecotoxicol. Environ. Saf. 2021, 207, 111565. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, C.; Srinivasakannan, C.; Wang, X. Waste walnut shell valorization to iron loaded biochar and its application to arsenic removal. Resour. Technol. 2017, 3, 29–36. [Google Scholar] [CrossRef]
- Simiele, M.; Lebrun, M.; Miard, F.; Trupiano, D.; Poupart, P.; Forestier, O.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Assisted phytoremediation of a former mine soil using biochar and iron sulphate: Effects on As soil immobilization and accumulation in three Salicaceae species. Sci. Total Environ. 2020, 710, 136203. [Google Scholar] [CrossRef]
- Mahmood-Ul-Hassan, M.; Yousra, M.; Ahmad, R.; Sarwar, S. Arsenic Contamination in Rice Grown Under Anaerobic Condition in Arid Agriculture: Assessment and Remediation. Bull. Environ. Contam. Toxicol. 2019, 103, 865–870. [Google Scholar] [CrossRef]
- Xu, X.; Chen, C.; Wang, P.; Kretzschmar, R.; Zhao, F.-J. Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environ. Pollut. 2017, 231, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.K.; Noman, A.; Alhaithloul, H.A.; Adeel, M.; Rui, Y.; Shah, T.; Zhu, S.; Shang, J. Goethite-modified biochar ameliorates the growth of rice (Oryza sativa L.) plants by suppressing Cd and As-induced oxidative stress in Cd and As co-contaminated paddy soil. Sci. Total Environ. 2020, 717, 137086. [Google Scholar] [CrossRef]
- Islam, S.; Chen, Y.; Weng, L.; Ma, J.; Khan, Z.H.; Liao, Z.; Magid, A.S.I.A.; Li, Y. Watering techniques and zero-valent iron biochar pH effects on As and Cd concentrations in rice rhizosphere soils, tissues and yield. J. Environ. Sci. 2021, 100, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Gao, M.; Qiu, W.; Wang, D.; Huang, Q.; Song, Z. Reduced arsenic accumulation in indica rice (Oryza sativa L.) cultivar with ferromanganese oxide impregnated biochar composites amendments. Environ. Pollut. 2017, 231, 479–486. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef]
- Escobar, M.P.; Dussán, J. Phytoremediation potential of chromium and lead byAlnus acuminatasubsp.acuminata. Environ. Prog. Sustain. Energy 2016, 35, 942–948. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Bucci, A.; Trupiano, D.; Nandillon, R.; Naclerio, G.; Scippa, G.S.; Morabito, D.; Bourgerie, S. Evaluation of direct and biochar carrier-based inoculation of Bacillus sp. on As- and Pb-contaminated technosol: Effect on metal(loid) availability, Salix viminalis growth, and soil microbial diversity/activity. Environ. Sci. Pollut. Res. 2021, 28, 11195–11204. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, M.; Miard, F.; Nandillon, R.; Hattab-Hambli, N.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Eco-restoration of a mine technosol according to biochar particle size and dose application: Study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis. J. Soils Sediments 2018, 18, 2188–2202. [Google Scholar] [CrossRef]
- R. Team C. R language Definition; R Foundation for Statistical Computing: Vienna, Austria, 2000. [Google Scholar]
- Dai, Z.; Wang, Y.; Muhammad, N.; Yu, X.; Xiao, K.; Meng, J.; Liu, X.; Xu, J.; Brookes, P.C. The Effects and Mechanisms of Soil Acidity Changes, following Incorporation of Biochars in Three Soils Differing in Initial pH. Soil Sci. Soc. Am. J. 2014, 78, 1606–1614. [Google Scholar] [CrossRef]
- Lebrun, M.; Van Poucke, R.; Miard, F.; Scippa, G.S.; Bourgerie, S.; Morabito, D.; Tack, F.M.G. Effects of carbon-based materials and redmuds on metal(loid) immobilization and growth of Salix dasyclados Wimm. on a former mine Technosol contaminated by arsenic and lead. Land Degrad. Dev. 2021, 32, 467–481. [Google Scholar] [CrossRef]
- Kidd, P.; Barceló, J.; Bernal, M.P.; Navari-Izzo, F.; Poschenrieder, C.; Shilev, S.; Clemente, R.; Monterroso, C. Trace element behaviour at the root–soil interface: Implications in phytoremediation. Environ. Exp. Bot. 2009, 67, 243–259. [Google Scholar] [CrossRef]
- Podwika, M.; Solek-Podwika, K.; Ciarkowska, K. Changes in the properties of grassland soils as a result of afforestation. iForest-Biogeosciences For. 2018, 11, 600–608. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, G.; Jubaedah; Nurida, N.L.; Hale, S.E.; Martinsen, V.; Silvani, L.; Mulder, J. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Sci. Total Environ. 2018, 634, 561–568. [Google Scholar] [CrossRef]
- Juriga, M.; Šimanský, V. Effects of Biochar and its Reapplication on Soil pH and Sorption Properties of Silt Loam Haplic Luvisol. Acta Hortic. et Regiotect. 2019, 22, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Miretzky, P.; Cirelli, A.F. Remediation of Arsenic-Contaminated Soils by Iron Amendments: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 93–115. [Google Scholar] [CrossRef]
- Guo, M.; Song, W.; Tian, J. Biochar-Facilitated Soil Remediation: Mechanisms and Efficacy Variations. Front. Environ. Sci. 2020, 8, 521512. [Google Scholar] [CrossRef]
- Senthilkumar, R.; Prasad, D.M.R. Sorption of Heavy Metals onto Biochar. In Applications of Biochar for Environmental Safety; Abdelhafez, A.A., Abbas, M.H.H., Eds.; InTechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Renouard, S.; Nandillon, R.; Scippa, G.S.; Morabito, D.; Bourgerie, S. Effect of Fe-functionalized biochar on toxicity of a technosol contaminated by Pb and As: Sorption and phytotoxicity tests. Environ. Sci. Pollut. Res. 2018, 25, 33678–33690. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef]
- Lomaglio, T.; Hattab-Hambli, N.; Bret, A.; Miard, F.; Trupiano, D.; Scippa, G.S.; Motelica-Heino, M.; Bourgerie, S.; Morabito, D. Effect of biochar amendments on the mobility and (bio) availability of As, Sb and Pb in a contaminated mine technosol. J. Geochem. Explor. 2017, 182, 138–148. [Google Scholar] [CrossRef] [Green Version]
- Fresno, T.; Moreno-Jiménez, E.; Peñalosa, J.M. Assessing the combination of iron sulfate and organic materials as amendment for an arsenic and copper contaminated soil. A chemical and ecotoxicological approach. Chemosphere 2016, 165, 539–546. [Google Scholar] [CrossRef]
- Niazi, N.K.; Bibi, I.; Shahid, M.; Ok, Y.S.; Burton, E.; Wang, H.; Shaheen, S.; Rinklebe, J.; Lüttge, A. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environ. Pollut. 2018, 232, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, M.; Miard, F.; Nandillon, R.; Léger, J.-C.; Hattab-Hambli, N.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana). Chemosphere 2018, 194, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Mao, W.; Zhang, G.; Wu, F.; Cai, Y. Root excretion and plant tolerance to cadmium toxicity—A review. Plant Soil Environ. 2008, 53, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Bélanger, P.-A.; Bellenger, J.-P.; Roy, S. Heavy metal stress in alders: Tolerance and vulnerability of the actinorhizal symbiosis. Chemosphere 2015, 138, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Lorenc-Plucińska, G.; Walentynowicz, M.; Niewiadomska, A. Capabilities of alders (Alnus incana and A. glutinosa) to grow in metal-contaminated soil. Ecol. Eng. 2013, 58, 214–227. [Google Scholar] [CrossRef]
Abbaretz Technosol * | Biochar ** | Iron Sulphate ** | |
---|---|---|---|
pH | 5.15 ± 0.04 | 8.46 ± 0.01 | 2.6 ± 00 |
Electrical conductivity (μS·cm−1) | 16 ± 0.3 | 302 ± 1 | Nd |
Water holding capacity (%) | 35 ± 0.1 | 212 ± 4 | Nd |
Cation exchange capacity (cmol(+)·kg−1) | Nd | <1.05 | Nd |
Specific surface area (m2·g−1) | Nd | 4.38 | Nd |
Total pore volume (cm3·g−1) | Nd | 0.01 | Nd |
Mean pore diameter (nm) | Nd | 9.13 | Nd |
C (%) | Nd | 79 ± 1 | Nd |
H (%) | Nd | 1.74 ± 0.07 | Nd |
N (%) | Nd | 2.4 ± 0.8 | Nd |
Total [As] (mg·kg−1) | 297 ± 30 | Nd | Nd |
Phytoavailable [As] (mg·kg−1) | 3.3 ± 0.7 | 0.9 ± 0.1 | 16.5 ± 0.5 |
Phytoavailable [Fe] (mg·kg−1) | 9.3 ± 0.9 | 18 ± 5 | 23265 ± 299 |
Phytoavailable [P] (mg·kg−1) | 9.7 ± 1.7 | 8 ± 1 | 25.4 ± 1.2 |
Phytoavailable [K] (mg·kg−1) | Nd | 752 ± 30 | 7.9 ± 0.7 |
Top | Bottom | Level Effect | |||||||
---|---|---|---|---|---|---|---|---|---|
AB | AB + 1/3 BC | AB + BC | AB | AB + 1/3 BC | AB + BC | AB | AB + 1/3 BC | AB + BC | |
pH-T7 | |||||||||
Unvegetated | 6.1 ± 0.2b,A | 7.1 ± 0.2a,A | 7.0 ± 0.4ab,A | 5.7 ± 0.4b,A | 7.1 ± 0.2a,A | 7.0 ± 0.1a,A | ns | ns | ns |
Vegetated | 6.5 ± 0.1b,A | 6.9 ± 0.1a,A | 6.8 ± 0.1ab,A | 5.9 ± 0.1b,A | 6.8 ± 0.1a,A | 7.0 ± 0.1a,A | ** | ns | ns |
pH-T19 | |||||||||
Unvegetated | 6.0 ± 0.1b,A | 6.4 ± 0.1a,A | 6.7 ± 0.1a,A | 5.8 ± 0.1c,A | 6.3 ± 0.1b,A | 6.9 ± 0.1a,A | ns | ns | ns |
Vegetated | 6.1 ± 0.1a,A | 6.1 ± 0.1a,B | 6.3 ± 0.1a,B | 6.0 ± 0.1b,A | 6.2 ± 0.1b,A | 6.7 ± 0.1a,A | ns | ns | ns |
pH-Time effect | |||||||||
Unvegetated | ns | * | ns | ns | ** | ns | |||
Vegetated | ns | *** | * | ns | *** | * | |||
EC-T7 | |||||||||
Unvegetated | 213 ± 46a,B | 340 ± 88a,A | 343 ± 100a,A | 333 ± 56 a,A | 417 ± 119a,A | 360 ± 162a,A | ns | ns | ns |
Vegetated | 453 ± 47a,A | 489 ± 53a,A | 681 ± 186a,A | 466 ± 68b,A | 564 ± 41b,A | 939 ± 83a,A | ns | ns | ns |
EC-T19 | |||||||||
Unvegetated | 176 ± 26a,A | 261 ± 36a,A | 199 ± 16a,A | 231 ± 12c,A | 389 ± 17b,A | 610 ± 48a,A | ns | * | *** |
Vegetated | 368 ± 11a,A | 364 ± 7a,A | 371 ± 6a,A | 312 ± 26b,A | 332 ± 30ab,A | 343 ± 8a,A | *** | ** | *** |
EC-Time effect | |||||||||
Unvegetated | ns | ns | ns | ns | ns | ns | |||
Vegetated | ** | *** | * | ns | * | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palmeggiani, G.; Lebrun, M.; Simiele, M.; Bourgerie, S.; Morabito, D. Effect of Biochar Application Depth on a Former Mine Technosol: Impact on Metal(Loid)s and Alnus Growth. Environments 2021, 8, 120. https://doi.org/10.3390/environments8110120
Palmeggiani G, Lebrun M, Simiele M, Bourgerie S, Morabito D. Effect of Biochar Application Depth on a Former Mine Technosol: Impact on Metal(Loid)s and Alnus Growth. Environments. 2021; 8(11):120. https://doi.org/10.3390/environments8110120
Chicago/Turabian StylePalmeggiani, Gloria, Manhattan Lebrun, Melissa Simiele, Sylvain Bourgerie, and Domenico Morabito. 2021. "Effect of Biochar Application Depth on a Former Mine Technosol: Impact on Metal(Loid)s and Alnus Growth" Environments 8, no. 11: 120. https://doi.org/10.3390/environments8110120
APA StylePalmeggiani, G., Lebrun, M., Simiele, M., Bourgerie, S., & Morabito, D. (2021). Effect of Biochar Application Depth on a Former Mine Technosol: Impact on Metal(Loid)s and Alnus Growth. Environments, 8(11), 120. https://doi.org/10.3390/environments8110120