Agrochemical Contamination of Honey and Bee Bread Collected in the Piedmont Region, Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey and Beebread Sampling
2.2. Palynological Analyses
2.3. Multiresidue Pesticide Analysis of the Bee Bread and Honey
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- de Oliveira, R.C.; Queiroz, S.C.N.; da Luz, C.F.P.; Porto, R.S.; Rath, S. Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere 2016, 163, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Crailsheim, K.; Schneider, L.H.W.; Hrassnigg, N.; Bühlmann, G.; Brosch, U.; Gmeinbauer, R.; Schöffmann, B. Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): Dependence on individual age and function. J. Insect Physiol. 1992, 38, 409–419. [Google Scholar] [CrossRef]
- Tosi, S.; Costa, C.; Vesco, U.; Quaglia, G.; Guido, G. A 3 year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci. Total Environ. 2018, 615, 208–2018. [Google Scholar] [CrossRef] [PubMed]
- Chauzat, M.; Faucon, J.; Martel, A.; Lachaize, J.; Cougoule, N.; Aubert, M. A survey of pesticide residues in pollen loads collected by honey bees in France. J. Econ. Entomol. 2006, 99, 253–262. [Google Scholar] [CrossRef]
- Bernal, J.; Garrido-Bailón, E.; Del Nozal, M.J.; González-Porto, A.V.; Martín-Hernández, R.; Diego, J.C.; Jiménez, J.J.; Bernal, J.L.; Higes, M. Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J. Econ. Entomol. 2010, 103, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; Vanengelsdorp, D.; Pettis, J.S. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef] [Green Version]
- Smodis Skerl, M.I.; Kmecl, V.; Gregorc, A. Exposure to pesticides at sublethal level and their distribution within a honey bee (Apis mellifera) colony. Bull. Environ. Contam. Toxicol. 2010, 85, 125–128. [Google Scholar] [CrossRef]
- Lambert, O.; Piroux, M.; Puyo, S.; Thorin, C.; L’Hostis, M.; Wiest, L.; Buleté, A.; Delbac, F.; Pouliquen, H. Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of western France. PLoS ONE 2013, 8, e67007. [Google Scholar] [CrossRef]
- Long, E.Y.; Krupke, C.H. Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat. Commun. 2016, 7, 11629. [Google Scholar] [CrossRef]
- Simon-Delso, N.; San Martin, G.; Bruneau, E.; Minsart, L.A.; Mouret, C.; Hautier, L. Honeybee Colony Disorder in Crop Areas: The Role of Pesticides and Viruses. PLoS ONE 2014, 21, 0103073. [Google Scholar] [CrossRef]
- García-Chao, M.; Jesús Agruna, M.; Flores Calvete, G.; Sakkas, V.; Llompart, M.; Dagnac, T. Validation of an off line solid phase extraction liquid chromatography–tandemmass spectrometry method for the determination of systemic insecticideresidues in honey and pollen samples collected in apiaries from NW Spain. Anal. Chim. Acta 2010, 672, 107–113. [Google Scholar] [CrossRef]
- Chauzat, M.P.; Martel, A.C.; Cougoule, N.; Porta, P.; Lachaize, J.; Zeggane, S.; Aubert, M.; Carpentier, P.; Faucon, J.P. An assessment of honeybee colony matrices, Apis mellifera (Hymenoptera: Apidae) to monitor pesticide presence in continental France. Environ. Toxicol. Chem. 2011, 30, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Panseri, S.; Catalano, A.; Giorgi, A.; Arioli, F.; Procopio, A.; Britti, D.; Chiesa, L.M. Occurrence of pesticide residues in Italian honey from different areas in relation to its potential contamination sources. Food Control 2014, 38, 150–156. [Google Scholar] [CrossRef]
- Malhat, F.M.; Haggag, M.N.; Loutfy, N.M.; Osman, M.A.M.; Ahmed, M.T. Residues of organochlorine and synthetic pyrethroid pesticides in honey, an indicator of ambient environment a pilot study. Chemosphere 2015, 120, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Perugini, M.; Tulini, S.M.R.; Zezza, D.; Fenucci, S.; Conte, A.; Amorena, M. Occurrence of agrochemical residues in beeswax samples collected in Italy during 2013–2015. Sci. Total Environ. 2018, 625, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, L.M.; Labella, G.F.; Giorgi, A.; Panseri, S.; Pavlovic, R.; .Bonacci, S.; Arioli, F. The occurrence of pesticides and persistent organic pollutants in Italian organic honeys from different productive areas in relation to potential environmental pollution. Chemosphere 2016, 154, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Calatayud-Vernich, P.; Calatayud, F.; Simo, E.; Aguilar, J.A.P.; Pico, Y. A two-year monitoring of pesticide hazard in-hive: High honey bee mortality rates during insecticide poisoning episodes in apiaries located near agricultural settings. Chemosphere 2019, 232, 471–480. [Google Scholar] [CrossRef]
- Diaz-Losada, E.; Ricciardelli-D’Albore, G.; Saa-Otero, M.P. The possible use of honeybee pollen loads in characterising vegetation. Grana 1998, 37, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity-USA. Apidologie 2010, 41, 312–331. [Google Scholar] [CrossRef] [Green Version]
- Suchail, S.; Guez, D.; Belzunces, L.P. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. 2001, 20, 2482–2486. [Google Scholar] [CrossRef] [PubMed]
- Williamson, S.M.; Baker, D.D.; Wright, G.A. Acute exposure to a sublethal dose of imidacloprid and coumaphos enhances olfactory learning and memory in the honeybee Apis mellifera. Invertebr. Neurosci. 2013, 13, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Decourtye, A.; Armengaud, C.; Renou, M.; Devillers, J.; Cluzeau, S.; Gauthier, M.; Pham-Delegue, M.H. Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic. Biochem. Phys. 2004, 78, 83–92. [Google Scholar] [CrossRef]
- Frost, E.H.; Shutler, D.; Hillier, N.K. Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival. J. Exp. Biol. 2013, 216, 2931–2938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siviter, H.; Koricheva, J.; Brown, M.J.F.; Leadbeater, E. Quantifying the impact of pesticides on learning and memory in bees. J. Appl. Ecol. 2018, 55, 2812–2821. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Anelli, C.M.; Sheppard, W.S. Sub-Lethal Effects of Pesticide Residues in Brood Comb on Worker Honey Bee (Apis mellifera) Development and Longevity. PLoS ONE 2011, 6, e14720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, R.J.; Ramos-Rodriguez, O.; Raine, N.E. Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature 2012, 491, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Pettis, J.S.; Lichtenberg, E.M.; Andree, M.; Stitzinger, J.; Rose, R.; Vanengelsdorp, D. Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae. PLoS ONE 2013, 8, e70182. [Google Scholar] [CrossRef] [PubMed]
- Doublet, V.; Labarussias, J.; de Miranda, J.R.; Moritz, R.F.A.; Paxton, R.J. Bees under stress: Sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 2014, 17, 969–983. [Google Scholar] [CrossRef] [PubMed]
- Reeves, A.M.; O’Neal, S.T.; Fell, R.D.; Brewster, C.C.; Anderson, T.D. In-hive Acaricides alter biochemical and morphological indicators of honey bee nutrition, immunity, and development. J. Insect Sci. 2018, 18, 8. [Google Scholar] [CrossRef] [PubMed]
- Dolezal, A.G.; Carrillo-Tripp, J.; Miller, W.A.; Bonning, B.C.; Toth, A.L. Pollen contaminated with field-relevant levels of cyhalothrin affects honey bee survival, nutritional physiology, and pollen consumption behavior. J. Econ. Entomol. 2016, 109, 41–48. [Google Scholar] [CrossRef]
- REGULATION (EU) 2018/783 Amending Implementing Regulation (EU) No 540/2011 as Regards the Conditions of Approval of the Active Substance Imidacloprid. Available online: http://data.europa.eu/eli/reg_impl/2018/783/oj (accessed on 2 July 2021).
- Williamson, S.M.; Wright, G.A. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. J. Exp. Biol. 2013, 2016, 1799–1807. [Google Scholar] [CrossRef] [Green Version]
- Thompson, H.M. Behavioural Effects of Pesticides in Bees–Their Potential for Use in Risk Assessment. Ecotoxicology 2003, 12, 317–330. [Google Scholar] [CrossRef]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Giesy, J.P.; Dobson, S.; Solomon, K.R. Ecotoxicological risk assessment for Roundup® herbicide. Rev. Environ. Contam. Toxicol. 2000, 167, 35–120. [Google Scholar]
- Rolando, C.A.; Baillie, B.R.; Thompson, D.G.; Little, K.M. The risks associated with glyphosate-based herbicide use in planted forests. Forests 2017, 8, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Blake, R.; Pallett, K. The environmental fate and ecotoxicity of glyphosate. Outlooks Pest Manag. 2018, 29, 266–269. [Google Scholar] [CrossRef]
- Gill, J.P.K.; Sethi, N.; Mohan, A.; Datta, S.; Girdhar, M. Glyphosate toxicity for animals. Environ. Chem. Lett. 2018, 16, 401–426. [Google Scholar] [CrossRef]
- Richmond, M.E. Glyphosate: A review of its global use, environmental impact, and potential health effects on humans and other species. J. Environ. Stud. Sci. 2018, 8, 416–434. [Google Scholar] [CrossRef]
- Motta, E.V.S.; Mak, M.; De Jong, T.K.; Powell, J.E.; O’Donnell, A.; Suhr, K.J.; Riddington, I.M.; Moran, N.A. Oral or topical exposure to glyphosate in herbicide formulation impacts the gutmicrobiota and survival rates of honey bees. Appl. Environ. Microbiol. 2020, 86, e01150-20. [Google Scholar] [CrossRef] [PubMed]
- Balbuena, M.S.; Tison, L.; Hahn, M.L.; Greggers, U.; Menzel, R.; Farina, W.M. Effects of sub-lethal doses of glyphosate on honeybee navigation. J. Exp. Biol. 2015, 218, 2799–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battisti, L.; Potrich, M.; Sampaio, A.R.; de Castilhos Ghisi, N.; Costa-Maia, F.M.; Abati, R.; Bueno dos Reis Martinez, C.; Helena, S.H. Is glyphosate toxic to bees? A meta-analytical review. Sci. Total Environ. 2021, 767, 145397. [Google Scholar] [CrossRef] [PubMed]
- European Council. Council Regulation (EC) No. 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No. 2092/91. Off. J. Eur. Un. 2007, L189, 1. [Google Scholar]
- Hernandez, J.; Maisonnasse, A.; Cousin, M.; Beri, C.; Le Quintrec, C.; Bouetard, A.; Castex, D.; Decante, D.; Servel, E.; Buchwalder, G. ColEval: Honeybee colony structure evaluation for field surveys. Insects 2020, 11, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Der Ohe, W.; Persano-Oddo, L.; Piana, M.; Morlot, M.; Martin, P. Harmonized methods of melissopalynology. Apidologie 2004, 35 (Suppl. S1), S18–S25. [Google Scholar] [CrossRef]
- Persano Oddo, L.; Ricciardelli d’Albore, G. Nomenclatura melissopalinologica. Apicoltura 1989, 5, 63–72. [Google Scholar]
- da Silveira, F.A. Influence of pollen grain volume on the estimation of the relative importance of its source to bees. Apidologie 1991, 22, 495–502. [Google Scholar] [CrossRef]
- Conti, I.; Medrzycki, P.; Palmieri, N.; Piana, M.L.; Mariotti, M.G. Volumetric expression of palynological spectra for nutritional studies. J. Apic. Res. 2019, 58, 639–641. [Google Scholar] [CrossRef]
- Sponsler, D.B.; Johnson, R.M. Mechanistic modeling of pesticide exposure: The missing keystone of honey bee toxicology. Environ. Toxicol. Chem. 2017, 36, 871–881. [Google Scholar] [CrossRef]
- Villalba, A.; Maggi, M.; Ondarza, P.M.; Szawarski, N.; Miglioranza, K.S.B. Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Sci. Total Environ. 2020, 713, 136554. [Google Scholar] [CrossRef]
- Alaux, C.; Ducloz, F.; Crauser, D.; Le Conte, Y. Diet effects on honeybee immunocom-petence. Biol. Lett. 2010, 6, 562–565. [Google Scholar] [CrossRef] [Green Version]
- Rubio, F.; Guo, E.; Kamp, L. Survey of glyphosate residues in honey, corn and soy products. J. Environ. Anal. Toxicol. 2014, 5, 1–8. [Google Scholar]
- El Agrebi, N.; Traynor, K.; Wilmart, O.; Tosi, S.; Leinartz, L.; Danneels, E.; de Graaf, D.C.; Saegerman, C. Pesticide and veterinary drug residues in Belgian beeswax: Occurrence, toxicity, and risk to honey bees. Sci. Total Environ. 2020, 745, 141036. [Google Scholar] [CrossRef] [PubMed]
- Krüger, M.; Schrödl, W.; Neuhaus, J.; Shehata, A.A. Field Investigations of Glyphosate in Urine of Danish Dairy Cows. J. Environ. Anal. Toxicol. 2013, 3, 1–7. [Google Scholar]
- Lorenzatti, E.; Maitre, M.I.; Argelia, L.; Lajmanovich, R.; Peltzer, P.; Anglada, M. Pesticide residues in immature soybeans of Argentina croplands. Fresenius Environ. Bull. 2004, 13, 675–678. [Google Scholar]
- Sanchís, J.; Kantiani, L.; Llorca, M.; Rubio, F.; Ginebreda, A.; Fraile, J.; Garrido, T.; Farré, M. Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 402, 2335–2345. [Google Scholar] [CrossRef] [PubMed]
- Tosi, S.; Nieh, J.C.; Sgolastra, F.; Cabbri, R.; Medrzycki, P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. Biol. Sci. 2017, 284, 20171711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motta, E.V.S.; Raymann, K.; Moran, N.A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 2018, 115, 10305–10310. [Google Scholar] [CrossRef] [Green Version]
Searched Molecules | |
---|---|
Acaricides | Fenazaquin, Propargite, Tebufenpirad |
Herbicides | Linuron, Propyzamide, Glyphosate |
Fungicides | Azoxystrobin Benalaxyl, Bitertanol, Boscalid, Cyazofamid, Dichlofluanid, Difenoconazole, Diethofencarb, Fenarimol, Fenbuconazole, Fenexamid, Fluopicolide, Flusilazole, Imazalil, Iprovalicarb, Kresoxim methyl, Mandipropamid, Metalaxyl, Nuarimol, Oxadixyl, Spiroxamine, Tebuconazole, Thiabendazole, Tolyfluanid, Trifloxystrobin, |
Insecticide | Acrinathrin, Azinphos-methyl, Bifenthrin, Buprofezin, Carbaryl, Chlorfenvinphos, Chlorpyriphos-ethyl, Chlorpyriphos-methyl, Coumaphos, Chlothianidin, Cyfluthrin, Diazinon, Dichlorvos, Dimethoate, Esfenvalerate, Ethion, Etofenprox, Etrimfos, Fenitrothion, Fenthion, Fosmet, Heptenofos, Imidacloprid, Lambda cyhalothrin, Malathion, Mevinphos, Parathion ethyl, Parathion methyl, Phenthoate, Pirazophos, Pirimicarb, Pirimiphos ethyl, Pirimiphos methyl, Quinalphos, Tau-fluvalinate, Thiamethoxam, |
Matrix | Sampling Site and Coordinates | Glyphosate (ng/g) | Mandipropamid (ng/g) | Metalaxil (ng/g) | Spiroxamine (ng/g) |
---|---|---|---|---|---|
Honey | 1(44.76297-8.104263) | 10–34 (23 ± 11.40) | <LOQ-20 | <LOQ-4 | <LOQ-40 |
Honey | 2(45.04583-8.075938) | 10–29 (17.5 ± 8.89) | <LOQ | <LOQ | <LOQ |
Honey | 3(44.59696-8.099426) | 10–19 (13 ± 4.08) | <LOQ | <LOQ | <LOQ |
Honey | 4(44.31935-7.259777) | 10–16 (13 ± 4.24) | <LOQ | <LOQ | <LOQ |
Matrix | Sampling Site and Coordinates | Glyphosate (ng/g) | Tau-Fluvalinate (ng/g) | Mandipropamid (ng/g) |
---|---|---|---|---|
Bee bread | 1(44.76297-8.104263) | 10–104 (37.75 ± 31.82) | <LOQ | <LOQ-10 |
Bee bread | 2(45.04583-8.075938) | 10–59 (24.70 ± 19.95) | <LOQ-50 | <LOQ |
Bee bread | 3(44.59696-8.099426) | 20–542 (103.57 ± 193.98) | <LOQ | <LOQ |
Bee bread | 4(44.31935-7.259777) | <LOQ-49 (23 ± 22.52) | <LOQ | <LOQ |
Sampling Period | Sampling Site | Glyphosate (ng/g) | Pollen |
---|---|---|---|
March 2019 | 1 | 64 | Salix (91.9%) |
March 2019 | 2 | 44 | Castanea (30.3%) |
March 2019 | 3 | 46 | Prunus (52%) |
April 2019 | 1 | 24 | Robinia (34.2%) |
April 2019 | 2 | 56 | Quercus robur (24.7%) |
April 2019 | 3 | 20 | Cruciferae (40.6%) |
May 2019 | 2 | 11 | Trifolium repens (20.9%) |
July 2019 | 3 | 542 | Graminaceae (16%), Compositae (28%), Plantago (16%) |
August 2019 | 1 | 104 | Hedera (91%) |
August 2019 | 2 | 59 | Hedera (93%) |
August 2019 | 3 | 58 | Hedera (54%) |
August 2019 | 4 | 49 | Hedera (87%) |
March 2020 | 2 | 13 | Prunus (83.4%), Salix (6.2%) |
March 2020 | 3 | 25 | Prunus (64.7%), Salix (16.7%) |
March 2020 | 4 | 10 | Salix (86%), Prunus (12.8%) |
April 2020 | 2 | 16 | Fraxinus ornus (70.9%), Prunus ((7.3%) |
April 2020 | 3 | 18 | Fraxinus ornus (55%), Aesculus (10.1%) |
May 2020 | 1 | 10 | Papaver (64.3%), Amorpha (23%) |
May 2020 | 2 | 14 | Trifolium repens (30.9%), Chamaerops (13.9%) |
May 2020 | 3 | 16 | Papaver (34.3%), Castanea (28.6%) |
June 2020 | 1 | 10 | Compositae (35%), Clematis (29.8%) |
June 2020 | 2 | 12 | Rubus (76.2%), Trifolium repens (12.7%) |
August 2020 | 2 | 12 | Castaneo (78.8%), Rubus (9.3%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergero, M.; Bosco, L.; Giacomelli, A.; Angelozzi, G.; Perugini, M.; Merola, C. Agrochemical Contamination of Honey and Bee Bread Collected in the Piedmont Region, Italy. Environments 2021, 8, 62. https://doi.org/10.3390/environments8070062
Bergero M, Bosco L, Giacomelli A, Angelozzi G, Perugini M, Merola C. Agrochemical Contamination of Honey and Bee Bread Collected in the Piedmont Region, Italy. Environments. 2021; 8(7):62. https://doi.org/10.3390/environments8070062
Chicago/Turabian StyleBergero, Marco, Luca Bosco, Alessandra Giacomelli, Giovanni Angelozzi, Monia Perugini, and Carmine Merola. 2021. "Agrochemical Contamination of Honey and Bee Bread Collected in the Piedmont Region, Italy" Environments 8, no. 7: 62. https://doi.org/10.3390/environments8070062
APA StyleBergero, M., Bosco, L., Giacomelli, A., Angelozzi, G., Perugini, M., & Merola, C. (2021). Agrochemical Contamination of Honey and Bee Bread Collected in the Piedmont Region, Italy. Environments, 8(7), 62. https://doi.org/10.3390/environments8070062