Soil Contamination by Heavy Metals and Metalloids
Acknowledgments
Conflicts of Interest
References
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Front. Environ. Sci. 2016, 4, 41. [Google Scholar] [CrossRef]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Massas, I.; Gasparatos, D.; Ioannou, D.; Kalivas, D. Signs for secondary build up of heavy metals in soils at the periphery of Athens International Airport, Greece. Environ. Sci. Poll. Res. 2018, 25, 658–671. [Google Scholar] [CrossRef]
- Herbón, C.; Barral, M.T.; Paradelo, R. Potentially toxic trace elements in the urban soils of Santiago de Compostela (Northwestern Spain). Appl. Sci. 2021, 11, 4211. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Gasparatos, D.; Kalyvas, G.; Ioannou, D.; Massas, I. Desorption of arsenic from calcareous mine affected soils by phosphate fertilizers application in relation to soil properties and As partitioning. Soil Syst. 2019, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, V.; Shaheen, S.M.; Boersch, J.; Frohne, T.; Laing, G.D.; Rinklebe, J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017, 186, 192–200. [Google Scholar] [CrossRef]
- Moreno-Alvarez, J.M.; Orellana-Gallego, R.; Fernandez-Marcos, M.L. Potentially Toxic Elements in Urban Soils of Havana, Cuba. Environments 2020, 7, 43. [Google Scholar] [CrossRef]
- Werkenthin, M.; Kuge, B.; Wessolek, G. Metals in European roadside soil and soil solution—A review. Environ. Pollut. 2014, 189, 98–110. [Google Scholar] [CrossRef]
- De Silva, S.; Huynh, T.; Ball, A.S.; Indrapala, D.V.; Reichman, S.M. Measuring Soil Metal Bioavailability in Roadside Soils of Different Ages. Environments 2020, 7, 91. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Gasparatos, D.; Ioannou, D.; Kalderis, D.; Massas, I. Selenium Biofortification of Lettuce Plants (Lactuca sativa L.) as Affected by Se Species, Se Rate, and a Biochar Co-Application in a Calcareous Soil. Agronomy 2022, 12, 131. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Gasparatos, D.; Massas, I. Adsorption/Desorption Patterns of Selenium for Acid and Alkaline Soils of Xerothermic Environments. Environments 2020, 7, 72. [Google Scholar] [CrossRef]
- Kalyvas, G.; Gasparatos, D.; Liza, C.A.; Massas, I. Single and combined effect of chelating, reductive agents, and agroindustrial by-product treatments on As, Pb, and Zn mobility in a mine-affected soil over time. Environ. Sci. Pollut. Res. 2020, 27, 5536–5546. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef]
- Bilias, F.; Nikoli, T.; Kalderis, D.; Gasparatos, D. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements. Toxics 2021, 9, 184. [Google Scholar] [CrossRef]
- Cui, L.; Li, L.; Bian, R.; Yan, J.; Quan, G.; Liu, Y.; Ippolito, J.A.; Wang, H. Short- and Long-Term Biochar Cadmium and Lead Immobilization Mechanisms. Environments 2020, 7, 53. [Google Scholar] [CrossRef]
- Kalyvas, G.; Tsitselis, G.; Gasparatos, D.; Massas, I. Efficacy of EDTA and Olive Mill Wastewater to Enhance As, Pb, and Zn Phytoextraction by Pteris vittata L. from a Soil Heavily Polluted by Mining Activities. Sustainability 2018, 10, 1962. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Antonangelo, J.; Zhang, H. Influence of Biochar Derived Nitrogen on Cadmium Removal by Ryegrass in a Contaminated Soil. Environments 2021, 8, 11. [Google Scholar] [CrossRef]
- Gul, I.; Manzoor, M.; Hashim, N.; Shah, G.M.; Waani, S.P.T.; Shahid, M.; Antoniadis, V.; Rinklebe, J.; Arshad, M. Challenges in Microbially and Chelate-Assisted Phytoextraction of Cadmium and Lead-A Review. Environ. Pollut. 2021, 287, 117667. [Google Scholar] [CrossRef] [PubMed]
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Fahad, S.; Datta, R.; Abbas, M.; Rahi, A.A.; Brtnicky, M.; Holátko, J.; Tarar, Z.H.; et al. Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria. Environments 2020, 7, 54. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasparatos, D. Soil Contamination by Heavy Metals and Metalloids. Environments 2022, 9, 32. https://doi.org/10.3390/environments9030032
Gasparatos D. Soil Contamination by Heavy Metals and Metalloids. Environments. 2022; 9(3):32. https://doi.org/10.3390/environments9030032
Chicago/Turabian StyleGasparatos, Dionisios. 2022. "Soil Contamination by Heavy Metals and Metalloids" Environments 9, no. 3: 32. https://doi.org/10.3390/environments9030032
APA StyleGasparatos, D. (2022). Soil Contamination by Heavy Metals and Metalloids. Environments, 9(3), 32. https://doi.org/10.3390/environments9030032