Enhanced As, Pb and Zn Uptake by Helianthus annuus from a Heavily Contaminated Mining Soil Amended with EDTA and Olive Mill Wastewater Due to Increased Element Mobilization, as Verified by Sequential Extraction Schemes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Selection and Characteristics
2.2. Greenhouse Experiment
2.3. Plant Analysis
2.4. Sequential Extraction Procedures
2.5. Statistical Analysis
3. Results
3.1. Physical and Chemical Properties of Soil Samples
Clay | Silt | Sand | OM 1 | Total CaCO3 | pH | CEC 2 | Total As | Total Zn | Total Pb |
---|---|---|---|---|---|---|---|---|---|
g kg−1 | 1:1 | cmolc kg−1 | mg kg−1 | ||||||
198 | 301 | 501 | 45 | 69 | 7.7 | 18.0 | 822 (55) | 5677 (720) | 4428 (530) |
3.2. Effects of EDTA and Olive Mill Wastewater Treatments on Plant Growth, Aboveground Biomass PTEs Content and Respective Roots-to-Shoots Translocation Factor
3.3. Distribution of As, Zn and Pb in Soil Fractions
3.4. Effects of Different Chelating Agents on PTE Uptake by H. annuus and Soil Fraction Distribution
3.4.1. Arsenic
3.4.2. Zinc
3.4.3. Lead
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gasparatos, D. Soil Contamination by Heavy Metals and Metalloids. Environments 2022, 9, 32. [Google Scholar] [CrossRef]
- Massas, I.; Gasparatos, D.; Ioannou, D.; Kalivas, D. Signs for secondary build up of heavy metals in soils at the periphery of Athens International Airport, Greece. Environ. Sci. Pollut. Res. 2018, 25, 658–671. [Google Scholar] [CrossRef] [PubMed]
- Kalyvas, G.; Gasparatos, D.; Papassiopi, N.; Massas, I. Topsoil pollution as ecological footprint of historical mining activities in Greece. Land Degrad. Dev. 2018, 29, 2025–2035. [Google Scholar] [CrossRef]
- Dradrach, A.; Karczewska, A.; Szopka, K. Arsenic accumulation by red fescue (Festuca rubra) growing in mine affected soils—Findings from the field and greenhouse studies. Chemosphere 2020, 248, 126045. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, J.; Lombi, E. Phytoremediation of metals, metalloids, and radionuclides. Adv. Agron. 2002, 75, 1–56. [Google Scholar]
- Antonangelo, J.; Zhang, H. Influence of Biochar Derived Nitrogen on Cadmium Removal by Ryegrass in a Contaminated Soil. Environments 2021, 8, 11. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: A review. Crit. Rev. Environ. Sci. Technol. 2010, 41, 168–214. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Bilias, F.; Nikoli, T.; Kalderis, D.; Gasparatos, D. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements. Toxics 2021, 9, 184. [Google Scholar] [CrossRef]
- Ghazaryan, K.A.; Movsesyan, H.S.; Minkina, T.M.; Nevidomskaya, D.G.; Rajput, V.D. Phytoremediation of copper-contaminated soil by Artemisia absinthium: Comparative effect of chelating agents. Environ. Geochem. Health 2022, 44, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Manouchehri, N.; Bermond, A. EDTA in Soil Science: A Review of its Application in Soil Trace Metal Studies. Terr. Aquat. Environ. Toxicol. 2009, 3, 1–15. [Google Scholar]
- Kalyvas, G.; Tsitselis, G.; Gasparatos, D.; Massas, I. Efficacy of EDTA and olive mill wastewater to enhance As, Pb, and Zn phytoextraction by Pteris vittata L. from a soil heavily polluted by mining activities. Sustainability 2018, 10, 1962. [Google Scholar] [CrossRef] [Green Version]
- Morillo, J.A.; Antizar-Ladislao, B.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A.; Russell, N.J. Bioremediation and biovalorisation of olive-mill wastes. Appl. Microbiol. Biotechnol. 2009, 82, 25–39. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Jadia, C.D.; Fulekar, M. Phytoremediation of heavy metals: Recent techniques. Afr. J. Biotechnol. 2009, 8, 921–928. [Google Scholar]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Rhoades, J.D. Salinity: Electrical conductivity and total dissolved solids. In Methods of Soil Analysis, Part 3: Chemical Methods, SSSA Book Series 5; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA; American Society of Agronomy: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar]
- NF ISO 10693. Détermination de la Teneur en Carbonate—Méthode Volumétrique; Qualité des sols AFNOR: Paris, France, 1995; pp. 177–186. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Rhoades, J.D. Cation Exchange Capacity. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd ed.; Agron. Monogr. 9; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; ASA: Madison, WI, USA; SSSA: Madison, WI, USA, 1982; pp. 149–157. [Google Scholar]
- Gasparatos, D.; Haidouti, C. A comparison of wet oxidation methods for determination of total phosphorus in soils. J. Plant Nutr. Soil Sci. 2001, 164, 435–439. [Google Scholar] [CrossRef]
- Jones, J.B., Jr.; Case, V.W. Sampling, handling and analyzing plant tissue samples. In Soil Testing and Plant Analysis; Westerman, R.L., Ed.; SSSA, Inc.: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Ma, J.; Lei, E.; Lei, M.; Liu, Y.; Chen, T. Remediation of Arsenic contaminated soil using malposed intercropping of Pteris vittata L. and maize. Chemosphere 2018, 194, 737–744. [Google Scholar] [CrossRef]
- Wenzel, W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef] [PubMed]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; issue 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Netherlands Ministry of Housing. Physical Planning and Environment (Netherlands MHPPE). Annexes Circular on Target Values and Intervention Values for Soil Remediation; MHPPE: The Netherlands, 2000. [Google Scholar]
- Kalyvas, G.; Gasparatos, D.; Massas, I. A critical assessment of arsenic partitioning in mine-affected soils by using two sequential extraction protocols. Arch. Agron. Soil Sci. 2018, 64, 1549–1563. [Google Scholar] [CrossRef]
- Gasparatos, D. Fe-Mn concretions and nodules to sequester heavy metals in soils. In Environmental Chemistry for a Sustainable World, Vol 2: Remediation of Air and Water Pollution; Lichtfouse, E., Schwarzbauer, J., Robert, D., Eds.; Springer Science + Business Media B.V: Dordrecht, The Netherlands, 2012; pp. 443–474. [Google Scholar]
- Fiorentino, A.; Gentili, A.; Isidori, M.; Monaco, P.; Nardelli, A.; Parrella, A.; Temussi, F. Environmental effects caused by olive mill wastewaters: Toxicity comparison of low-molecular-weight phenol components. J. Agric. Food Chem. 2003, 51, 1005–1009. [Google Scholar] [CrossRef]
- January, M.C.; Cutright, T.J.; Van Keulen, H.; Wei, R. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 2008, 70, 531–537. [Google Scholar] [CrossRef]
- Benavides, B.J.; Drohan, P.J.; Spargo, J.T.; Maximova, S.N.; Guiltinan, M.J.; Miller, D.A. Cadmium phytoextraction by Helianthus annuus (sunflower), Brassica napus Cv Wichita (rapeseed), and Chyrsopogon zizanioides (vetiver). Chemosphere 2021, 265, 129086. [Google Scholar] [CrossRef]
- Elizabeth, T.A.; Abiodun, J.; Ojo, T.V.A.; Ajibola, P.A.; Chidera, O. Bioremediation potentials of sunflower and Pseudomonas species in soil contaminated with lead and zinc. Afr. J. Biotechnol. 2018, 17, 1324–1330. [Google Scholar] [CrossRef]
- Mishra, S.R.; Chandra, R.; Prusty, B.A.K. Chelate-assisted phytoaccumulation: Growth of Helianthus annuus L., Vigna radiata (L.) R. Wilczek and Pennisetum glaucum (L.) R. Br. in soil spiked with varied concentrations of copper. Environ. Sci. Pollut. Res. 2020, 27, 5074–5084. [Google Scholar] [CrossRef]
- Surucu, A.; Marif, A.A.; Majid, S.N.; Farooq, S.; Tahir, N.A.-R. Effect of different water sources and water availability regimes on heavy metal accumulation in two sunflower species. Carpath. J. Earth Environ. Sci. 2020, 15, 289–300. [Google Scholar] [CrossRef]
- Govarthanan, M.; Mythili, R.; Selvankumar, T.; Kamala-Kannan, S.; Kim, H. Myco-phytoremediation of arsenic- and lead-contaminated soils by Helianthus annuus and wood rot fungi, Trichoderma Sp. isolated from decayed wood. Ecotoxicol. Environ. Saf. 2018, 151, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Rizvi, H.; Rinklebe, J.; Tsang, D.C.W.; Meers, E.; Ok, Y.S.; Ishaque, W. Phytomanagement of heavy metals in contaminated soils using sunflower: A review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1498–1528. [Google Scholar] [CrossRef]
- Abbas, M.H.H.; Abdelhafez Ahmed, A.A. Role of EDTA in arsenic mobilization and its uptake by maize grown on an As-polluted soil. Chemosphere 2013, 90, 588–594. [Google Scholar] [CrossRef]
- Mühlbachová, G. Soil microbial activities and heavy metal mobility in long-term contaminated soils after addition of EDTA and EDDS. Ecol. Eng. 2011, 37, 1064–1071. [Google Scholar] [CrossRef]
- Vamerali, T.; Bandiera, M.; Mosca, G. Field crops for phytoremediation of metal-contaminated land. Environ. Chem. Lett. 2010, 8, 1–17. [Google Scholar] [CrossRef]
- Madrid, L.; Díaz-Barrientos, E. Release of metals from homogeneous soil columns by wastewater from an agricultural industry. Environ. Pollut. 1998, 101, 43–48. [Google Scholar] [CrossRef]
- Pardo, T.; Bernal, P.; Clemente, R. The use of olive mill waste to promote phytoremediation. In Olive Mill Waste: Recent Advances for Sustainable Management; Academic Press: Cambridge, MA, USA, 2017; pp. 183–204. [Google Scholar]
- Madrid, L.; Diaz-Barrientos, E. Retention of heavy metals by soils in the presence of a residue from olive-oil industry. Eur. J. Soil Sci. 1994, 45, 71–77. [Google Scholar] [CrossRef]
- De la Fuente, C.; Clemente, R.; Martínez-Alcalá, I.; Tortosa, G.; Bernal, M.P. Impact of fresh and composted solid olive husk and their water-soluble fractions on soil heavy metal fractionation, microbial biomass and plant uptake. J. Hazard. Mater. 2011, 186, 1283–1289. [Google Scholar] [CrossRef]
- Norouzi, M.; Khoshgoftarmanesh, A.H.; Afyuni, M. Zinc fractions in soil and uptake by wheat as affected by different preceding crops. Soil Sci. Plant Nutr. 2014, 60, 670–678. [Google Scholar] [CrossRef] [Green Version]
- Vaxevanidou, K.; Papassiopi, N.; Paspaliaris, I. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques. Chemosphere 2008, 70, 1329–1337. [Google Scholar] [CrossRef]
- Rahman, M.A.; Hasegawa, H.; Ueda, K.; Maki, T.; Rahman, M.M. Influence of EDTA and chemical species on arsenic accumulation in Spirodela Polyrhiza L. (duckweed). Ecotoxicol. Environ. Saf. 2008, 70, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Violante, A.; Pigna, M. Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci. Soc. Am. J. 2002, 66, 1788–1796. [Google Scholar] [CrossRef]
- Fayiga, A.O.; Saha, U.K. Arsenic hyperaccumulating fern: Implications for remediation of arsenic contaminated soils. Geoderma 2016, 284, 132–143. [Google Scholar] [CrossRef]
- Santos, F.S.; Hernández-Allica, J.; Becerril, J.M.; Amaral-Sobrinho, N.; Mazur, N.; Garbisu, C. Chelate-induced phytoextraction of metal polluted soils with Brachiaria Decumbens. Chemosphere 2006, 65, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.X.; Bormann, F. Herbert.; Benoit, Gaboury. Evidence of complete retention of atmospheric lead in the soils of northern hardwood forested ecosystems. Environ. Sci. Technol. 1995, 29, 735–739. [Google Scholar] [CrossRef]
- Kanwal, U.; Ali, S.; Shakoor, M.B.; Farid, M.; Hussain, S.; Yasmeen, T.; Adrees, M.; Bharwana, S.A.; Abbas, F. EDTA ameliorates phytoextraction of lead and plant growth by reducing morphological and biochemical injuries in Brassica Napus L. under lead stress. Environ. Sci. Pollut. Res. 2014, 21, 9899–9910. [Google Scholar] [CrossRef]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus ) plant. Ann. Agric. Sci. 2018, 63, 123–127. [Google Scholar] [CrossRef]
As | Zn | Pb | |
---|---|---|---|
mg pot−1 | |||
Control | 0.008 (0.001) a | 15.5 (1.8) a | 4.6 (0.5) a |
EDTA | 0.012 (0.002) b | 12.0 (2.1) a | 14.6 (2.6) b |
OMW | 0.010 (0.001) ab | 24.2 (1.5) b | 5.4 (0.6) a |
EDTA + OMW | 0.009 (0.002) ab | 24.1 (4.7) b | 14.9 (2.3) b |
(a) | As Uptake | AsW1 | AsW2 | AsW3 | AsW4 |
AsW1 | 0.66 * | ||||
AsW2 | −0.09 | 0.14 | |||
AsW3 | −0.03 | −0.29 | −0.62 * | ||
AsW4 | −0.12 | 0.16 | 0.82 *** | −0.65 * | |
AsWRF | −0.02 | −0.33 | −0.12 | 0.15 | −0.42 |
AsW1 | AsW2 | AsW3 | AsW4 | AsWRF | |
(b) | mg kg−1 | ||||
Control | 6.04 a | 86.08 a | 376.5 ab | 150.2 a | 196.4 a |
EDTA | 8.32 b | 91.35 ab | 364.0 b | 174.8 a | 130.3 a |
OMW | 7.58 a | 87.72 a | 357.4 ab | 163.8 a | 132.8 a |
EDTA + OMW | 6.88 a | 95.32 b | 345.2 a | 196.7 b | 138.7 a |
Zn B1 | Zn B2 | Zn B3 | Zn BRF | |
---|---|---|---|---|
mg kg−1 | ||||
Control | 902.1 a | 1757 a | 681.3 a | 917.7 c |
EDTA | 890.6 a | 1709 a | 675.0 a | 840.6 ab |
OMW | 899.0 a | 1790 a | 764.6 a | 818.8 a |
EDTA + OMW | 893.8 a | 1766 a | 666.7 a | 871.9 b |
(a) | Pb Uptake | PbB1 | PbB2 | PbB3 |
PbB1 | 0.85 *** | |||
PbB2 | −0.43 | −0.65 * | ||
PbB3 | −0.78 ** | −0.55 | 0.33 | |
PbBRF | −0.45 | −0.13 | −0.10 | 0.76 ** |
(b) | Pb B1 | Pb B2 | Pb B3 | Pb BRF |
mg kg−1 | ||||
Control | 285.4 a | 3622 abc | 305.9 c | 1428 b |
EDTA | 419.4 c | 3575 ab | 296.3 b | 1413 b |
OMW | 298.8 a | 3741 c | 303.3 c | 1404 b |
EDTA + OMW | 368.0 b | 3608 b | 279.4 a | 1309 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalyvas, G.; Bilias, F.; Gasparatos, D.; Zafeiriou, I.; Eissa, R.; Karamountzou, E.; Massas, I. Enhanced As, Pb and Zn Uptake by Helianthus annuus from a Heavily Contaminated Mining Soil Amended with EDTA and Olive Mill Wastewater Due to Increased Element Mobilization, as Verified by Sequential Extraction Schemes. Environments 2022, 9, 61. https://doi.org/10.3390/environments9050061
Kalyvas G, Bilias F, Gasparatos D, Zafeiriou I, Eissa R, Karamountzou E, Massas I. Enhanced As, Pb and Zn Uptake by Helianthus annuus from a Heavily Contaminated Mining Soil Amended with EDTA and Olive Mill Wastewater Due to Increased Element Mobilization, as Verified by Sequential Extraction Schemes. Environments. 2022; 9(5):61. https://doi.org/10.3390/environments9050061
Chicago/Turabian StyleKalyvas, Georgios, Fotis Bilias, Dionisios Gasparatos, Ioannis Zafeiriou, Rania Eissa, Eleftheria Karamountzou, and Ioannis Massas. 2022. "Enhanced As, Pb and Zn Uptake by Helianthus annuus from a Heavily Contaminated Mining Soil Amended with EDTA and Olive Mill Wastewater Due to Increased Element Mobilization, as Verified by Sequential Extraction Schemes" Environments 9, no. 5: 61. https://doi.org/10.3390/environments9050061
APA StyleKalyvas, G., Bilias, F., Gasparatos, D., Zafeiriou, I., Eissa, R., Karamountzou, E., & Massas, I. (2022). Enhanced As, Pb and Zn Uptake by Helianthus annuus from a Heavily Contaminated Mining Soil Amended with EDTA and Olive Mill Wastewater Due to Increased Element Mobilization, as Verified by Sequential Extraction Schemes. Environments, 9(5), 61. https://doi.org/10.3390/environments9050061