An Integrated Multi-Approach to Environmental Monitoring of a Self-Burning Coal Waste Pile: The São Pedro da Cova Mine (Porto, Portugal) Study Case
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Temperature Monitoring
2.3. Altimetric Variations
2.4. Land Use Land Cover (LULC)
2.5. Hydrogeochemical Characterization
2.6. Soil Characterization
2.7. GIS Data Integration
3. Results and Discussion
3.1. Temperature Monitoring
3.2. Altimetric Variations
3.3. Land Use Land Cover (LULC)
3.4. Hydrogeochemical Characterization
3.5. Soil Characterization
3.6. GIS Data Integration
3.7. Contribution of an Integrated Multi-Approach for Environmental Monitoring
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Pei, Y.; Zhao, S.; Xiao, R.; Sang, X.; Zhang, C. A Review of Remote Sensing for Environmental Monitoring in China. Remote Sens. 2020, 12, 1130. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Zong, M.; Hu, Y.; Liu, Y.; Wu, J. Assessing Landscape Ecological Risk in a Mining City: A Case Study in Liaoyuan City, China. Sustainability 2015, 7, 8312–8334. [Google Scholar] [CrossRef] [Green Version]
- Malaviya, S.; Munsi, M.; Oinam, G.; Kumar Joshi, P. Landscape approach for quantifying land use land cover change (1972–2006) and habitat diversity in a mining area in Central India (Bokaro, Jharkhand). Environ. Monit. Assess. 2010, 170, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Li, W.; Hou, J. Application of GIS Based Ecological Vulnerability Evaluation in Environmental Impact Assessment of Master Plan of Coal Mining Area. Procedia Environ. Sci. 2013, 18, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhou, W.; Bai, Z. Vegetation coverage change and stability in large open-pit coal mine dumps in China during 1990–2015. Ecol. Eng. 2016, 95, 447–451. [Google Scholar] [CrossRef]
- Bayliss, P.; Van Dam, R.; Bartolo, E. Quantitative Ecological Risk Assessment of the Magela Creek Floodplain in Kakadu National Park, Australia: Comparing Point Source Risks from the Ranger Uranium Mine to Diffuse Landscape-Scale Risks. Hum. Ecol. Risk Assess. Int. J. 2012, 18, 115–151. [Google Scholar] [CrossRef]
- Solgi, E.; Esmaili-Sari, A.; Riyahi-Bakhtiari, A.; Hadipour, M. Soil Contamination of Metals in the Three Industrial Estates, Arak, Iran. Bull. Environ. Contam. Toxicol. 2012, 88, 634–638. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Zhang, J.; Hu, S.; Liu, K. Heavy metals pollution and the identification of their sources in soil over Xiaoqinling gold-mining region, Shaanxi, China. Environ. Earth Sci. 2011, 64, 1585–1592. [Google Scholar] [CrossRef]
- Rađenović, A.; Medunić, G.; Saikia, B.K. Comparative review of Croatian and Indian air pollution studies with emphasis on pollutants derived by coal combustion. Rud. Geol. Naft. Zb. 2017, 32, 33–43. [Google Scholar] [CrossRef]
- Burke Johnson, R.; Onwuegbuzie, A.J.; Turner, L.A. Toward a Definition of Mixed Methods Research. J. Mix. Methods Res. 2007, 1, 112–133. [Google Scholar] [CrossRef]
- Abou Zakhem, B.; Hafez, R. Hydrochemical, isotopic and statistical characteristics of groundwater nitrate pollution in Damascus Oasis (Syria). Environ. Earth Sci. 2015, 74, 2781–2797. [Google Scholar] [CrossRef]
- Smith, D.N.I.; Ortega-Camacho, D.; Acosta-González, G.; Maria Leal-Bautista, R.; Fox, W.E.; Cejudo, E. A multi-approach assessment of land use effects on groundwater quality in a karstic aquifer. Heliyon 2020, 6, e03970. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.; Barbosa, D. Radio Astronomy Demonstrator: Assessment of the Appropriate Sites through a GIS Open Source Application. ISPRS Int. J. Geo-Inf. 2016, 5, 209. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Tang, X.-I.; Li, Z.-H. Land use suitability analysis for town development planning in Nanjing hilly areas: A case study of Tangshan new town, China. J. Mt. Sci. 2021, 18, 528–540. [Google Scholar] [CrossRef]
- Saraswat, S.; Digalwar, A.K.; Yadav, S.; Kumar, G. MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India. Renew. Energy 2021, 169, 865–884. [Google Scholar] [CrossRef]
- Kazuva, E.; Zhang, J.; Tong, Z.; Liu, X.-P.; Memon, S.; Mhache, E. GIS- and MCD-based suitability assessment for optimized location of solid waste landfills in Dar es Salaam, Tanzania. Environ. Sci. Pollut. Res. 2021, 28, 11259–11278. [Google Scholar] [CrossRef]
- Sarkar, B.C.; Mahanta, B.N.; Saikia, K.; Paul, P.R.; Singh, G. Geo-environmental quality assessment in Jharia coalfield, India, using multivariate statistics and geographic information system. Environ. Geol. 2007, 51, 1177–1196. [Google Scholar] [CrossRef]
- Lin, Y.; Hoover, J.; Beene, D.; Erdei, E.; Liu, Z. Environmental risk mapping of potential abandoned uranium mine contamination on the Navajo Nation, USA, using a GIS-based multi-criteria decision analysis approach. Environ. Sci. Pollut. Res. 2020, 27, 30542–30557. [Google Scholar] [CrossRef]
- Flores, H.; Lorenz, S.; Jackisch, R.; Tusa, L.; Contreras, I.C.; Zimmermann, R.; Gloaguen, R. UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters. Minerals 2021, 11, 182. [Google Scholar] [CrossRef]
- Ferrier, G. Application of Imaging Spectrometer Data in Identifying Environmental Pollution Caused by Mining at Rodaquilar, Spain. Remote Sens. Environ. 1999, 68, 125–137. [Google Scholar] [CrossRef]
- Choe, E.; van der Meer, F.; van Ruitenbeek, F.; van der Werff, H.; Smeth, B.; Kim, K.-W. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sens. Environ. 2008, 112, 3222–3233. [Google Scholar] [CrossRef]
- Booysen, R.; Jackisch, R.; Lorenz, S.; Zimmermann, R.; Kirsch, M.; Nex, P.A.M.; Gloaguen, R. Detection of REEs with lightweight UAV-based hyperspectral imaging. Sci. Rep. 2020, 10, 17450. [Google Scholar] [CrossRef]
- Kopeć, A.; Trybała, P.; Głąbicki, D.; Buczyńska, A.; Owczarz, K.; Bugajska, N.; Kozińska, P.; Chojwa, M.; Gattner, A. Application of Remote Sensing, GIS and Machine Learning with Geographically Weighted Regression in Assessing the Impact of Hard Coal Mining on the Natural Environment. Sustainability 2020, 12, 9338. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.C.; Gonçalves, J.A.; Ribeiro, J.; Flores, D.; Lopez-Gil, A.; Dominguez-Lopez, A.; Angulo-Vinuesa, X.; Martin-Lopez, S.; Gonzalez-Herraez, M. Distributed Temperature Measurement in a Self-Burning Coal Waste Pile through a GIS Open Source Desktop Application. ISPRS Int. J. Geo-Inf. 2017, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.; Ferreira da Silva, E.; Flores, D. Burning of coal waste piles from Douro Coalfield (Portugal): Petrological, geochemical and mineralogical characterization. Int. J. Coal Geol. 2010, 81, 359–372. [Google Scholar] [CrossRef]
- Ribeiro, J.; Flores, D.; Ward, C.R.; Silva, F.O. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 2010, 408, 6032–6041. [Google Scholar] [CrossRef]
- Ribeiro, J.; Silva, T.; Graciano Mendonca Filho, F.; Flores, D. Polycyclic aromatic hydrocarbons (PAHs) in burning and non-burning coal waste piles. J. Hazard. Mater. 2012, 199–200, 105–110. [Google Scholar] [CrossRef]
- Ribeiro, J.; Taffarel, S.R.; Sampaio, C.H.; Flores, D.; Silva, L.F. Mineral speciation and fate of some hazardous contaminants in coal waste pile from anthracite mining in Portugal. Int. J. Coal Geol. 2013, 109–110, 15–23. [Google Scholar] [CrossRef]
- Ribeiro, J.; Sant’Ovaia, H.; Gomes, C.; Ward, C.; Flores, D. Mineralogy and Magnetic Parameters of Materials Resulting from the Mining and Consumption of Coal from the Douro Coalfield, Northwest Portugal in Coal and Peat Fires: A Global Perspective. In Coal and Peat Fires: A Global Perspective; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 493–508. [Google Scholar]
- Ribeiro, J.; Viveiros, D.; Ferreira, J.; Suárez-Ruiz, I.; Santos, J.L.; Baptista, J.M.; Flores, D. Volatile organic compounds emitted from self-burning coal waste piles in Spain and Portugal: Environment and human health concerns. In Progress in Medical Geology; Ibaraki, M., Mori, H., Eds.; Cambridge Scholars Publishing: Newcastle Upon Tyne, UK, 2017; pp. 229–247. [Google Scholar]
- Ribeiro, J.; Viveiros, D.; Ferreira, J.; Lopez-Gil, A.; Dominguez-Lopez, A.; Martins, H.; Perez-Herrera, R.; Lopez-Aldaba, A.; Duarte, L.; Pinto, A.; et al. ECOAL Project—Delivering Solutions for Integrated Monitoring of Coal-Related Fires Supported on Optical Fiber Sensing Technology. Appl. Sci. 2017, 7, 956. [Google Scholar] [CrossRef]
- Ribeiro, J.; Flores, D. Occurrence, leaching, and mobility of major and trace elements in a coal mining waste dump: The case of Douro Coalfield, Portugal. Energy Geosci. 2021, 2, 121–128. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Pinto de Jesus, A. Evolução sedimentar e tectónica da Bacia Carbonífera do Douro (Estefaniano C inferior, NW de Portugal). Cad. Lab. Xeolóxico Laxe 2003, 28, 107–125. [Google Scholar]
- Medeiros, A.; Pereira, E.; Moreira, A. Notícia Explicativa da Folha 9-D Penafiel da Carta Geológica de Portugal à Escala 1:50000; Serviços Geológicos de Portugal: Lisboa, Portugal, 1980. [Google Scholar]
- Rocha, J.; Santos, P.; Ribeiro, J.; Espinha Marques, J.; Mansilha, C.; Flores, D. Hydrogeochemical characterization of effluents from São Pedro da Cova coal mine (Gondomar). Comun. Geológicas 2020, 107, 129–132. [Google Scholar]
- Isabel Soto-Estrada, M.; Correa-Echeveri, E.; Correa Echeverri, S. Thermal analysis of urban environments in Medellin, Colombia, using an unmanned aerial vehicle (UAV). J. Urban Environ. Eng. 2017, 11, 142–149. [Google Scholar] [CrossRef]
- Agisoft. Agisoft Metashape. Available online: https://www.agisoft.com/ (accessed on 1 December 2020).
- Esri. ArcMap. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources (accessed on 1 December 2020).
- Rossini, M.; Di Mauro, B.; Garzonio, R.; Baccolo, G.; Cavallini, G.; Mattavelli, M.; De Amicisa, M.; Colombo, R. Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry. Geomorphology 2018, 304, 159–172. [Google Scholar] [CrossRef]
- Enderle, D.M.; Weih, R.C., Jr. Integrating Supervised and Unsupervised Classification Methods to Develop a More Accurate Land Cover Classification. J. Ark. Acad. Sci. 2005, 59, 65–73. [Google Scholar]
- Campbell, J.B. Introduction to Remote Sensing, 3rd ed.; The Guilford Press: New York, NY, USA, 2002. [Google Scholar]
- Teodoro, A.; Pais-Barbosa, J.; Gonçalves, H.; Veloso-Gomes, F.; Taveira-Pinto, F. Identification of beach hydromorphological patterns/forms through image classification techniques applied to remotely sensed data. Int. J. Remote Sens. 2011, 32, 7399–7422. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.H.; Schell, J.A.; Deering, D. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the 3rd ERTS Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Duarte, L.; Teodoro, A.C.; Gonçalves, H. Deriving phenological metrics from NDVI through an open source tool developed in QGIS. Earth Resour. Environ. 2014, 132, 924511. [Google Scholar] [CrossRef]
- Hmimina, G.; Dufrêne, E.; Pontailler, J.-Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; De Grandcourt, A.; Burban, B.; Flechard, C.R.; Granier, A.; et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sens. Environ. 2013, 132, 145–158. [Google Scholar] [CrossRef]
- Mansilha, C.; Melo, A.; Flores, D.; Espinha Marques, J.; Ribeiro, J. Abandoned coal mines and groundwater pollution: A case study in S. Pedro da Cova, N Portugal. In Proceedings of the 46th IAH Congress, Málaga, Spain, 22–27 September 2019. [Google Scholar]
- Baird, R.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater (SMWW), 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Rodier, B.J. Legube, l’Analyse de l’Eau—Eaux Naturelles, Eaux Residuaires, Eau de Mer, 10th ed.; DUNOD: Malakoff, France, 2016. [Google Scholar]
- Kumar Jain, M.; Das, A. Impact of Mine Waste Leachates on Aquatic Environment: A Review. Curr. Pollut. Rep. 2017, 3, 31–37. [Google Scholar] [CrossRef]
- Gombert, P.; Sracek, O.; Koukouzas, N.; Gzyl, G.; Tuñon Valladares, S.; Frączek, R.; Klinger, C.; Bauerek, A.; Enrique Álvarez Areces, J.; Chamberlain, S.; et al. An Overview of Priority Pollutants in Selected Coal Mine Discharges in Europe. Mine Water Environ. 2019, 38, 16–23. [Google Scholar] [CrossRef]
- Espinha Marques, J.; Martins, V.; Santos, P.; Ribeiro, J.; Mansilha, C.; Melo, A.; Rocha, F.; Flores, D. Changes Induced by Self-Burning in Technosols from a Coal Mine Waste Pile: A Hydropedological Approach. Geosciences 2021, 11, 195. [Google Scholar] [CrossRef]
- Lv, J.; Wang, Y. Multi-scale analysis of heavy metals sources in soils of Jiangsu Coast, Eastern China. Chemosphere 2018, 212, 964–973. [Google Scholar] [CrossRef]
- Fan, M.; Margenot, A.J.; Zhang, H.; Lal, R.; Wu, J.; Wu, P.; Chen, F.; Gao, C. Distribution and source identification of potentially toxic elements in agricultural soils through high-resolution sampling. J. Environ. Pollut. 2020, 263 Pt B, 114527. [Google Scholar] [CrossRef]
- Duarte, L.; Teodoro, A.; Fernandes, J.; Santos, P.; Flores, D. An Integrated Environmental Monitoring Approach through the Development of Coal Mine, a GIS Open Source Application. In Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management, Prague, Czech Republic, 7–9 May 2020; pp. 286–293. [Google Scholar] [CrossRef]
- Satllman. Available online: https://stallman.org. (accessed on 20 May 2020).
- Instituto Português do Mar e da Atmosfera (IPMA). 2021. Available online: https://www.ipma.pt/en/ (accessed on 14 December 2020).
- Teodoro, A.C.; Fernandes, J.; Santos, P.; Duarte, L.; Gonçalves, J.A.; Flores, D. Monitoring of soil movement in a self-burning coal waste pile with UAV imagery. Proc. SPIE 2020, 11534. [Google Scholar] [CrossRef]
- SNAP. Available online: https://step.esa.int/main/download/snap-download/ (accessed on 15 February 2020).
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Prentice Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper; FAO: Rome, Italy, 1994. [Google Scholar]
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Off. J. Eur. Union 2020. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 25 November 2020).
- Gray, N.F. Field assessment of acid mine drainage contamination in surface and ground water. Environ. Geol. 1996, 27, 358–361. [Google Scholar] [CrossRef]
- Morin, K.A.; Hutt, N.M. Environmental Geochemistry of Minesite Drainage: Practical Theory and Case Studies; MDAG Publishing: Vancouver, BC, Canada, 2001; pp. 61–82. [Google Scholar]
- Santos, P.; Espinha Marques, J.; Ribeiro, J.; Flores, D. Caracterização da contaminação dos solos da envolvente da escombreira da antiga mina de carvão de São Pedro da Cova. Comun. Geológicas 2020, 107, 151–154. [Google Scholar]
- APA. Solos Contaminados—Guia Técnico, Valores de Referência para o Solo; APA: Lisboa, Portugal, 2019; p. 73. [Google Scholar]
- Guo, G.; Wu, F.; Xie, F.; Zhang, R. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J. Environ. Sci. 2012, 24, 410–418. [Google Scholar] [CrossRef]
- Yuan, X.; Xue, N.; Han, Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J. Environ. Sci. 2021, 101, 217–226. [Google Scholar] [CrossRef]
- Ribeiro, J.; Ferreira da Silva, E.; Pinto de Jesus, A.; Flores, D. Petrographic and geochemical characterization of coal waste piles from Douro Coalfield (NW Portuga). Int. J. Coal Geol. 2011, 87, 226–236. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Vallejuelo, S.; Gredilla, A.; Da Boit, K.; Teixeira, E.C.; Sampaio, C.H.; Madariaga, J.M.; Silva, L. Nanominerals and potentially hazardous elements from coal cleaning rejects of abandoned mines: Environmental impact and risk assessment. Chemosphere 2017, 169, 725–733. [Google Scholar] [CrossRef]
- PostGIS. Spatial and Geographic Objects for PostgreSQL. Available online: http://postgis.net/ (accessed on 31 July 2020).
Data | Season | Min. Temperature (°C) | Max. Temperature (°C) |
---|---|---|---|
July—2019 | Summer | 16 | 20 |
December—2019 | Winter | 6 | 17 |
May—2020 | Spring | 13 | 22 |
August—2020 | Summer | 18 | 26 |
November—2020 | Autumn | 9 | 19 |
Parameters | RGB Camera | TIR Sensor | Multispectral Sensor |
---|---|---|---|
Resolution (MP) | 20 | 0.33 | 1.2 |
Image size (in pixels) | 5472 by 3648 | 640 by 512 | 1280 by 960 |
Sensor pixel size (mm) | 0.0026 | 0.017 | 0.00375 |
Sensor size (mm) | 12.8 by 7.2 | 10.9 by 8.7 | 4.8 by 3.6 |
Focal length (mm) | 8.8 | 13 | 6 |
Spectral band (μm) | 0.4–0.7 | 7.5 to 13.5 | * |
Sensor weight (g) | No data | 113 | 180 |
Date | Minimum | Maximum |
---|---|---|
23 July 2019 | −0.035 | 0.345 |
7 May 2020 | −0.038 | 0.529 |
26 August 2020 | −0.025 | 0.533 |
10 November 2020 | −0.135 | 0.809 |
Elevation Variation | N° points | % |
---|---|---|
Kept | 0 | 0.00 |
Increased | 2 | 0.92 |
Decreased | 215 | 99.08 |
Total | 217 | 100 |
Scale (cm) | N° Points | % |
---|---|---|
−71.6 to −30 | 57 | 26.27 |
−29.9 to −20 | 121 | 55.76 |
−19,9 to 0 | 37 | 17.05 |
>0 | 2 | 0.92 |
Total | 217 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teodoro, A.; Santos, P.; Espinha Marques, J.; Ribeiro, J.; Mansilha, C.; Melo, A.; Duarte, L.; Rodrigues de Almeida, C.; Flores, D. An Integrated Multi-Approach to Environmental Monitoring of a Self-Burning Coal Waste Pile: The São Pedro da Cova Mine (Porto, Portugal) Study Case. Environments 2021, 8, 48. https://doi.org/10.3390/environments8060048
Teodoro A, Santos P, Espinha Marques J, Ribeiro J, Mansilha C, Melo A, Duarte L, Rodrigues de Almeida C, Flores D. An Integrated Multi-Approach to Environmental Monitoring of a Self-Burning Coal Waste Pile: The São Pedro da Cova Mine (Porto, Portugal) Study Case. Environments. 2021; 8(6):48. https://doi.org/10.3390/environments8060048
Chicago/Turabian StyleTeodoro, Ana, Patrícia Santos, Jorge Espinha Marques, Joana Ribeiro, Catarina Mansilha, Armindo Melo, Lia Duarte, Cátia Rodrigues de Almeida, and Deolinda Flores. 2021. "An Integrated Multi-Approach to Environmental Monitoring of a Self-Burning Coal Waste Pile: The São Pedro da Cova Mine (Porto, Portugal) Study Case" Environments 8, no. 6: 48. https://doi.org/10.3390/environments8060048
APA StyleTeodoro, A., Santos, P., Espinha Marques, J., Ribeiro, J., Mansilha, C., Melo, A., Duarte, L., Rodrigues de Almeida, C., & Flores, D. (2021). An Integrated Multi-Approach to Environmental Monitoring of a Self-Burning Coal Waste Pile: The São Pedro da Cova Mine (Porto, Portugal) Study Case. Environments, 8(6), 48. https://doi.org/10.3390/environments8060048