Adsorption of Polycyclic Aromatic Hydrocarbons by Natural, Synthetic and Modified Clays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Adsorbent Materials: Description and Synthesis
2.3. Characterization Methods
2.3.1. X-ray Diffraction
2.3.2. Zeta Potential
2.3.3. Fourier-Transform Infrared Spectroscopy
2.4. Adsorption Batch Experiments
2.5. PAHs Analysis
3. Results
3.1. Characterization of Mt, ODA-Mt and ODTMA-Mt
3.1.1. X-ray Diffraction
3.1.2. Zeta Potential
3.1.3. Fourier-Transform Infrared Spectroscopy
3.2. Characterization of Na-Mica-4, ODA-Mica-4 and ODTMA-Mica-4
3.2.1. X-ray Diffraction
3.2.2. Zeta Potential
3.2.3. Fourier-Transform Infrared Spectroscopy
3.3. Adsorption of PAHs
3.3.1. Adsorption onto Mt, ODA-Mt, and ODTMA-Mt
3.3.2. Adsorption onto Na-Mica-4, ODA-Mica-4, and ODTMA-Mica-4
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hedayati, M.S.; Abida, O.; Li, L.Y. Adsorption of polycyclic aromatic hydrocarbons by surfactant-modified clinoptilolites for landfill leachate treatment. Waste Manag. 2021, 131, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Balati, A.; Shahbazi, A.; Amini, M.M.; Hashemi, S.H. Adsorption of polycyclic aromatic hydrocarbons from wastewater by using silica-based organic-inorganic nanohybrid material. J. Water Reuse Desalinat. 2015, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Vane, C.H.; Kim, A.W.; Beriro, D.J.; Cave, M.R.; Knights, K.; Moss-Hayes, V.; Nathanail, P.C. Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Appl. Geochem. 2014, 51, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, C.; Huang, Q.; Ding, F.; He, X. Adsorption of PAHs on the sediments from the yellow river delta as a function of particle size and Salinity. Soil Sediment. Contam. Int. J. 2015, 24, 103–115. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Yu, N.; Zhang, C.; Wang, S.; Ma, L.; Zhao, J.; Lohmann, R. Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning. Chemosphere 2015, 134, 52–59. [Google Scholar] [CrossRef]
- USEPA. Polycyclic Aromatic Hydrocarbons (Pahs) Fact Sheet; National Center for Environmental Assessment, Office of Research and Development: Washington, DC, USA, 2008.
- Manoli, E.; Samara, C. Polycyclic aromatic hydrocarbons in natural waters: Sources, occurrence and analysis. Tr. Anal. Chem. 1999, 18, 417–428. [Google Scholar] [CrossRef]
- Siddens, L.K.; Larkin, A.; Krueger, S.K.; Bradfield, C.A.; Waters, K.M.; Tilton, S.C.; Pereira, C.B.; Lohr, C.V.; Arlt, V.M.; Phillips, D.H.; et al. Polycyclic aromatic hydrocarbons as skin carcinogens: Comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol. Appl. Pharmacol. 2012, 264, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.H.; Hu, H.; Kearney, G.D.; Kan, H.D.; Sheps, D.S. Studying the effects of polycyclic aromatic hydrocarbons on peripheral arterial disease in the United States. Sci. Total Environ. 2013, 461, 341–347. [Google Scholar] [CrossRef]
- Chen, B.L.; Zhou, D.D.; Zhu, L.Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. [Google Scholar] [CrossRef]
- Makkar, R.S.; Rockne, K.J. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. 2003, 22, 2280–2292. [Google Scholar] [CrossRef]
- Chomanee, J.; Tekasakul, S.; Tekasakul, P.; Furuuchi, M. Effect of irradiation energy and residence time on decomposition efficiency of polycyclic aromatic hydrocarbons (PAHs) from rubber wood combustion emission using soft X-rays. Chemosphere 2018, 210, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Boulange, M.; Lorgeoux, C.; Biache, C.; Saada, A.; Faure, P. Fenton-like and potassium permanganate oxidations of PAH-contaminated soils: Impact of oxidant doses on PAH and polar PAC (polycyclic aromatic compound) behaviour. Chemosphere 2019, 224, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Anna, K.I.; Emanuel, G.; Anna, S.R.; Blonska, E.; Lasota, J.; Lagan, S. Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees. Environ. Pollut. 2018, 242, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Sabah, E.; Ouki, S. Adsorption of pyrene from aqueous solutions onto sepiolite. Clays Clay Miner. 2017, 65, 14–26. [Google Scholar] [CrossRef]
- Lamichhane, S.; Bal Krishna, K.C.; Sarukkalige, R. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere 2016, 148, 336–353. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of organic pollutants by natural modified clays: A comprehensive review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Lemi, J.; Tomasevi-Canovi, M.; Adamovi, M.; Kovacevi, D.; Milicevi, S. Competitive adsorption of polycyclic aromatic hydrocarbons on organo-zeolites. Microporous Mesoporous Mater. 2007, 105, 317–323. [Google Scholar] [CrossRef]
- Mukherjee, S. Clays as neutralizers against environmental protection. In The Science of Clays; Mukherjee, S., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 250–263. [Google Scholar]
- González-Santamaría, D.E.; López, E.; Ruiz, A.; Ortega, A.; Cuevas, J. Adsorption of phenanthrene by stevensite and sepiolite. Clay Min. 2017, 52, 341–350. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. (Eds.) Introduction on modified clays and clay minerals. In Developments in clay science; Elsevier: Amsterdam, The Netherlands, 2013; pp. 383–557. [Google Scholar]
- Sarkar, B.; Xi, Y.F.; Megharaj, M.; Krishnamurti, G.S.R.; Bowman, M.; Rose, H.; Naidu, R. Bioreactive organoclay: A new technology for environmental remediation. Crit. Rev. Environ. Sci. Technol. 2012, 42, 435–488. [Google Scholar] [CrossRef]
- Churchman, G.J.; Gates, W.P.; Theng, B.K.G.; Yuan, G. Clays and clay minerals for pollution control. In Developments in Clay Science; Bergaya, F., Theng, B.K.G., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 625–675. [Google Scholar]
- Orta, M.M.; Martín, J.; Medina-Carrasco, S.; Santos, J.L.; Aparicio, I.; Alonso, E. Novel synthetic clays for the adsorption of surfactants from aqueous media. J. Environ. Manag. 2018, 206, 357–363. [Google Scholar] [CrossRef]
- Martín, J.; Orta, M.M.; Medina-Carrasco, S.; Santos, J.L.; Aparicio, I.; Alonso, E. Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organofuntionalized high-charge swelling micas. Environ. Res. 2018, 164, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.-J.; Wu, P.; Liu, D.; Hu, J.; Cao, Y.; Liu, T.-Z.; Okoli, C.P.; Wang, B.; Li, L. Adsorption of polycyclic aromatic hydrocarbons from aqueous solution by organic montmorillonite sodium alginate nanocomposites. Chemosphere 2020, 251, 126074. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, J.; Hu, X.; He, F.; Bean, E.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Applications of carbonaceous adsorbents in the remediation of polycyclic aromatic hydrocarbon-contaminated sediments: A review. J. Clean. Prod. 2020, 255, 120263. [Google Scholar] [CrossRef]
- Funada, M.; Nakano, T.; Moriwaki, H. Removal of polycyclic aromatic hydrocarbons from soil using a composite material containing iron and activated carbon in the freeze-dried calcium alginate matrix: Novel soil cleanup technique. J. Hazard. Mat. 2018, 351, 232–239. [Google Scholar] [CrossRef]
- Kumar, M.; Bolan, N.S.; Hoang, S.A.; Sawarkar, A.D.; Jasemizad, T.; Gao, B.; Keerthanan, S.; Padhye, L.P.; Singh, L.; Kumar, S.; et al. Remediation of soils and sediments polluted with polycyclic aromatic hydrocarbons: To immobilize, mobilize, or degrade? J. Hazard. Mat. 2021, 420, 126534. [Google Scholar] [CrossRef]
- Samuelsson, G.S.; Hedman, J.E.; Kruså, M.E.; Gunnarsson, J.S.; Cornelissen, G. Capping in situ with activated carbon in Trondheim harbor (Norway) reduces bioaccumulation of PCBs and PAHs in marine sediment fauna. Mar. Environ. Res. 2015, 109, 103–112. [Google Scholar] [CrossRef]
- International Programme on Chemical Safety (Ed.) Selected non-heterocyclic polycyclic aromatic hydrocarbons. In Environmental Health Criteria; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Magnoli, A.P.; Tallone, L.; Rosa, C.A.R.; Dalcero, A.M.; Chiacchiera, S.M.; Torres Sanchez, R.M. Commercial bentonites as detoxifier of broiler feed contaminated with aflatoxin. Appl. Clay Sci. 2008, 40, 63–71. [Google Scholar] [CrossRef]
- Gamba, M.; Flores, F.M.; Madejová, J.; Sánchez, R.M.T. Comparison of imazalil removal onto montmorillonite and nanomontmorillonite and adsorption surface sites involved: An approach for agricultural wastewater treatment. Ind. Eng. Chem. Res. 2015, 54, 1529–1538. [Google Scholar] [CrossRef]
- Alba, M.D.; Castro, M.A.; Naranjo, M.; Pavón, E. Hydrothermal Reactivity of Na-n-Micas (n = 2, 3, 4). Chem. Mat. 2006, 18, 2867–2872. [Google Scholar] [CrossRef]
- Flores, F.M.; Loveira, E.L.; Yarza, F.; Candal, R.; Sánchez, R.M.T. Benzalkonium chloride surface adsorption and release by two montmorillonites and their modified organomontmorillonites. Water Air Soil Poll 2017, 28, 42. [Google Scholar] [CrossRef]
- Orta, M.M.; Flores, F.M.; Fernández Morantes, C.; Curutchet, G.A.; Torres Sanchez, R.M. Interrelations of structure, electric surface charge, and hydrophobicity of organomica and montmorillonite, tailored with quaternary or primary amine cations. Preliminary study of pyrimethanil adsorption. Mat. Chem. Phys. 2019, 223, 325–335. [Google Scholar] [CrossRef]
- Bruker, A.X.S. TOPAS 6 User Manual; Bruker: Billerica, MA, USA, 2017. [Google Scholar]
- Le Bail, A. Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 2005, 20, 316. [Google Scholar] [CrossRef] [Green Version]
- Alba, M.D.; Castro, M.A.; Orta, M.M.; Pavón, E.; Pazos, M.C.; Valencia Rios, J.S. Formation of organo-highly charged mica. Langmuir 2011, 27, 9711–9718. [Google Scholar] [CrossRef]
- Solarte, A.L.F.; Villarroel-Rocha, J.; Morantes, C.F.; Montes, M.L.; Sapag, K.; Curutchet, G.; Sánchez, R.M.T. Insight into surface and structural changes of montmorillonite and organomontmorillonites loaded with Ag. Comptes Rendus Chim. 2019, 22, 142–153. [Google Scholar] [CrossRef]
- Huang, P.; Kazlauciunas, A.; Menzel, R.; Lin, L. Determining the mechanism and efficiency of industrial dye adsorption through facile structural control of organomontmorillonite adsorbents. ACS Appl. Mater. Interfaces 2017, 9, 26383–26391. [Google Scholar] [CrossRef] [Green Version]
- Smoluchowski, R. Anisotropy of the electronic work funtion of metals. Phys. Rev. 1941, 60, 661–674. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, S.; Wu, S.; Song, J.; Shi, Y.; Li, B.; Chen, H. Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China. Water Sci. Technol. 2017, 76, 2150–2157. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Moona, N.; Strömvall, A.M.; Björklund, K. Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peatfilters. Water Res. 2014, 56, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Björklund, K.; Li, L. Evaluation of low-cost materials for sorption of hydrophobic organic pollutants in stormwater. J. Environ. Manag. 2015, 159, 106–114. [Google Scholar] [CrossRef]
- Santos, J.L.; Aparicio, I.; Alonsp, E. A new method for the routine analysis of LAS and PAH in sewage sludge by simultaneous sonication-assisted extraction prior to liquid chromatographic determination. Anal. Chim. Acta 2007, 605, 102–109. [Google Scholar] [CrossRef]
- Malvar, J.L.; Martin, J.; Orta, M.M.; Medina-Carrasco, S.; Santos, J.L.; Aparicio, I.; Alonso, E. Simultaneous and individual adsorption of ibuprofen metabolites by a modified montmorillonite. Appl. Clay Sci. 2020, 189, 105529. [Google Scholar] [CrossRef]
- Scheuing, D.R. (Ed.) Fourier Infrared Spectroscopy in Colloid and Interface Science; ACS Symposium Series 447; American Chemical Society: Washington, DC, USA, 1990; pp. 1–21. [Google Scholar]
- Hudgins, D.M.; Sandford, S.A. Infrared spectroscopy of matrix isolated polycyclic aromatic hydrocarbons. PAHs containing two to four rings. J. Phys. Chem. A 1998, 102, 329–343. [Google Scholar] [CrossRef]
- Sandford, S.A.; Bernstein, M.P.; Materese, C.K. The infrared spectra of polycyclic aromatic hydrocarbons with excess peripheral H atoms (Hn-PAHs) and their relation to the 3.4 and 6.9 µm PAH emission features. Astrophys. J. Suppl. Ser. 2013, 205, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hundal, L.S.; Thompson, M.L.; Laird, D.A.; Carmo, A.M. Sorption of phenanthrene by reference smectites. Environ. Sci. Technol. 2001, 35, 3456–3461. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, L.; Yuan, Y.; Tong, L.; Tsang, D.C.W. Enhancement of phenanthrene adsorption on a clayey soil and clay minerals by coexisting lead or cadmium. Chemosphere 2011, 83, 302–310. [Google Scholar] [CrossRef]
- Nanuam, J.; Zuddas, P.; Sawangwong, P.; Pachana, K. Modeling of PAHs adsorption on Thai clay minerals under seawater solution conditions. Procedia Earth Planet. Sci. 2013, 607–610, 1878–5220. [Google Scholar]
- Biswas, B.; Sarkar, B.; Rusmin, R.; Naidu, R. Bioremediation of PAHs and VOCs: Advances in clay mineral–microbial interaction. Environ. Int. 2015, 85, 168–181. [Google Scholar] [CrossRef]
- Nkansah, M.A.; Christy, A.A.; Barthb, T.; Francis, G.W. The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water. J. Hazard Mat. 2012, 217–218, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Wiles, M.C.; Huebner, H.J.; McDonald, T.J.; Donnelly, K.C.; Phillips, T.D. Matrix immobilized organoclay for the sorption of polycyclic aromatic hydrocarbons and pentachlorophenol from groundwater. Chemosphere 2005, 59, 1455–1464. [Google Scholar] [CrossRef]
- Justyna, S.; Zuzanna, S.; Paweł, C.; Agnieszka, P. The effect of organic and clay fraction on polycyclic aromatic hydrocarbons mobility in soil model systems. J. Res. Appl. Agric. Eng. 2015, 60, 98–101. [Google Scholar]
PAH | Molecular Structure | Molecular Weight (g/mol) | Solubility in Water at 25 °C (µg/L) | Melting-Point (°C) | Boiling-Point (°C) | Vapor Pressure (Pa at 25 °C) | Log Kow |
---|---|---|---|---|---|---|---|
Naphthalene | 128.2 | 3.17 × 104 | 81 | 217.9 | 10.4 | 3.4 | |
Acenaphthene | 154.2 | 3.93 × 103 | 95 | 279 | 2.9 × 10−1 | 3.92 | |
Fluorene | 166.2 | 1.98 × 103 | 115–116 | 295 | 8.0 × 10−2 | 4.18 | |
Phenanthrene | 178.2 | 1.29 × 103 | 100.5 | 340 | 1.6 × 10−2 | 4.6 | |
Anthracene | 178.2 | 73 | 216.4 | 342 | 8.0 × 10−4 | 4.5 | |
Fluoranthene | 202.3 | 260 | 108.8 | 375 | 1.2 × 10−3 | 5.22 | |
Pyrene | 203.3 | 135 | 150.4 | 393 | 6.0 × 10−4 | 5.18 | |
Benzo(a)anthracene | 228.3 | 14 | 160.7 | 400 | 2.8 × 10−5 | 5.61 | |
Chrysene | 228.3 | 2.0 | 253.8 | 448 | 8.4 × 10−5 (20 °C) | 5.9 | |
Benzo(b)fluoranthene | 252.3 | 1.2 (20 °C) | 168.3 | 481 | 6.7 × 10−5 (20 °C) | 6.12 | |
Benzo(k)fluoranthene | 252.3 | 0.76 | 215.7 | 480 | 1.3 × 10−8 (20 °C) | 6.84 | |
Benzo(a)pyrene | 252.3 | 3.8 | 178.1 | 496 | 7.3 × 10−7 | 6.50 | |
Dibenzo(a,h)anthracene | 278.4 | 0.5 (27 °C) | 266.6 | 524 | 1.3 × 10−8 (20 °C) | 6.50 | |
Benzo(g,h,i)perylene | 276.3 | 0.26 | 278.3 | 545 | 1.4 × 10−8 | 7.10 | |
Indeno(1,2,3-cd)pyrene | 276.3 | 62 | 163.6 | 536 | 1.3 × 10−8 (20 °C) | 6.58 |
PAH | λex/λem | DAD | Fl | ||
---|---|---|---|---|---|
LOD (ng/mL) | LOQ (ng/mL) | LOD (ng/mL) | LOQ (ng/mL) | ||
Naph | 280/330 | 7.50 | 25.0 | 1.50 | 5.00 |
Ace + Fluo | 280/330 | 33.0 | 110 | 0.03 | 11.0 |
Phen | 246/370 | 0.60 | 2.00 | 0.12 | 0.40 |
Ant | 250/406 | 0.30 | 1.00 | 0.06 | 0.20 |
Flt | 280/450 | 0.75 | 2.50 | 0.15 | 0.50 |
Pyr | 270/390 | 1.50 | 5.00 | 0.30 | 1.00 |
BaA | 265/380 | 0.75 | 2.50 | 0.15 | 0.50 |
Chry | 265/380 | 0.75 | 2.50 | 0.15 | 0.50 |
BbF | 290/430 | 0.30 | 1.00 | 0.06 | 0.20 |
BkF | 290/430 | 0.30 | 1.00 | 0.06 | 0.20 |
BaP | 290/430 | 0.75 | 2.50 | 0.15 | 0.50 |
DahA | 290/410 | 3.00 | 10.0 | 0.60 | 2.00 |
BghiP | 290/410 | 1.20 | 4.00 | 0.24 | 0.80 |
IcdP | 300/500 | 0.75 | 2.50 | 0.15 | 0.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satouh, S.; Martín, J.; Orta, M.d.M.; Medina-Carrasco, S.; Messikh, N.; Bougdah, N.; Santos, J.L.; Aparicio, I.; Alonso, E. Adsorption of Polycyclic Aromatic Hydrocarbons by Natural, Synthetic and Modified Clays. Environments 2021, 8, 124. https://doi.org/10.3390/environments8110124
Satouh S, Martín J, Orta MdM, Medina-Carrasco S, Messikh N, Bougdah N, Santos JL, Aparicio I, Alonso E. Adsorption of Polycyclic Aromatic Hydrocarbons by Natural, Synthetic and Modified Clays. Environments. 2021; 8(11):124. https://doi.org/10.3390/environments8110124
Chicago/Turabian StyleSatouh, Sara, Julia Martín, María del Mar Orta, Santiago Medina-Carrasco, Nabil Messikh, Nabil Bougdah, Juan Luis Santos, Irene Aparicio, and Esteban Alonso. 2021. "Adsorption of Polycyclic Aromatic Hydrocarbons by Natural, Synthetic and Modified Clays" Environments 8, no. 11: 124. https://doi.org/10.3390/environments8110124
APA StyleSatouh, S., Martín, J., Orta, M. d. M., Medina-Carrasco, S., Messikh, N., Bougdah, N., Santos, J. L., Aparicio, I., & Alonso, E. (2021). Adsorption of Polycyclic Aromatic Hydrocarbons by Natural, Synthetic and Modified Clays. Environments, 8(11), 124. https://doi.org/10.3390/environments8110124