Indoor Air Quality in Elderly Centers: Pollutants Emission and Health Effects
Abstract
:1. Introduction
2. Characteristics of Elderly Centers as Built Environments
3. Indoor Air Quality and Emission Sources
3.1. VOCs, Formaldehyde, and Emergent Compounds
3.2. Exposure to Particulate Matter in Elderly Care Centers
3.2.1. Airborne PM2.5
3.2.2. Airborne PM10
3.2.3. Airborne Ultrafine Particles
- Low concentrations: <1000 particles/cm3 (24 h mean);
- High concentrations: >10,000 particles/cm3 (24 h mean) or 20,000 particles/cm3 (1 h mean).
3.3. Exposure to Inorganic Air Pollutants in Elderly Care Centers
3.3.1. Carbon Dioxide
3.3.2. Carbon Monoxide
3.3.3. Ozone
3.3.4. Nitrogen Dioxide
3.4. Biological Contaminants
4. IAQ-Related Health Effects in the Elderly
4.1. Inflammatory Diseases
4.2. Respiratory Infections
4.3. Building-Associated Illness
Disease | Pathophysiology | Symptoms | Observations Concerning Indoor Air Contaminants |
---|---|---|---|
Rhinitis | Mucosa inflammation on the upper respiratory tract. | Nasal congestion, rhinorrhea, sneezing, and conjunctivitis. | Can be of allergic or nonallergic cause. |
Asthma | Long-term inflammatory disease of lung airways. | Wheezing, shortness of breath, chest tightness, and coughing. | People with moderate to severe asthma react adversely toward contaminants in the indoor environment due to a nonspecific bronchial hyperresponsiveness. |
Allergic asthma involves IgE-mediated sensitivity and eosinophils in presence of an atopic underlying reaction of the respiratory airways. | Both allergens and viruses have been known to worsen asthma symptoms. | ||
COPD is a progressive lung disease in which chronic, incompletely reversible poor air flow (air-flow limitation) and inability to breathe out fully exist. | Shortness of breath, cough, with or without mucus production and frequent chest infections. | Biological contamination by the presence of endotoxin can induce the pathogenesis of bronchitis. | |
Chronic obstructive pulmonary disease | Includes emphysema (damage to the air sacs in the lungs) and chronic bronchitis. | ||
Poor air flow is the result of small airways disease and emphysema. | Chronic bronchitis symptoms include coughing up sputum, wheezing, shortness of breath, and chest pain. | Enhanced by indoor air pollutants. | |
Chronic bronchitis is a type of COPD that includes bronchi inflammation and is defined as cough with phlegm for at least 3 months per year for 2 years or more. Underlying mechanism is an increase in mucus-secreting glands and alterations in characteristics of the mucus. |
- Mucous-membrane irritation (eye, throat, and nose irritation);
- Neurotoxic effects (headaches, irritability, and fatigue);
- Asthma and asthma-like symptoms (chest tightness and wheezing);
- Skin irritation and dryness; and
- Gastrointestinal problems, among others.
5. Ventilation and Thermal Comfort
5.1. Managing Thermal Comfort and Ventilation in Buildings
5.2. Technical and Legal Frameworks to Manage Energy Efficiency, Energy Consumption, and Thermal Comfort in Residential Buildings for Elderly Care: Where to Fit Indoor Air Quality?
6. Conclusions and Future Trends
- Conception, design, and construction of buildings for elderly care that must consider the regional climate and the specific needs and typical activities for heating and cooling of vulnerable residents.
- Use of adequate and low-emitting materials (in both construction and renovation works).
- Implementation of comprehensive IAQ assessment plan to ensure that the pollutant levels are in compliance with the recommended limit values.
- Establishment of awareness campaigns for informing all relevant stakeholders (including ECC building managers and staff) of good and low-cost practices that can be implemented to promote healthy IAQ (e.g., improving ventilation in the indoor spaces during/after an emission event such as drawing activities, opening the windows outside of typical high-traffic hours, avoiding declared indoor sources of pollution (e.g., incenses), etc.).
- When a building is adapted to be an ECC, it is important to consider a comprehensive building-evaluation approach in order to ensure that the building characteristics are adequate for the new use, occupancy density, and activities, in order to protect the occupants from avoidable environmental risks.
- As technical solutions, the following should be considered:
- Adoption of automated systems to manage air-flow recirculation rates in climatization systems, based on real-time evaluation of IAQ parameters (as CO2) through the permanent use of sensor devices.
- Installation of air cleaners as a complementary action if the levels of PM cannot be reduced to safe concentrations by source-control and/or ventilation corrective measurements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bonnefoy, X.R.; Braubach, M.; Moissonnier, B.; Monolbaev, K.; Röbbel, N. Housing and Health in Europe: Preliminary Results of a Pan-European Study. Am. J. Public Health 2003, 93, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.; Bonassi, S.; Aguiar, L.; Pereira, C.; Neves, P.; Silva, S.; Mendes, D.; Guimarães, L.; Moroni, R.; Teixeira, J.P. Indoor air quality and thermal comfort in elderly care centers. Urban Clim. 2015, 14, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Mendes, A.; Pereira, C.; Mendes, D.; Aguiar, L.; Neves, P.; Silva, S.; Batterman, S.; Teixeira, J.P. Indoor air quality and thermal comfort—Results of a pilot study in elderly care centers in Portugal. J. Toxicol. Environ. Health Part A Curr. Issues 2013, 76, 333–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormandy, D.; Ezratty, V. Health and thermal comfort: From WHO guidance to housing strategies. Energy Policy 2012, 49, 116–121. [Google Scholar] [CrossRef]
- United Nations. World Population Ageing 2019: Highlights; Department of Economic and Social Affairs Population Division: New York, NY, USA, 2019; p. 46. [Google Scholar]
- European Union. Ageing Europe—Looking at the Lives of Older People in the EU; European Union: Maastricht, The Netherlands, 2020; ISBN 978-92-76-21520-2. [Google Scholar]
- Bentayeb, M.; Norback, D.; Bednarek, M.; Bernard, A.; Cai, G.; Cerrai, S.; Eleftheriou, K.K.; Gratziou, C.; Holst, G.J.; Lavaud, F.; et al. Indoor air quality, ventilation and respiratory health in elderly residents living in nursing homes in Europe. Eur. Respir. J. 2015, 45, 1228–1238. [Google Scholar] [CrossRef] [Green Version]
- Simoni, M.; Jaakkola, M.S.; Carrozzi, L.; Baldacci, S.; Di Pede, F.; Viegi, G. Indoor air pollution and respiratory health in the elderly. Eur. Respir. J. Suppl. 2003, 21, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Silva, M.; Wolterbeek, H.T.; Almeida, S.M. Elderly exposure to indoor air pollutants. Atmos. Environ. 2014, 85, 54–63. [Google Scholar] [CrossRef]
- Adan, O.C.G.; Ng-A-Tham, J.; Hanke, W.; Sigsgaard, T.; van den Hazel, P.; Wu, F. In search of a common European approach to a healthy indoor environment. Environ. Health Perspect. 2007, 115, 983–988. [Google Scholar] [CrossRef] [Green Version]
- van den Berg, M.E.L.; Winsall, M.; Dyer, S.M.; Breen, F.; Gresham, M.; Crotty, M. Understanding the barriers and enablers to using outdoor spaces in nursing homes: A systematic review. Gerontologist 2020, 60, e254–e269. [Google Scholar] [CrossRef] [Green Version]
- Spengler, J.; Adamkiewicz, G. Indoor air pollution: An old problem with new challenges. Int. J. Environ. Res. Public Health 2009, 6, 2880–2882. [Google Scholar] [CrossRef]
- Annesi-Maesano, I.; Norback, D.; Zielinski, J.; Bernard, A.; Gratziou, C.; Sigsgaard, T.; Sestini, P.; Viegi, G. Geriatric study in Europe on health effects of air quality in nursing homes (GERIE study) profile: Objectives, study protocol and descriptive data. Multidiscip. Respir. Med. 2013, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Baudet, A.; Baurès, E.; Guegan, H.; Blanchard, O.; Guillaso, M.; Le Cann, P.; Gangneux, J.P.; Florentin, A. Indoor air quality in healthcare and care facilities: Chemical pollutants and microbiological contaminants. Atmosphere 2021, 12, 1337. [Google Scholar] [CrossRef]
- Bentayeb, M.; Simoni, M.; Norback, D.; Baldacci, S.; Maio, S.; Viegi, G.; Annesi-Maesano, I. Indoor air pollution and respiratory health in the elderly. J. Environ. Sci. Health Part A Toxic/Hazardous Subst. Environ. Eng. 2013, 48, 1783–1789. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.; Papoila, A.L.; Carreiro-Martins, P.; Bonassi, S.; Caires, I.; Palmeiro, T.; Aguiar, L.; Pereira, C.; Neves, P.; Mendes, D.; et al. The impact of indoor air quality and contaminants on respiratory health of older people living in long-term care residences in Porto. Age Ageing 2016, 45, 136–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maio, S.; Sarno, G.; Baldacci, S.; Annesi-Maesano, I.; Viegi, G. Air quality of nursing homes and its effect on the lung health of elderly residents. Expert Rev. Respir. Med. 2015, 9, 671–673. [Google Scholar] [CrossRef] [Green Version]
- Baudet, A.; Baurès, E.; Blanchard, O.; Le Cann, P.; Gangneux, J.-P.; Florentin, A. Indoor Carbon Dioxide, Fine Particulate Matter and Total Volatile Organic Compounds in Private Healthcare and Elderly Care Facilities. Toxics 2022, 10, 136. [Google Scholar] [CrossRef]
- Baurès, E.; Blanchard, O.; Mercier, F.; Surget, E.; Le Cann, P.; Rivier, A.; Gangneux, J.P.; Florentin, A. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci. Total Environ. 2018, 642, 168–179. [Google Scholar] [CrossRef]
- Arnold, K.; Teixeira, J.P.; Mendes, A.; Madureira, J.; Costa, S.; Salamova, A. A pilot study on semivolatile organic compounds in senior care facilities: Implications for older adult exposures. Environ. Pollut. 2018, 240, 908–915. [Google Scholar] [CrossRef]
- Kembel, S.W.; Jones, E.; Kline, J.; Northcutt, D.; Stenson, J.; Womack, A.M.; Bohannan, B.J.M.; Brown, G.Z.; Green, J.L. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 2012, 6, 1469–1479. [Google Scholar] [CrossRef] [Green Version]
- Wan, G.H.; Chung, F.F.; Tang, C.S. Long-term surveillance of air quality in medical center operating rooms. Am. J. Infect. Control 2011, 39, 302–308. [Google Scholar] [CrossRef]
- Asif, A.; Zeeshan, M.; Hashmi, I.; Zahid, U.; Bhatti, M.F. Microbial quality assessment of indoor air in a large hospital building during winter and spring seasons. Build. Environ. 2018, 135, 68–73. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2019) 640 final; European Union: Brussels, Belgium, 2019; p. 24. [Google Scholar]
- Wu, H.; Kumar, P.; Cao, S. Implementation of green infrastructure for improving the building environment of elderly care centres. J. Build. Eng. 2022, 54, 104682. [Google Scholar] [CrossRef]
- Wang, Y.; Bakker, F.; de Groot, R.; Wörtche, H. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Build. Environ. 2014, 77, 88–100. [Google Scholar] [CrossRef]
- Viecco, M.; Jorquera, H.; Sharma, A.; Bustamante, W.; Fernando, H.J.S.; Vera, S. Green roofs and green walls layouts for improved urban air quality by mitigating particulate matter. Build. Environ. 2021, 204, 108120. [Google Scholar] [CrossRef]
- Mata, T.M.; Oliveira, G.M.; Monteiro, H.; Silva, G.V.; Caetano, N.S.; Martins, A.A. Indoor Air Quality Improvement Using Nature-Based Solutions: Design Proposals to Greener Cities. Int. J. Environ. Res. Public Health 2021, 18, 8472. [Google Scholar] [CrossRef]
- Silva, G.V.; Martins, A.O.; Martins, S.D.S. Indoor air quality: Assessment of dangerous substances in incense products. Int. J. Environ. Res. Public Health 2021, 18, 8086. [Google Scholar] [CrossRef] [PubMed]
- Wolkoff, P.; Clausen, P.; Wilkins, C.; Nielsen, G. Formation of Strong Airway Irritants in Terpene/Ozone Mixtures. Indoor Air 2000, 10, 82–91. [Google Scholar] [CrossRef]
- Xiong, J.; He, Z.; Tang, X.; Misztal, P.K.; Goldstein, A.H. Modeling the time-dependent concentrations of primary and secondary reaction products of ozone with squalene in a University classroom. Environ. Sci. Technol. 2019, 53, 8262–8270. [Google Scholar] [CrossRef]
- Wolkoff, P. Indoor air chemistry: Terpene reaction products and airway effects. Int. J. Hyg. Environ. Health 2020, 225, 113439. [Google Scholar] [CrossRef]
- WHO. Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization: Copenhagen, Denmark, 2010; p. 484. [Google Scholar]
- Belgisch Staatsblad. Decree of the Flemish Government on Measures to Combat Health Risks Due to Pollution of the Indoor Environment; Direction of the Belgian Monitor: Bruxelles, Belgium, 2004; pp. 72552–72560. [Google Scholar]
- Presidency of the Council of Ministers. Decree Law n.o 101-D/2020—Establishes the Requirements Applicable to Buildings to Improve their Energy Performance and Regulates the Building Energy Certification System. Diário da República n.o 237/2020, 1st Supplement, Series I. 2020, pp. 7(21)–7(45). Available online: https://dre.pt/dre/detalhe/decreto-lei/101-d-2020-150570704 (accessed on 31 May 2022).
- Hwang, S.H.; Roh, J.; Park, W.M. Evaluation of PM10, CO2, airborne bacteria, TVOCs, and formaldehyde in facilities for susceptible populations in South Korea. Environ. Pollut. 2018, 242, 700–708. [Google Scholar] [CrossRef]
- Walgraeve, C.; Demeestere, K.; Dewulf, J.; Van Huffel, K.; Van Langenhove, H. Diffusive sampling of 25 volatile organic compounds in indoor air: Uptake rate determination and application in Flemish homes for the elderly. Atmos. Environ. 2011, 45, 5828–5836. [Google Scholar] [CrossRef]
- Belo, J.; Carreiro-Martins, P.; Papoila, A.L.; Palmeiro, T.; Caires, I.; Alves, M.; Nogueira, S.; Aguiar, F.; Mendes, A.; Cano, M.; et al. The impact of indoor air quality on respiratory health of older people living in nursing homes: Spirometric and exhaled breath condensate assessments. J. Environ. Sci. Health Part A Toxic/Hazardous Subst. Environ. Eng. 2019, 54, 1153–1158. [Google Scholar] [CrossRef]
- Pinto, M.; Lanzinha, J.; Viegas, J.; Infante, C.; Freire, T. Quality of the Indoor Environment in Elderly Care Centers in Two Cities in Central Portugal: Viseu and Covilhã. Int. J. Environ. Res. Public Health 2019, 16, 3801. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneve, Switzerland, 2021; p. 300. [Google Scholar]
- WHO. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide: Global Update 2005; World Health Organization: Copenhagen, Denmark, 2006; pp. 1–496. [Google Scholar]
- Szigeti, T.; Kertész, Z.; Dunster, C.; Kelly, F.J.; Záray, G.; Mihucz, V.G. Exposure to PM2.5 in modern office buildings through elemental characterization and oxidative potential. Atmos. Environ. 2014, 94, 44–52. [Google Scholar] [CrossRef]
- Kurhanewicz, N.; McIntosh-Kastrinsky, R.; Tong, H.; Walsh, L.; Farraj, A.K.; Hazari, M.S. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: Concordance of electrocardiogram and mechanical responses. Part. Fibre Toxicol. 2014, 11, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steerenberg, P.A.; Withagen, C.E.T.; Van Dalen, W.J.; Dormans, J.A.M.A.; Cassee, F.R.; Heisterkamp, S.H.; Van Loveren, H. Adjuvant activity of ambient particulate matter of different sites, sizes, and seasons in a respiratory allergy mouse model. Toxicol. Appl. Pharmacol. 2004, 200, 186–200. [Google Scholar] [CrossRef]
- Guo, M.; Zhou, M.; Wei, S.; Peng, J.; Wang, Q.; Wang, L.; Cheng, D.; Yu, W. Particle removal effectiveness of portable air purifiers in aged-care centers and the impact on the health of older people. Energy Build. 2021, 250, 111250. [Google Scholar] [CrossRef]
- Holguín, F.; Téllez-Rojo, M.M.; Hernández, M.; Cortez, M.; Chow, J.C.; Watson, J.G.; Mannino, D.; Romieu, I. Air Pollution and Heart Rate Variability Among the El in Mexico City. Epidemiology 2003, 14, 512–527. [Google Scholar] [CrossRef] [PubMed]
- Rodes, C.E.; Lawless, P.A.; Evans, G.F.; Sheldon, L.S.; Williams, R.W.; Vette, A.F.; Creason, J.P.; Walsh, D. The relationships between personal PM exposures for elderly populations and indoor and outdoor concentrations for three retirement center scenarios. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Sousa, N.A.; Segalin, B.; Busse, A.L.; Filho, W.J.; Fornaro, A.; Gonçalves, F.L.T. Indoor/outdoor particulate matter and health risk in a nursing community home in São Paulo, Brazil. Atmos. Pollut. Res. 2021, 12, 101188. [Google Scholar] [CrossRef]
- Hassanvand, M.S.; Naddafi, K.; Faridi, S.; Nabizadeh, R.; Sowlat, M.H.; Momeniha, F.; Gholampour, A.; Arhami, M.; Kashani, H.; Zare, A.; et al. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Sci. Total Environ. 2015, 527–528, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Silva, M.; Faria, T.; Saraga, D.; Maggos, T.; Wolterbeek, H.T.; Almeida, S.M. Source apportionment of indoor PM10 in Elderly Care Centre. Environ. Sci. Pollut. Res. 2016, 23, 7814–7827. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, F.; Ródenas, M.; Ruus, A.; Saffell, J.; Gabriel, M.F. Sampling and analysis techniques for inorganic air pollutants in indoor air. Appl. Spectrosc. Rev. 2021, 1–49. [Google Scholar] [CrossRef]
- González-Martín, J.; Kraakman, N.J.R.; Pérez, C.; Lebrero, R.; Muñoz, R. A state–of–the-art review on indoor air pollution and strategies for indoor air pollution control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef]
- Felgueiras, F.; Mourão, Z.; Morais, C.; Santos, H.; Gabriel, M.F.; de Oliveira Fernandes, E. Comprehensive assessment of the indoor air quality in a chlorinated Olympic-size swimming pool. Environ. Int. 2020, 136, 105401. [Google Scholar] [CrossRef]
- Gabriel, M.F.; Felgueiras, F.; Batista, R.; Ribeiro, C.; Ramos, E.; Mourão, Z.; de Oliveira Fernandes, E. Indoor environmental quality in households of families with infant twins under 1 year of age living in Porto. Environ. Res. 2020, 198, 110477. [Google Scholar] [CrossRef]
- Di Gilio, A.; Palmisani, J.; Pulimeno, M.; Cerino, F.; Cacace, M.; Miani, A.; de Gennaro, G. CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission. Environ. Res. 2021, 202, 111560. [Google Scholar] [CrossRef]
- Standard 62-1989; Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 1989.
- Marr, L.; Miller, S.; Prather, K.; Haas, C.; Bahnfleth, W.; Corsi, R.; Tang, J.; Herrmann, H.; Pollitt, K.; Ballester, J.; et al. FAQs on Protecting Yourself from COVID-19 Aerosol Transmission. Version: 1.88. 13 August 2021. Available online: https://tinyurl.com/FAQ-aerosols (accessed on 12 April 2022).
- Pereira, E.L.; Madacussengua, O.; Baptista, P.; Feliciano, M. Assessment of indoor air quality in geriatric environments of southwestern Europe. Aerobiologia 2021, 37, 139–153. [Google Scholar] [CrossRef]
- Mikola, A.; Koiv, T.-A.; Voll, H. Ventilation of Apartment Buildings and Nursing Homes. Smart Grid Renew. Energy 2014, 05, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.C.; Lam, S.; Kin Fai, H. Characterization of VOCs, ozone, and PM10 emissions from office equipment in an environmental chamber. Build. Environ. 2001, 36, 837–842. [Google Scholar] [CrossRef]
- Skulberg, K.R.; Skyberg, K.; Kruse, K.; Eduard, W.; Levy, F.; Kongerud, J.; Djupesland, P. The effects of intervention with local electrostatic air cleaners on airborne dust and the health of office employees. Indoor Air 2005, 15, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Gurjar, B.R.; Butler, T.M.; Lawrence, M.G.; Lelieveld, J. Evaluation of emissions and air quality in megacities. Atmos. Environ. 2008, 42, 1593–1606. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.C. Indoor air pollution, related human diseases, and recent trends in the control and improvement of indoor air quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldacci, S.; Maio, S.; Cerrai, S.; Sarno, G.; Baïz, N.; Simoni, M.; Annesi-Maesano, I.; Viegi, G. Allergy and asthma: Effects of the exposure to particulate matter and biological allergens. Respir. Med. 2015, 109, 1089–1104. [Google Scholar] [CrossRef] [Green Version]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; Rismani-Yazdi, H.; Peccia, J. Human occupancy as a source of indoor airborne bacteria. PLoS ONE 2012, 7, e34867. [Google Scholar] [CrossRef] [Green Version]
- Järvi, K.; Hyvärinen, A.; Täubel, M.; Karvonen, A.M.; Turunen, M.; Jalkanen, K.; Patovirta, R.; Syrjänen, T.; Pirinen, J.; Salonen, H.; et al. Microbial growth in building material samples and occupants’ health in severely moisture-damaged homes. Indoor Air 2018, 28, 287–297. [Google Scholar] [CrossRef]
- Nevalainen, A.; Täubel, M.; Hyvärinen, A. Indoor fungi: Companions and contaminants. Indoor Air 2015, 25, 125–156. [Google Scholar] [CrossRef]
- Thornton, G.M.; Fleck, B.A.; Fleck, N.; Kroeker, E.; Dandnayak, D.; Zhong, L.; Hartling, L. The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of ultraviolet radiation. PLoS ONE 2022, 17, e0266487. [Google Scholar] [CrossRef]
- Bousquet, J.; Khaltaev, N.; Cruz, A.A.; Denburg, J.; Fokkens, W.J.; Togias, A.; Zuberbier, T.; Canonica, G.W.; Van Weel, C.; Agache, I.; et al. Review article Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 * Review Group. Prim Care 2008, 63, 8–160. [Google Scholar]
- Hulin, M.; Simoni, M.; Viegi, G.; Annesi-Maesano, I. Respiratory health and indoor air pollutants based on quantitative exposure assessments. Eur. Respir. J. 2012, 40, 1033–1045. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Indoor Air Quality: Dampness and Mould; World Health Organization: Geneva, Switzerland, 2009; p. 248. [Google Scholar]
- Park, J.H.; Spiegelman, D.L.; Burge, H.A.; Gold, D.R.; Chew, G.L.; Milton, D.K. Longitudinal study of dust and airbone endotoxin in the home. Environ. Health Perspect. 2000, 108, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Haleem Khan, A.A.; Mohan Karuppayil, S. Fungal pollution of indoor environments and its management. Saudi J. Biol. Sci. 2012, 19, 405–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, L.; Mendes, A.; Pereira, C.; Neves, P.; Mendes, D.; Teixeira, J.P. Biological air contamination in elderly care centers: Geria project. J. Toxicol. Environ. Health Part A Curr. Issues 2014, 77, 944–958. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.; Almeida-Silva, M.; Gomes, A.Q.; Wolterbeek, H.T.; Almeida, S.M. Fungal contamination assessment in portuguese elderly care centers. J. Toxicol. Environ. Health Part A Curr. Issues 2014, 77, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Krewski, D.; Burnett, R.; Jerrett, M.; Pope, C.A.; Rainham, D.; Calle, E.; Thurston, G.; Thun, M. Mortality and long-term exposure to ambient air pollution: Ongoing analyses based on the American Cancer Society cohort. J. Toxicol. Environ. Health Part A 2005, 68, 1093–1109. [Google Scholar] [CrossRef]
- Simkovich, S.M.; Goodman, D.; Roa, C.; Crocker, M.E.; Gianella, G.E.; Kirenga, B.J.; Wise, R.A.; Checkley, W. The health and social implications of household air pollution and respiratory diseases. NPJ Prim. Care Respir. Med. 2019, 29, 1–17. [Google Scholar] [CrossRef]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Tong, M.; Douwes, J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: A review of the epidemiologic evidence. Environ. Health Perspect. 2011, 119, 748–756. [Google Scholar] [CrossRef]
- Moses, L.; Morrissey, K.; Sharpe, R.A.; Taylor, T. Exposure to indoor mouldy odour increases the risk of asthma in older adults living in social housing. Int. J. Environ. Res. Public Health 2019, 16, 2600. [Google Scholar] [CrossRef] [Green Version]
- Marmot, A.F.; Eley, J.; Stafford, M.; Stansfeld, S.A.; Warwick, E.; Marmot, M.G. Building health: An epidemiological study of “sick building syndrome” in the Whitehall II study. Occup. Environ. Med. 2006, 63, 283–289. [Google Scholar] [CrossRef]
- Li, L.; Adamkiewicz, G.; Zhang, Y.; Spengler, J.D.; Qu, F.; Sundell, J. Effect of traffic exposure on sick building syndrome symptoms among parents/grandparents of preschool children in Beijing, China. PLoS ONE 2015, 10, e0128767. [Google Scholar] [CrossRef]
- Seltzer, J.M.; Diego, S. Building-related illnesses. J. Allergy Clin. Immunol. 1991, 94, 351–361. [Google Scholar] [CrossRef]
- Reddy, M.; Heidarinejad, M.; Stephens, B.; Rubinstein, I. Adequate indoor air quality in nursing homes: An unmet medical need. Sci. Total Environ. 2021, 765, 144273. [Google Scholar] [CrossRef] [PubMed]
- Karottki, D.G.; Spilak, M.; Frederiksen, M.; Andersen, Z.J.; Madsen, A.M.; Ketzel, M.; Massling, A.; Gunnarsen, L.; Møller, P.; Loft, S. Indoor and outdoor exposure to ultrafine, fine and microbiologically derived particulate matter related to cardiovascular and respiratory effects in a panel of elderly urban citizens. Int. J. Environ. Res. Public Health 2015, 12, 1667–1686. [Google Scholar] [CrossRef] [PubMed]
- Fink, R.; Eržen, I.; Medved, S. Impacts of the thermal environment and indoor air quality on potential risks for elderly people with cardio-vascular diseases. REHVA J. 2013, 38–39. [Google Scholar]
- Henshaw, V.; Guy, S. Embodied thermal environments: An examination of older-people’s sensory experiences in a variety of residential types. Energy Policy 2015, 84, 233–240. [Google Scholar] [CrossRef]
- Standard 55-2020; Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE—American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2021; p. 76.
- European Standard EN 16798–1:2019; Energy Performance of Buildings—Ventilation of Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environmental. CEN—European Committee for Standardization: Brussels, Belgium, 2019.
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; McGraw-Hill: New York, NY, USA, 1972; Volume 3, ISBN 9780070199156. [Google Scholar]
- Dijkhoff, I.M.; Drasler, B.; Karakocak, B.B.; Petri-Fink, A.; Valacchi, G.; Eeman, M.; Rothen-Rutishauser, B. Impact of airborne particulate matter on skin: A systematic review from epidemiology to in vitro studies. Part. Fibre Toxicol. 2020, 17, 1–28. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Rufo, J.C.; Pereira, C.; Teixeira, J.P.; de Oliveira Fernandes, E. Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmos. Environ. 2015, 109, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Baxi, S.N.; Portnoy, J.M.; Larenas-Linnemann, D.; Phipatanakul, W.; Barnes, C.; Grimes, C.; Horner, W.E.; Kennedy, K.; Levetin, E.; Miller, J.D.; et al. Exposure and Health Effects of Fungi on Humans. J. Allergy Clin. Immunol. Pract. 2016, 4, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Murrison, L.B.; Brandt, E.B.; Myers, J.B.; Khurana Hershey, G.K. Environmental exposures and mechanisms in allergy and asthma development. J. Clin. Investig. 2019, 129, 1504–1515. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Weng, W.; Chen, W.; Luo, N. Review on modeling heat transfer and thermoregulatory responses in human body. J. Therm. Biol. 2016, 62, 189–200. [Google Scholar] [CrossRef]
- Itani, M.; Ghaddar, N.; Ghali, K.; Laouadi, A. Bioheat modeling of elderly and young for prediction of physiological and thermal responses in heat-stressful conditions. J. Therm. Biol. 2020, 88, 102533. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, G.; Chen, J.; Duan, J. Investigating the Adaptive Thermal Comfort of the Elderly in Rural Mutual Aid Homes in Central Inner Mongolia. Sustainability 2022, 14, 6802. [Google Scholar] [CrossRef]
- Forcada, N.; Gangolells, M.; Casals, M.; Tejedor, B.; Macarulla, M.; Gaspar, K. Summer thermal comfort in nursing homes in the Mediterranean climate. Energy Build. 2020, 229, 110442. [Google Scholar] [CrossRef]
- van Hoof, J.; Schellen, L.; Soebarto, V.; Wong, J.K.W.; Kazak, J.K. Ten questions concerning thermal comfort and ageing. Build. Environ. 2017, 120, 123–133. [Google Scholar] [CrossRef]
- Tsangari, H.; Paschalidou, A.; Vardoulakis, S.; Heaviside, C.; Konsoula, Z.; Christou, S.; Georgiou, K.E.; Ioannou, K.; Mesimeris, T.; Kleanthous, S.; et al. Human mortality in Cyprus: The role of temperature and particulate air pollution. Reg. Environ. Chang. 2016, 16, 1905–1913. [Google Scholar] [CrossRef]
- Tartarini, F.; Cooper, P.; Fleming, R. Thermal perceptions, preferences and adaptive behaviours of occupants of nursing homes. Build. Environ. 2018, 132, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Filippidou, F.; Jimenez Navarro, J.P. Achieving the Cost-Effective Energy Transformation of Europe’s Buildings; European Commission—Joint Research Centre, Publications Office of the European Union: Luxembourg, 2019; p. 56. [Google Scholar]
- European Commission. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018, Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency; European Parliament, Council of the European Union: Brussels, Belgium, 2018; p. L 156/75-91. [Google Scholar]
- Economidou, M.; Todeschi, V.; Bertoldi, P.; D’Agostino, D.; Zangheri, P.; Castellazzi, L. Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 2020, 225, 110322. [Google Scholar] [CrossRef]
- European Commission. A Renovation Wave for Europe—Greening Our Buildings, Creating Jobs, Improving Lives; Communication from the Commission to the European Parliament, the Council; the European Economic and Social Committee and the Committee of the Regions: Brussels, Belgium, 2020; p. COM(2020) 662 final. [Google Scholar]
- European Commission. Proposal for a Directive of the European Parliament and of the Council on Energy Efficiency (Recast); European Parliament and of the Council: Brussels, Belgium, 2021; p. COM(2021) 558 Final. [Google Scholar]
- European Commission. Proposal for a Directive as Regards the Promotion of Energy from Renewable Sources; European Parliament and of the Council: Brussels, Belgium, 2021; p. COM(2021) 557 final. [Google Scholar]
- González-Torres, M.; Pérez-Lombard, L.; Coronel, J.F.; Maestre, I.R.; Yan, D. A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Rep. 2022, 8, 626–637. [Google Scholar] [CrossRef]
- Borsboom, W.; De Gids, W.; Logue, J.; Berkeley, L.; Sherman, M.; Berkeley, L.; Wargocki, P. Technical Note AIVC 68 Residential Ventilation and Health; International Energy Agency, Energy in Buildings and Communities Programme: Lozenberg, Belgium, 2016. [Google Scholar]
- Tartarini, F.; Schiavon, S.; Cheung, T.; Hoyt, T. CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX 2020, 12, 100563. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Improving indoor air quality, health and performance within environments where people live, travel, learn and work. Atmos. Environ. 2019, 200, 90–109. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Residential Air Cleaners: A Technical Summary, Portable Air Cleaners Furnace and HVAC Filters, 3rd ed.; EPA 402-F-09-002; United States Environmental Protection Agency, Indoor Environments Division: Washington, DC, USA, 2018; p. 73. [Google Scholar]
- Lim, E.; Sandberg, M.; Ito, K. Returning characteristics of pollutants for a local domain in the presence of returning and recirculating airflow in indoor environments. Indoor Air 2021, 31, 1267–1280. [Google Scholar] [CrossRef] [PubMed]
Referenced Study | Population Sample Investigated | Measurement Technique | Pollutants |
---|---|---|---|
Walgraeve et al. [37] | 7 ECC located in Antwerp, Broechem, Borsbeek, Hove, and Bonheiden | Thermal desorption (TD) and GC/MS | TVOC and 25 VOCs: 9 alkanes, 10 aromatic hydrocarbons, 2 O-containing hydrocarbons, 2 Cl-containing hydrocarbons, and 2 terpenes. |
Mendes et al. [3] | 6 ECC located in Porto, Portugal | Thermal desorption (TD) and GC/MS | TVOC |
Mendes et al. [16] | 21 ECC, located in Porto, Portugal | No information | TVOC |
Almeida-Silva et al. [9] | 10 ECC located in Lisboa and Loures, Portugal | Photoionization detector | TVOC |
Hwang et al. [36] | 28 ECC in South Korea | Thermal desorption (TD) and GC/MS | TVOC |
Belo et al. [38] | 18 ECC located in Lisbon | Thermal desorption (TD) and GC/MS | TVOC |
Pinto et al. [39] | 2 ECC located in Viseu and 1 ECC in Covilhã | Photoionization detector | TVOC |
Baudet et al. [14] | 4 ECC in 2 French urban areas: Nancy and Rennes | Thermal desorption (TD) and GC/MS | 39 VOCs: 9 aromatic hydrocarbons, 3 aliphatic hydrocarbons, 8 halogenated hydrocarbons, 5 alcohols, 2 ketones, 1 terpene, 3 ethers, and 1 peroxide |
Baudet et al. [18] | 2 ECC in 2 French urban areas: Nancy and Rennes | Photoionization detector | TVOC |
Referenced Study | Population Sample Investigated | Measurement Technique |
---|---|---|
Bentayeb et al. [15] | 8 ECC in Brussels, Aarhus, Athens, Reims, Arezzo, Warsaw, and Uppsala | HPLC |
Mendes et al. [3] | 6 ECC located in Porto, Portugal | HPLC |
Mendes et al. [16] | 21 ECC, located in Porto, Portugal | No information |
Almeida-Silva et al. [9] | 10 ECC located in Lisboa and Loures, Portugal | Electrochemical sensor |
Hwang et al. [36] | 28 ECC in South Korea | HPLC |
Belo et al. [38] | 18 ECC located in Lisbon | UV-VIS spectrometry |
Baudet et al. [14] | 4 ECC in 2 French urban areas: Nancy and Rennes | HPLC |
Referenced Study | Population Sample Investigated | Measurement Technique | Pollutants |
---|---|---|---|
Arnold et al. [20] | 11 ECC in Porto, Portugal, and 3 ECC in Indiana, USA | Solvent extraction and GC/MS | Organophosphate esters (OPEs), brominated flame retardants (BFRs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), and polychlorinated biphenyls (PCBs) |
Baudet et al. [14] | 4 ECC in 2 French urban areas: Nancy and Rennes | Pressurized liquid extraction (PLE) and GC/MS/MS | 13 SVOCs: 6 phthalates, 2 musk, and 5 pyrethroids |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mata, T.M.; Felgueiras, F.; Martins, A.A.; Monteiro, H.; Ferraz, M.P.; Oliveira, G.M.; Gabriel, M.F.; Silva, G.V. Indoor Air Quality in Elderly Centers: Pollutants Emission and Health Effects. Environments 2022, 9, 86. https://doi.org/10.3390/environments9070086
Mata TM, Felgueiras F, Martins AA, Monteiro H, Ferraz MP, Oliveira GM, Gabriel MF, Silva GV. Indoor Air Quality in Elderly Centers: Pollutants Emission and Health Effects. Environments. 2022; 9(7):86. https://doi.org/10.3390/environments9070086
Chicago/Turabian StyleMata, Teresa M., Fátima Felgueiras, António A. Martins, Helena Monteiro, Maria Pia Ferraz, Gisela M. Oliveira, Marta Fonseca Gabriel, and Gabriela Ventura Silva. 2022. "Indoor Air Quality in Elderly Centers: Pollutants Emission and Health Effects" Environments 9, no. 7: 86. https://doi.org/10.3390/environments9070086
APA StyleMata, T. M., Felgueiras, F., Martins, A. A., Monteiro, H., Ferraz, M. P., Oliveira, G. M., Gabriel, M. F., & Silva, G. V. (2022). Indoor Air Quality in Elderly Centers: Pollutants Emission and Health Effects. Environments, 9(7), 86. https://doi.org/10.3390/environments9070086