Biochar, Ochre, and Manure Maturation in an Acidic Technosol Helps Stabilize As and Pb in Soil and Allows Its Vegetation by Salix triandra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Amendments
2.2. Experimental Setup
- Untreated Pontgibaud soil (P0%);
- P0% soil + 1% biochar (PB);
- P0% soil + 1% ochre (PI);
- P0% soil + 1% manure (PM);
- P0% soil + 1% biochar + 1% ochre (PBI);
- P0% soil + 1% biochar + 1% manure (PBM);
- P0% soil + 1% ochre + 1% manure (PIM);
- P0% soil + 1% biochar + 1% ochre + 1% manure (PBIM).
2.3. Soil Pore Water, Soil, and Plant Analysis
2.4. Aim of Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Soil Pore Water pH
3.2. Soil Pore Water Electrical Conductivity and Redox Potential
3.3. Phytoavailable Metal(Loid) Concentrations
3.3.1. Soil Pore Water Arsenic Concentration
3.3.2. Soil Pore Water Lead Concentration
3.3.3. Soil
3.4. Salix triandra Plants
3.4.1. Dry Weight
3.4.2. Arsenic and Lead Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qayyum, S.; Khan, I.; Meng, K.; Zhao, Y.; Peng, C. A review on remediation technologies for heavy metals contaminated soil. Cent. Asian J. Environ. Sci. Technol. Innov. 2020, 1, 21–29. [Google Scholar]
- He, Z.; Shentu, J.; Yang, X.; Baligar, V.C.; Zhang, T.; Stoffella, P.J. Heavy metal contamination of soils: Sources, indicators and assessment. Ecol. Indic. 2015, 9, 17–18. [Google Scholar]
- Fajardo, C.; Costa, G.; Nande, M.; Botıas, P.; Garcıa-Cantalejo, J.; Martın, M. Pb, Cd, and Zn soil contamination: Monitoring functional and structural impacts on the microbiome. Appl. Soil Ecol. 2019, 135, 56–64. [Google Scholar] [CrossRef]
- Ye, S.; Zeng, G.; Wu, H.; Zhang, C.; Dai, J.; Liang, J.; Yu, J.; Ren, X.; Yi, H.; Cheng, M.; et al. Biological technologies for the remediation of co-contaminated soil. Crit. Rev. Biotechnol. 2017, 37, 1062–1076. [Google Scholar] [CrossRef]
- Jun, L.; Wei, H.; Aili, M.; Juan, N.; Hongyan, X.; Jingsong, H.; Yunhua, Z.; Cuiying, P. Effect of lychee biochar on the remediation of heavy metal-contaminated soil using sunflower: A field experiment. Environ. Res. 2020, 188, 109886. [Google Scholar] [CrossRef]
- Zine, H.; Midhat, L.; Hakkou, R.; El Adnani, M.; Ouhammou, A. Guidelines for a phytomanagement plan by the phytostabilization of mining wastes. Sci. Afr. 2020, 10, e00654. [Google Scholar] [CrossRef]
- Fiorentino, N.; Mori, M.; Cenvinzo, V.; Duri, L.G.; Gioia, L.; Visconti, D.; Fagnano, M. Assisted phytoremediation for restoring soil fertility in contaminated and degraded land. Ital. J. Agron. 2018, 13, 34–44. [Google Scholar]
- Bajraktari, D.; Petrovska, B.B.; Zeneli, L.; Dimitrovska, A.; Kavrakovski, Z. Soil chemical evaluation and power plant ash impact on chemical properties of Salix alba L. (Fam. Salicaceae): The impact of bioaccumulation. Toxicol. Res. Appl. 2020, 4, 2397847320924849. [Google Scholar] [CrossRef]
- Sabedot, S.; Bordignon, S.A.L.; Cunha, A.C.B. Ex situ method and Salix spp. to treat polluted soil with hydrocarbon. Ciência e Nat. 2019, 41, 13. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Liu, D.; Hussain, B.; Ding, Z.; Zhao, F.; Yang, X. Interactions between cadmium and zinc in uptake, accumulation and bioavailability for Salix integra with respect to phytoremediation. Int. J. Phytoremediat. 2020, 22, 628–637. [Google Scholar] [CrossRef]
- Wani, K.A.; Sofi, Z.M.; Malik, J.A.; Wani, J.A. Phytoremediation of heavy metals using Salix (Willows). Bioremediat. J. 2020, 2, 161–174. [Google Scholar]
- Mourinha, C.; Palma, P.; Alexandre, C.; Cruz, N.; Rodrigues, S.M.; Alvarenga, P. Potentially toxic elements’ contamination of soils affected by mining activities in the Portuguese sector of the Iberian pyrite belt and optional remediation actions: A review. Environments 2022, 9, 11. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.; Ok, Y. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Rillig, M.; Thies, J.; Masiello, C.; Hockaday, W.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Oustriere, N.; Marchand, L.; Rosette, G.; Friesl-Hanl, W.; Mench, M. Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil. Environ. Sci. Pollut. Res. 2017, 24, 7468–7481. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, T.; Xu, W.; Huang, J.; Jiang, S.; Yan, B. Application research of biochar for the remediation of soil heavy metals contamination: A review. Molecules 2020, 25, 3167. [Google Scholar] [CrossRef]
- Rizwan, M.R.; lmriaz, M.; Huang, G.; Chhajro, M.A.; Liu, Y.; Fu, Q.; Zhu, J.; Ashraf, M.; Zafar, M.; Bashir, S.; et al. Immobilization of Pb and Cu in polluted soil by superphosphare, multi walled carbon nanotube, rice straw and its derived biochar. Environ. Sci. Pollut. Res. 2016, 23, 15532–15543. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.; Behrendt, U.; Abd_Allah, E.F.; Berg, G. Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria. Front. Microbiol. 2016, 7, 209. [Google Scholar] [CrossRef] [Green Version]
- Tiberg, C.; Kumpiene, J.; Gustafsson, J.P.; Marsz, A.; Persson, I.; Mench, M.; Kleja, D.B. Immobilization of Cu and As in two contaminated soils with zero-valent iron-Long-term performance and mechanisms. J. Appl. Geochem. 2016, 67, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Olimah, J.A.; Shaw, L.J.; Hodson, M.E. Does ochre have the potential to be a remedial treatment for As-contaminated soils? Environ. Pollut. 2015, 206, 150–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thouin, H.; Norini, M.P.; Le Forestier, L.; Gautret, P.; Motelica-Heino, M.; Breeze, D.; Gassaud, C.; Battaglia-Brunet, F. Microcosm-scale biogeochemical stabilization of Pb, As, Ba and Zn in mine tailings amended with manure and ochre. J. Appl. Geochem. 2019, 111, 104438. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, X.; Luo, L.; Zhou, Y.; Wei, J.; Chen, A.; Tang, L.; Wu, H.; Deng, Y.; Zhang, F.; et al. Remediation of Cu, Pb, Zn and Cd-contaminated agricultural soil using a combined red mud and compost amendment. Int. Biodeterior. Biodegrad. 2017, 118, 73–81. [Google Scholar] [CrossRef]
- Kiran, Y.K.; Barkat, A.; Cui, X.; Feng, Y.; Pan, F.; Tang, L.; Yang, X. Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. J. Integr. Agric. 2017, 16, 725–734. [Google Scholar] [CrossRef]
- Huang, L.M.; Yu, G.W.; Zou, F.Z.; Long, X.X.; Wu, Q.T. Shift of soil bacterial community and decrease of metals bioavailability after immobilization of a multi-metal contaminated acidic soil by inorganic-organic mixed amendments: A field study. Appl. Soil Ecol. 2018, 130, 104–119. [Google Scholar] [CrossRef]
- Tang, X.; Li, X.; Liu, X.; Hashim, M.Z.; Xu, J.; Brookes, P.C. Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Chemosphere 2015, 119, 177–183. [Google Scholar] [CrossRef]
- Deng, Y.; Huang, S.; Laird, D.A.; Wang, X.; Dong, C. Quantitative mechanisms of cadmium adsorption on rice straw-and swine manure-derived biochars. Environ. Sci. Pollut. Res. 2018, 25, 32418–32432. [Google Scholar] [CrossRef]
- Simiele, M.; Lebrun, M.; Del Cioppo, G.; Scippa, S.G.; Trupiano, D.; Bourgerie, S.; Morabito, D. Evaluation of different amendment combinations associated with Trifolium repens to stabilize Pb and As in a mine-contaminated soil. Water Air Soil Pollut. 2020, 231, 539. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, X.; Zeng, M.; Liao, B.H.; Liu, L.; Yang, W.T.; Wu, Y.M.; Qiu, Q.Y.; Wang, Y.J. Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicol. Environ. Saf. 2014, 101, 226–232. [Google Scholar] [CrossRef]
- Garau, M.; Garau, G.; Diquattro, S.; Roggero, P.P.; Castaldi, P. Mobility, bioaccessibility and toxicity of potentially toxic elements in a contaminated soil treated with municipal solid waste compost. Ecotoxicol. Environ. Saf. 2019, 186, 109766. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 2011, 159, 3269–3282. [Google Scholar] [CrossRef]
- Simiele, M.; Lebrun, M.; Miard, F.; Trupiano, D.; Poupart, P.; Forestier, O.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Assisted phytoremediation of a former mine soil using biochar and iron sulphate: Effects on as soil immobilization and accumulation in three Salicaceae species. Sci. Total Environ. 2020, 710, 136203. [Google Scholar] [CrossRef]
- Wu, C.; Cui, M.; Xue, S.; Li, W.; Huang, L.; Jiang, X.; Qian, Z. Remediation of arsenic-contaminated paddy soil by iron-modified biochar. Environ. Sci. Pollut. Res. 2018, 25, 20792–20801. [Google Scholar] [CrossRef]
- Basalirwa, D.; Sudo, S.; Wacal, C.; Oo, A.Z.; Sasagawa, D.; Yamamoto, S.; Masunaga, T.; Nishihara, E. Impact of fresh and aged palm shell biochar on N2O emissions, soil properties, nutrient content and yield of Komatsuna (Brassica rapa var. perviridis) under sandy soil conditions. Soil Sci. Plant Nutr. 2020, 66, 328–343. [Google Scholar] [CrossRef]
- Jauregi, L.; Epelde, L.; Alkorta, I.; Garbisu, C. Antibiotic resistance in agricultural soil and crops associated to the application of cow manure-derived amendments from conventional and organic livestock farms. Front. Vet. Sci. 2020, 8, 153. [Google Scholar] [CrossRef] [PubMed]
- Habibiandehkordi, R.; Quinton, J.N.; Surridge, B.W. Enhancing soluble phosphorus removal within buffer strips using industrial by-products. Environ. Sci. Pollut. Res. 2014, 21, 12257–12269. [Google Scholar] [CrossRef] [PubMed]
- Trigo, C.; Spokas, K.A.; Cox, L.; Koskinen, W.C. Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine. J. Agric. Food Chem. 2014, 62, 10855–10860. [Google Scholar] [CrossRef] [Green Version]
- Lebrun, M.; Nandillon, R.; Miard, F.; Le Forestier, L.; Morabito, D.; Bourgerie, S. Effects of biochar, ochre and manure amendments associated with a metallicolous ecotype of Agrostis capillaris on As and Pb stabilization of a former mine technosol. Environ. Geochem. Health 2021, 43, 1491–1505. [Google Scholar] [CrossRef]
- WRB, IUSS WORORKINGKING GROROUPUP. World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. 2014, 106, 12–21. [Google Scholar]
- Nandillon, R.; Lebrun, M.; Miard, F.; Gaillard, M.; Sabatier, S.; Morabito, D.; Bourgerie, S. Contrasted tolerance of Agrostis capillaris metallicolous and non-metallicolous ecotypes in the context of a mining technosol amended by biochar, compost and iron sulphate. Environ. Geochem. Health 2021, 43, 1457–1475. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Nandillon, R.; Hattab-Hambli, N.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Eco-restoration of a mine technosol according to biochar particle size and dose application: Study of soil physico-chemical properties and phytostabilization capacities of Salix viminalis. J. Soils Sediments 2018, 18, 2188–2202. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Nandillon, R.; Scippa, G.S.; Bourgerie, S.; Morabito, D. Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere 2019, 222, 810–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebrun, M.; Van Poucke, R.; Miard, F.; Scippa, G.S.; Bourgerie, S.; Morabito, D.; Tack, F.M. Effects of carbon-based materials and redmuds on metal (loid) immobilization and growth of Salix dasyclados Wimm. on a former mine technosol contaminated by arsenic and lead. Land Degrad. Dev. 2021, 32, 467–481. [Google Scholar] [CrossRef]
- Pueyo, M.; Lopez-Sanchez, J.F.; Rauret, G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal. Chim. Acta 2004, 504, 217–226. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Frenkel, O.; Elad, Y.; Lew, B.; Graber, E.R. Non-monotonic influence of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani: The shifted Rmax-effect. Plant Soil 2015, 395, 125–140. [Google Scholar] [CrossRef]
- Bart, S.; Motelica-Heino, M.; Miard, F.; Joussein, E.; Soubrand, M.; Bourgerie, S.; Morabito, D. Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols. Catena 2016, 136, 44–52. [Google Scholar]
- Qasim, B.; Motelica-Heino, M.; Joussein, E.; Soubrand, M.; Gauthier, A. Potentially toxic element phytoavailability assessment in technosols from former smelting and mining areas. Environ. Sci. Pollut. Res. 2015, 22, 5961–5974. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.S.; Petersen, L.R.; Kjeldsen, P.; Jakobsen, R. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment. Chemosphere 2011, 84, 383–389. [Google Scholar] [CrossRef]
- Doi, M.; Warren, G.; Hodson, M.E. A preliminary investigation into the use of ochre as a remedial amendment in arsenic-contaminated soils. J. Appl. Geochem. 2005, 20, 2207–2216. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, X.; Guan, D.; Zhao, B.; Ma, M.; Zhou, B.; Cao, F.; Yang, X.; Li, L.; Li, J. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil Ecol. 2017, 111, 114–122. [Google Scholar] [CrossRef]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Ok, Y.S.; Awad, Y.M.; Lee, S.S.; Sung, J.K.; Koutsospyros, A.; Moon, D.H. Impacts of biochar application on upland agriculture: A review. J. Environ. Manag. 2019, 234, 52–64. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Bera, T.; Bhaduri, D.; Sarkar, B.; Mandal, S.; Wade, P.; Kumari, S.; Biswas, S.; Menon, M.; Pathak, H.; et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 2019, 227, 345–365. [Google Scholar] [CrossRef]
- O’Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.W.; Alessi, D.S.; Shen, Z.; Bolan, N.S.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 2018, 619, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Coles, N.; Kong, Z.; Wu, J. Effects of aged and fresh biochars on soil acidity under different incubation conditions. Soil Tillage Res. 2015, 146, 133–138. [Google Scholar] [CrossRef]
- Yuan, C.; Gao, B.; Peng, Y.; Gao, X.; Fan, B.; Chen, Q. A meta-analysis of heavy metal bioavailability response to biochar aging: Importance of soil and biochar properties. Sci. Total Environ. 2021, 756, 144058. [Google Scholar] [CrossRef]
- Liu, Z.; Demisie, W.; Zhang, M. Simulated degradation of biochar and its potential environmental implications. Environ. Pollut. 2013, 179, 146–152. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, M.; El-Naggar, A.H.; Usman, A.R.; Abduljabbar, A.; Vithanage, M.; Elfaki, J.; Al-Faraj, A.; Al-Wabel, M.I. Aging effects of organic and inorganic fertilizers on phosphorus fractionation in a calcareous sandy loam soil. Pedosphere 2018, 28, 873–883. [Google Scholar] [CrossRef]
- Zhao, R.; Coles, N.; Wu, J. Carbon mineralization following additions of fresh and aged biochar to an infertile soil. Catena 2015, 125, 183–189. [Google Scholar] [CrossRef]
- Bhatt, M.K.; Labanya, R.; Joshi, H.C. Influence of long-term chemical fertilizers and organic manures on soil fertility—A review. Univers. J. Agric. Res. 2019, 7, 177–188. [Google Scholar] [CrossRef]
- Ghorbani, M.; Asadi, H.; Abrishamkesh, S. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res. 2019, 7, 258–265. [Google Scholar] [CrossRef]
- Molahid, V.L.M.; Mohd Kusin, F.; Madzin, Z. Role of multiple substrates (spent mushroom compost, ochre, steel slag, and limestone) in passive remediation of metal-containing acid mine drainage. Environ. Technol. 2019, 40, 1323–1336. [Google Scholar] [CrossRef]
- Ozlu, E.; Kumar, S. Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long-term annual manure and inorganic fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Amarawansha, E.A.G.S.; Kumaragamage, D.; Flaten, D.; Zvomuya, F.; Tenuta, M. Phosphorus mobilization from manure-amended and unamended alkaline soils to overlying water during simulated flooding. J. Environ. Qual. 2015, 44, 1252–1262. [Google Scholar] [CrossRef] [Green Version]
- Lambkin, D.C.; Gwilliam, K.H.; Layton, C.; Canti, M.G.; Piearce, T.G.; Hodson, M.E. Soil pH governs production rate of calcium carbonate secreted by the earthworm Lumbricus terrestris. J. Appl. Geochem. 2011, 26, S64–S66. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; O’Connor, D.; Rinklebe, J.; Ok, Y.S.; Tsang, D.C.; Shen, Z.; Hou, D. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications. Environ. Sci. Technol. 2020, 54, 14797–14814. [Google Scholar] [CrossRef]
- Kunz, A.; Steinmetz, R.L.R.; Ramme, M.A.; Coldebella, A. Effect of storage time on swine manure solid separation efficiency by screening. Bioresour. Technol. 2009, 100, 1815–1818. [Google Scholar] [CrossRef]
- Guo, X.X.; Liu, H.T.; Zhang, J. The role of biochar in organic waste composting and soil improvement: A review. J. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef]
- Husson, O.; Brunet, A.; Babre, D.; Charpentier, H.; Durand, M.; Sarthou, J.P.J.; Temp, M. Conservation agriculture systems alter the electrical characteristics (Eh, pH and EC) of four soil types in France. Soil Tillage Res. 2018, 176, 57–68. [Google Scholar] [CrossRef]
- Garau, G.; Silvetti, M.; Deiana, S.; Deiana, P.; Castaldi, P. Long-term influence of red mud on as mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil. J. Hazard. Mater. 2011, 185, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Benedí, J.; Bolado, S.; Cancillo, I.; Calvo, C.; Garcia-Sinovas, D. Adsorption–desorption of arsenate in three Spanish soils. Vadose Zone J. 2005, 4, 282–290. [Google Scholar] [CrossRef]
- Kim, H.B.; Kim, S.H.; Jeon, E.K.; Kim, D.H.; Tsang, D.C.; Alessi, D.S.; Kwon, E.E.; Baek, K. Effect of dissolved organic carbon from sludge, rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Sci. Total Environ. 2018, 636, 1241–1248. [Google Scholar] [CrossRef]
- Wan, H.; Huang, Q.; Wang, Q.; Yu, Y.; Su, D.; Qiao, Q.; Li, H. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. J. Hazard. Mater. 2020, 384, 121293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Selim, H.M. Kinetics of arsenate adsorption−desorption in soils. Environ. Sci. Technol. 2005, 39, 6101–6108. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Jain, S.; Mishra, P.; Khare, P.; Shukla, A.K.; Karak, T.; Singh, A.K. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar. Appl. Soil Ecol. 2019, 138, 144–155. [Google Scholar] [CrossRef]
- Khaledian, Y.; Pereira, P.; Brevik, E.C.; Pundyte, N.; Paliulis, D. The influence of organic carbon and pH on heavy metals, potassium, and magnesium levels in Lithuanian Podzols. Land Degrad. Dev. 2017, 28, 345–354. [Google Scholar] [CrossRef]
- Pan, Y.; Rossabi, J.; Pan, C.; Xie, X. Stabilisation/solidification characteristics of organic clay contaminated by lead when using cement. J. Hazard. Mater. 2019, 362, 132–139. [Google Scholar] [CrossRef]
- Hua, Y.; Heal, K.V.; Friesl-Hanl, W. The use of red mud as an immobiliser for metal/metalloid-contaminated soil: A review. J. Hazard. Mater. 2017, 325, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Sun, H.; Ren, X.; Li, B.; Mao, H. Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal contaminated soil. Sci. Rep. 2017, 7, 12114. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Hou, Q.; Yang, Z.; Zhong, C.; Zheng, G.; Yang, Z.; Li, J. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content. Environ. Pollut. 2014, 188, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Peacock, A.D.; Mullen, C.L.; Ringelberg, D.B.; Tyler, C.M.; Hedrick, D.S.; Gale, P.M.; White, A.F. Soil microbial community responses to dairy manure or ammonium nitrate applications. Soil Biol. Biochem. 2001, 33, 1011–1019. [Google Scholar] [CrossRef]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Lebrun, M.; Miard, F.; Scippa, G.S.; Hano, C.; Morabito, D.; Bourgerie, S. Effect of biochar and red mud amendment combinations on Salix triandra growth, metal(loid) accumulation and oxidative stress response. Ecotoxicol. Environ. Saf. 2020, 195, 110466. [Google Scholar] [CrossRef]
P0% * | B * | I ** | M * | |
---|---|---|---|---|
pH | 4.82 ± 0.01 | 8.46 ± 0.01 | 8.29 ± 0.03 | 9.5 ± 0.0 |
Electrical conductivity (µS·cm−1) | nd | 302 ± 1 | 7765 ± 14 | 9476 ± 138 |
Redox potential (mV) | nd | nd | 217 ± 9 | 88.2 ± 0.9 |
Water holding capacity (%) | 29.8 ± 1 | 212 ± 4 | nd | nd |
Cation exchange capacity (cmol(+)·kg−1) | 0.65 ± 0.02 | <1.5 | nd | nd |
Specific surface area (m2·g−1) | nd | 4.38 | nd | nd |
Total pore volume (cm3·g−1) | nd | 0.01 | nd | nd |
Mean pore diameter (nm) | nd | 9.13 | nd | nd |
Content of carbon (%) | 0.14 ± 0.03 | 79 ± 1 | nd | nd |
Content of hydrogen (%) | 0.22 ± 0.00 | 1.74 ± 0.07 | nd | nd |
Content of nitrogen (%) | 0.09 ± 0.02 | 2.4 ± 0.8 | nd | nd |
[As] (mg·kg−1) *** | 1501 ± 326 | 0.9 ± 0.1 | 0.24 ± 0.09 | 0.8 ± 0.3 |
[Fe] (mg·kg−1) *** | 6518 ± 1639 | 18 ± 5 | 1.04 ± 0.53 | 2.4 ± 0.2 |
[K] (mg·kg−1) *** | nd | 752 ± 30 | 356 ± 0.5 | 16,096 ± 65 |
[P] (mg·kg−1) *** | nd | 8 ± 1 | 0.63 ± 0.07 | 250 ± 3 |
[Pb] (mg·kg−1) *** | 19,228 ± 1531 | 1.6 ± 5.1 | 0.31 ± 0.05 | 0.57 ± 0.06 |
Treatment | Components | Percentage (%) |
---|---|---|
P0% | Pontgibaud technosol (P0%) | - |
PB | Pontgibaud technosol (P0%) | - |
Biochar (B) | 1% | |
PI | Pontgibaud technosol (P0%) | - |
Ochre (I) | 1% | |
PM | Pontgibaud technosol (P0%) | - |
Manure (M) | 1% | |
PBI | Pontgibaud technosol (P0%) | - |
Biochar (B) | 1% | |
Ochre (I) | 1% | |
PBM | Pontgibaud technosol (P0%) | - |
Biochar (B) | 1% | |
Manure (M) | 1% | |
PIM | Pontgibaud technosol (P0%) | - |
Ochre (I) | 1% | |
Manure (M) | 1% | |
PBIM | Pontgibaud technosol (P0%) | - |
Biochar (B) | 1% | |
Ochre (I) | 1% | |
Manure (M) | 1% |
Treatment | Sampling Time | pH | pH Time Effect | EC (µS·cm−1) | EC Time Effect | Eh (mV) | Eh Time Effect |
---|---|---|---|---|---|---|---|
P0% | T0 | 3.9 ± 0.0 c | ns | 609 ± 63 c | ** | 455 ± 11 a | ** |
T60 | 4.6 ± 0.3 C | 1122 ± 126 B | 399 ± 13 A | ||||
PB | T0 | 4.9 ± 0.3 c | ns | 664 ± 49 c | *** | 399 ± 14 b | ns |
T60 | 5.1 ± 0.2 C | 1433 ± 113 AB | 377 ± 11 A | ||||
PI | T0 | 6.5 ± 0.1 ab | ns | 1072 ± 70 b | * | 307 ± 5 cd | ** |
T60 | 6.2 ± 0.1 B | 2088 ± 263 AB | 339 ± 6 B | ||||
PM | T0 | 5.9 ± 0.4 b | ns | 1457 ± 131 ab | ns | 341 ± 21 c | ns |
T60 | 6.5 ± 0.1 AB | 1896 ± 503 AB | 323 ± 5 BC | ||||
PBI | T0 | 6.6 ± 0.1 ab | ns | 1076 ± 28 b | ns | 338 ± 9 cd | ns |
T60 | 6.4 ± 0.1 AB | 1525 ± 186 AB | 322 ± 5 BC | ||||
PBM | T0 | 6.4 ± 0.1 b | ns | 1722 ± 45 a | ns | 313 ± 7 cd | ns |
T60 | 6.7 ± 0.0 AB | 2089 ± 282 AB | 322 ± 2 BC | ||||
PIM | T0 | 6.6 ± 0.1 ab | ns | 1782 ± 62 a | ** | 277 ± 2 d | *** |
T60 | 6.7 ± 0.0 AB | 2508 ± 201 A | 308 ± 4 C | ||||
PBIM | T0 | 7.2 ± 0.0 a | ns | 1779 ± 190 a | ns | 313 ± 9 cd | ns |
T60 | 6.9 ± 0.1 A | 2247 ± 450 AB | 300 ± 5 C |
Treatment | Sampling Time | [As] (mg·L−1) | [As] Time Effect | [Pb] (mg·L−1) | [Pb] Time Effect |
---|---|---|---|---|---|
P0% | T0 | 0.18 ± 0.01 a | *** | 7.5 ± 0.8 ab | ns |
T60 | 0.08 ± 0.01 ABC | 6.1 ± 0.6 A | |||
PB | T0 | 0.15 ± 0.01 ab | *** | 6.7 ± 0.7 abc | ** |
T60 | 0.05 ± 0.01 C | 3.9 ± 0.2 BC | |||
PI | T0 | 0.15 ± 0.00 b | *** | 4.4 ± 0.6 bc | ns |
T60 | 0.07 ± 0.01 BC | 4.1 ± 0.4 B | |||
PM | T0 | 0.15 ± 0.02 ab | *** | 10.4 ± 2.3 a | ** |
T60 | 0.06 ± 0.01 BC | 2.7 ± 0.6 BCDE | |||
PBI | T0 | 0.13 ± 0.00 b | *** | 5.1 ± 0.1 bc | * |
T60 | 0.06 ± 0.01 BC | 3.7 ± 0.4 BCD | |||
PBM | T0 | 0.15 ± 0.01 ab | ns | 7.9 ± 1.1 ab | ** |
T60 | 0.12 ± 0.01 A | 1.8 ± 0.4 E | |||
PIM | T0 | 0.14 ± 0.01 b | * | 5.2 ± 0.8 bc | * |
T60 | 0.10 ± 0.00 AB | 2.6 ± 0.1 BCDE | |||
PBIM | T0 | 0.14 ± 0.00 b | * | 3.4 ± 0.2 c | * |
T60 | 0.10 ± 0.01 AB | 2.1 ± 0.5 E |
(a) | TF As | Leaf BCF As | Stem BCF As | Root BCF As |
---|---|---|---|---|
P0% | 0.14 ± 0.03 ab | 0.036 ± 0.002 a | 0.032 ± 0.002 ab | 0.56 ± 0.09 ab |
PB | 0.18 ± 0.01 a | 0.039 ± 0.001 a | 0.037 ± 0.002 a | 0.42 ± 0.03 b |
PI | 0.15 ± 0.03 ab | 0.044 ± 0.011 a | 0.032 ± 0.001 ab | 0.54 ± 0.05 ab |
PM | 0.09 ± 0.02 b | 0.032 ± 0.001 a | 0.030 ± 0.001 b | 0.81 ± 0.14 a |
PBI | 0.15 ± 0.01 ab | 0.033 ± 0.001 a | 0.035 ± 0.002 ab | 0.45 ± 0.03 b |
PBM | 0.13 ± 0.01 ab | 0.034 ± 0.001 a | 0.032 ± 0.001 ab | 0.53 ± 0.03 ab |
PIM | 0.14 ± 0.01 ab | 0.033 ± 0.002 a | 0.029 ± 0.001 b | 0.45 ± 0.05 b |
PBIM | 0.15 ± 0.03 ab | 0.030 ± 0.001 a | 0.031 ± 0.001 ab | 0.46 ± 0.06 b |
(b) | TF Pb | Leaf BCF Pb | Stem BCF Pb | Root BCF Pb |
P0% | 0.008 ± 0.001 a | 0. 001 ± 6.7·10−5 a | 0.0023 ± 0.0004 c | 0.46 ± 0.05 ab |
PB | 0.018 ± 0.002 a | 0.003 ± 6.9·10−5 a | 0.0031 ± 0.0002 bc | 0.36 ± 0.02 b |
PI | 0.011 ± 0.001 a | 0.003 ± 1.7·10−4 a | 0.0024 ± 0.0002 c | 0.48 ± 0.02 ab |
PM | 0.008 ± 0.000 a | 0.001 ± 5.9·10−5 a | 0.0032 ± 0.0002 bc | 0.55 ± 0.03 a |
PBI | 0.019 ± 0.001 a | 0.002 ± 6.6·10−5 a | 0.0047 ± 0.0004 a | 0.38 ± 0.01 b |
PBM | 0.014 ± 0.000 a | 0.002 ± 1.8·10−4 a | 0.0043 ± 0.0003 b | 0.45 ± 0.01 ab |
PIM | 0.012 ± 0.001 a | 0.002 ± 2.1·10−4 a | 0.0029 ± 0.0005 c | 0.41 ± 0.03 b |
PBIM | 0.014 ± 0.001 a | 0.004 ± 2.3·10−4 a | 0.0023 ± 0.0001 c | 0.43 ± 0.02 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simiele, M.; Lebrun, M.; Bourgerie, S.; Trupiano, D.; Scippa, G.S.; Morabito, D. Biochar, Ochre, and Manure Maturation in an Acidic Technosol Helps Stabilize As and Pb in Soil and Allows Its Vegetation by Salix triandra. Environments 2022, 9, 87. https://doi.org/10.3390/environments9070087
Simiele M, Lebrun M, Bourgerie S, Trupiano D, Scippa GS, Morabito D. Biochar, Ochre, and Manure Maturation in an Acidic Technosol Helps Stabilize As and Pb in Soil and Allows Its Vegetation by Salix triandra. Environments. 2022; 9(7):87. https://doi.org/10.3390/environments9070087
Chicago/Turabian StyleSimiele, Melissa, Manhattan Lebrun, Sylvain Bourgerie, Dalila Trupiano, Gabriella Stefania Scippa, and Domenico Morabito. 2022. "Biochar, Ochre, and Manure Maturation in an Acidic Technosol Helps Stabilize As and Pb in Soil and Allows Its Vegetation by Salix triandra" Environments 9, no. 7: 87. https://doi.org/10.3390/environments9070087
APA StyleSimiele, M., Lebrun, M., Bourgerie, S., Trupiano, D., Scippa, G. S., & Morabito, D. (2022). Biochar, Ochre, and Manure Maturation in an Acidic Technosol Helps Stabilize As and Pb in Soil and Allows Its Vegetation by Salix triandra. Environments, 9(7), 87. https://doi.org/10.3390/environments9070087