Biochar: Production, Applications, and Market Prospects in Portugal
Abstract
:1. Introduction
2. Biochar Production Technologies
3. Biochar Applications
3.1. Agricultural Applications
3.2. Control of GHG Emissions
3.3. Wastewater Treatment
3.4. Other Emerging Applications
4. Policy & Legislative Framework
5. Overview of Current Biochar Markets
6. Biochar Potential in Alentejo
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van Der Velde, M.; Diafas, I. Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; European Commission: Brussels, Belgium, 2010; Volume 8. [Google Scholar]
- Schmidt, H.P.; Wilson, K. The 55 Uses of Biochar. Available online: https://www.biochar-journal.org/en/ct/2 (accessed on 7 July 2022).
- Jeyasubramanian, K.; Thangagiri, B.; Sakthivel, A.; Dhaveethu Raja, J.; Seenivasan, S.; Vallinayagam, P.; Madhavan, D.; Malathi Devi, S.; Rathika, B. A Complete Review on Biochar: Production, Property, Multifaceted Applications, Interaction Mechanism and Computational Approach. Fuel 2021, 292, 120243. [Google Scholar] [CrossRef]
- United States Biochar Initiative. U.S.-Focused Biochar Report–Assessment of Biochar’s Benefits for the United States of America; Center for Energy and Environmental Security; United States Biochar Initiative: Morgantown, WV, USA, 2010. [Google Scholar]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- van Laer, T.; de Smedt, P.; Ronsse, F.; Ruysschaert, G.; Boeckx, P.; Verstraete, W.; Buysse, J.; Lavrysen, L.J. Legal Constraints and Opportunities for Biochar: A Case Analysis of EU Law. GCB Bioenergy 2015, 7, 14–24. [Google Scholar] [CrossRef]
- Shackley, S.; Ruysschaert, G.; Zwart, K.; Glaser, B. Biochar Horizon 2025. In Biochar in European Soils and Agriculture: Science and Practice; Routledge: London, UK, 2016; pp. 281–289. ISBN 9781134654871. [Google Scholar]
- Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into Biochar and Hydrochar Production and Applications: A Review. Energy 2019, 171, 581–598. [Google Scholar] [CrossRef]
- Li, Y.; Xing, B.; Ding, Y.; Han, X.; Wang, S. A Critical Review of the Production and Advanced Utilization of Biochar via Selective Pyrolysis of Lignocellulosic Biomass. Bioresour. Technol. 2020, 312, 123614. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Jung, J.; Liu, M.; Li, X.; Goel, A.; Chen, J.; Song, S.; Anderson, C.; Chen, D.; Leong, K.; et al. Gasification Biochar from Horticultural Waste: An Exemplar of the Circular Economy in Singapore. Sci. Total Environ. 2021, 781, 146573. [Google Scholar] [CrossRef] [PubMed]
- Simonic, M.; Goricanec, D.; Urbancl, D. Impact of Torrefaction on Biomass Properties Depending on Temperature and Operation Time. Sci. Total Environ. 2020, 740, 140086. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Lin, B.J.; Lin, Y.Y.; Chu, Y.S.; Ubando, A.T.; Show, P.L.; Ong, H.C.; Chang, J.S.; Ho, S.H.; Culaba, A.B.; et al. Progress in Biomass Torrefaction: Principles, Applications and Challenges. Prog. Energy Combust. Sci. 2021, 82, 100887. [Google Scholar] [CrossRef]
- Bevan, E.; Fu, J.; Zheng, Y. Challenges and Opportunities of Hydrothermal Carbonisation in the UK; Case Study in Chirnside. RSC Adv. 2020, 10, 31586–31610. [Google Scholar] [CrossRef] [PubMed]
- Babinszki, B.; Jakab, E.; Sebestyén, Z.; Blazsó, M.; Berényi, B.; Kumar, J.; Krishna, B.B.; Bhaskar, T.; Czégény, Z. Comparison of Hydrothermal Carbonization and Torrefaction of Azolla Biomass: Analysis of the Solid Products. J. Anal. Appl. Pyrolysis 2020, 149, 104844. [Google Scholar] [CrossRef]
- Cha, J.S.; Park, S.H.; Jung, S.-C.; Ryu, C.; Jeon, J.-K.; Shin, M.-C.; Park, Y.-K. Production and Utilization of Biochar: A Review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Ghodake, G.S.; Shinde, S.K.; Kadam, A.A.; Saratale, R.G.; Saratale, G.D.; Kumar, M.; Palem, R.R.; AL-Shwaiman, H.A.; Elgorban, A.M.; Syed, A.; et al. Review on Biomass Feedstocks, Pyrolysis Mechanism and Physicochemical Properties of Biochar: State-of-the-Art Framework to Speed up Vision of Circular Bioeconomy. J. Clean. Prod. 2021, 297, 126645. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock Choice, Pyrolysis Temperature and Type Influence Biochar Characteristics: A Comprehensive Meta-Data Analysis Review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of Biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.; Zou, J.; Zhang, L.; Huang, Q. Morphology, Pore Size Distribution, and Nutrient Characteristics in Biochars under Different Pyrolysis Temperatures and Atmospheres. J. Mater. Cycles Waste Manag. 2018, 20, 1036–1049. [Google Scholar] [CrossRef]
- Antal, M.J.; Grønli, M. The Art, Science, and Technology of Charcoal Production. Ind. Eng. Chem. Res. 2003, 42, 1619–1640. [Google Scholar] [CrossRef]
- Prasad, M.; Chrysargyris, A.; McDaniel, N.; Kavanagh, A.; Gruda, N.S.; Tzortzakis, N. Plant Nutrient Availability and PH of Biochars and Their Fractions, with the Possible Use as a Component in a Growing Media. Agronomy 2019, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Angst, T.E.; Sohi, S.P. Establishing Release Dynamics for Plant Nutrients from Biochar. GCB Bioenergy 2013, 5, 221–226. [Google Scholar] [CrossRef]
- Li, Y.; Liao, Y.; He, Y.; Xia, K.; Qiao, S.; Zhang, Q. Polycyclic Aromatic Hydrocarbons Concentration in Straw Biochar with Different Particle Size. Procedia Environ. Sci. 2016, 31, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Jiang, P.; Zhang, H.; Yuan, W. Biochar Production and Applications in Agro and Forestry Systems: A Review. Sci. Total Environ. 2020, 723, 137775. [Google Scholar] [CrossRef] [PubMed]
- Graves, D.; Mycorrhizas, N.B. Designing Specific Biochars to Address Soil Constraints: A Developing Industry. In Biochar and Soil Biota; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781466576513. [Google Scholar]
- Ramos, T.B.; Horta, A.; Gonçalves, M.C.; Pires, F.P.; Duffy, D.; Martins, J.C. The INFOSOLO Database as a First Step towards the Development of a Soil Information System in Portugal. Catena 2017, 158, 390–412. [Google Scholar] [CrossRef]
- Chavas, J.P.; Nauges, C. Uncertainty, Learning, and Technology Adoption in Agriculture. Appl. Econ. Perspect. Policy 2020, 42, 42–53. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Jin, J.; Kuang, F.; Zhang, C.; Guan, T. Farmers’ Risk Cognition, Risk Preferences and Climate Change Adaptive Behavior: A Structural Equation Modeling Approach. Int. J. Environ. Res. Public Health 2020, 17, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, K.Y.; Chow, K.L.; Man, Y.B.; Mo, W.Y.; Wong, M.H. Use of Biochar as Feed Supplements for Animal Farming. Crit. Rev. Environ. Sci. Technol. 2021, 51, 187–217. [Google Scholar] [CrossRef]
- Khan, N.; Chowdhary, P.; Gnansounou, E.; Chaturvedi, P. Biochar and Environmental Sustainability: Emerging Trends and Techno-Economic Perspectives. Bioresour. Technol. 2021, 332, 125102. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.; Muhlack, R.; Morton, B.J.; Dunnigan, L.; Chittleborough, D.; Kwong, C.W. Pyrolysis Temperature Effects on Biochar–Water Interactions and Application for Improved Water Holding Capacity in Vineyard Soils. Soil Syst. 2019, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Hussien Ibrahim, M.E.; Adam Ali, A.Y.; Zhou, G.; Ibrahim Elsiddig, A.M.; Zhu, G.; Ahmed Nimir, N.E.; Ahmad, I. Biochar Application Affects Forage Sorghum under Salinity Stress. Chil. J. Agric. Res. 2020, 80, 317–325. [Google Scholar] [CrossRef]
- Mia, S.; Dijkstra, F.A.; Singh, B. Enhanced Biological Nitrogen Fixation and Competitive Advantage of Legumes in Mixed Pastures Diminish with Biochar Aging. Plant Soil 2018, 424, 639–651. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A Quantitative Review of the Effects of Biochar Application to Soils on Crop Productivity Using Meta-Analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Huang, L.; Gu, M. Effects of Biochar on Container Substrate Properties and Growth of Plants—A Review. Horticulturae 2019, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Monedero, M.A.; Cayuela, M.L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. Role of Biochar as an Additive in Organic Waste Composting. Bioresour. Technol. 2018, 247, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Febrisiantosa, A.; Ravindran, B.; Choi, H. The Effect of Co-Additives (Biochar and FGD Gypsum) on Ammonia Volatilization during the Composting of Livestock Waste. Sustainability 2018, 10, 795. [Google Scholar] [CrossRef] [Green Version]
- Margenot, A.J.; Griffin, D.E.; Alves, B.S.Q.; Rippner, D.A.; Li, C.; Parikh, S.J. Substitution of Peat Moss with Softwood Biochar for Soil-Free Marigold Growth. Ind. Crops Prod. 2018, 112, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Méndez, A.; Paz-Ferreiro, J.; Gil, E.; Gascó, G. The Effect of Paper Sludge and Biochar Addition on Brown Peat and Coir Based Growing Media Properties. Sci. Hortic. 2015, 193, 225–230. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X.; Tian, Y.; Gong, X. Biochar and Humic Acid Amendments Improve the Quality of Composted Green Waste as a Growth Medium for the Ornamental Plant Calathea Insignis. Sci. Hortic. 2014, 176, 70–78. [Google Scholar] [CrossRef]
- Huang, L.; Niu, G.; Feagley, S.E.; Gu, M. Evaluation of a Hardwood Biochar and Two Composts Mixes as Replacements for a Peat-Based Commercial Substrate. Ind. Crops Prod. 2019, 129, 549–560. [Google Scholar] [CrossRef]
- Awad, Y.M.; Lee, S.E.; Ahmed, M.B.M.; Vu, N.T.; Farooq, M.; Kim, I.S.; Kim, H.S.; Vithanage, M.; Usman, A.R.A.; Al-Wabel, M.; et al. Biochar, a Potential Hydroponic Growth Substrate, Enhances the Nutritional Status and Growth of Leafy Vegetables. J. Clean. Prod. 2017, 156, 581–588. [Google Scholar] [CrossRef]
- Linhoss, J.E.; Purswell, J.L.; Street, J.T.; Rowland, M.R. Evaluation of Biochar as a Litter Amendment for Commercial Broiler Production. J. Appl. Poult. Res. 2019, 28, 1089–1098. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, K.R.; Kim, H.J.; Yoon, J.H.; Yang, J.E.; Ok, Y.S.; Owens, G.; Kim, K.H. Effect of Biochar on Heavy Metal Immobilization and Uptake by Lettuce (Lactuca Sativa L.) in Agricultural Soil. Environ. Earth Sci. 2015, 74, 1249–1259. [Google Scholar] [CrossRef]
- Bednik, M.; Medyńska-Juraszek, A.; Dudek, M.; Kloc, S.; Kręt, A.; Łabaz, B.; Waroszewski, J. Wheat Straw Biochar and NPK Fertilization Efficiency in Sandy Soil Reclamation. Agronomy 2020, 10, 496. [Google Scholar] [CrossRef] [Green Version]
- Western Development Commision. Biochar & Activated Carbon Market Study for the Island of Ireland; Western Development Commision: Roscommon, Ireland, 2019. [Google Scholar]
- Jung, S.; Park, Y.-K.; Kwon, E.E. Strategic Use of Biochar for CO2 Capture and Sequestration. J. CO2 Util. 2019, 32, 128–139. [Google Scholar] [CrossRef]
- González, A.S.; Plaza, M.G.; Rubiera, F.; Pevida, C. Sustainable Biomass-Based Carbon Adsorbents for Post-Combustion CO2 Capture. Chem. Eng. J. 2013, 230, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Coromina, H.M.; Walsh, D.A.; Mokaya, R. Biomass-Derived Activated Carbon with Simultaneously Enhanced CO2 Uptake for Both Pre and Post Combustion Capture Applications. J. Mater. Chem. A 2015, 4, 280–289. [Google Scholar] [CrossRef]
- Case, S.D.C.; Mcnamara, N.P.; Reay, D.S.; Whitaker, J. Can Biochar Reduce Soil Greenhouse Gas Emissions from a Miscanthus Bioenergy Crop? GCB Bioenergy 2014, 6, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Fidel, R.; Laird, D.; Parkin, T. Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales. Soil Syst. 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Huggins, T.M.; Haeger, A.; Biffinger, J.C.; Ren, Z.J. Granular Biochar Compared with Activated Carbon for Wastewater Treatment and Resource Recovery. Water Res. 2016, 94, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of Emerging Contaminants from Water and Wastewater by Modified Biochar: A Review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yan, X.; Xu, Y.; Yoza, B.A.; Wang, X.; Kou, Y.; Ye, H.; Wang, Q.; Li, Q.X. Activated Petroleum Waste Sludge Biochar for Efficient Catalytic Ozonation of Refinery Wastewater. Sci. Total Environ. 2019, 651, 2631–2640. [Google Scholar] [CrossRef] [PubMed]
- Poonam; Bharti, S.K.; Kumar, N. Kinetic Study of Lead (Pb2+) Removal from Battery Manufacturing Wastewater Using Bagasse Biochar as Biosorbent. Appl. Water Sci. 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Hefny, R.; Ibrahim, M.M.; Morad, D. Study of Adsorption Performance of Biochar for Heavy Metals Removal. J. Eng. Res. Rep. 2020, 19, 27–40. [Google Scholar] [CrossRef]
- Ghezzehei, T.A.; Sarkhot, D.V.; Berhe, A.A. Biochar Can Be Used to Capture Essential Nutrients from Dairy Wastewater and Improve Soil Physico-Chemical Properties. Solid Earth 2014, 5, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, B.; Wester, A.E.; Chen, J.; He, F.; Chen, H.; Gao, B. Reclaiming Phosphorus from Secondary Treated Municipal Wastewater with Engineered Biochar. Chem. Eng. J. 2019, 362, 460–468. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Gao, B.; Chen, R.; Wu, F. Removal of Sulfamethoxazole (SMX) and Sulfapyridine (SPY) from Aqueous Solutions by Biochars Derived from Anaerobically Digested Bagasse. Environ. Sci. Pollut. Res. 2018, 25, 25659–25667. [Google Scholar] [CrossRef]
- Wathukarage, A.; Herath, I.; Iqbal, M.C.M.; Vithanage, M. Mechanistic Understanding of Crystal Violet Dye Sorption by Woody Biochar: Implications for Wastewater Treatment. Environ. Geochem. Health 2019, 41, 1647–1661. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, S.K.; Valenca, R.; Berger, A.W.; Yu, I.K.M.; Xiong, X.; Saunders, T.M.; Tsang, D.C.W. Plenty of Room for Carbon on the Ground: Potential Applications of Biochar for Stormwater Treatment. Sci. Total Environ. 2018, 625, 1644–1658. [Google Scholar] [CrossRef]
- Guo, X.; Cui, X.; Li, H. Effects of Fillers Combined with Biosorbents on Nutrient and Heavy Metal Removal from Biogas Slurry in Constructed Wetlands. Sci. Total Environ. 2020, 703, 134788. [Google Scholar] [CrossRef]
- Kasak, K.; Truu, J.; Ostonen, I.; Sarjas, J.; Oopkaup, K.; Paiste, P.; Kõiv-Vainik, M.; Mander, Ü.; Truu, M. Biochar Enhances Plant Growth and Nutrient Removal in Horizontal Subsurface Flow Constructed Wetlands. Sci. Total Environ. 2018, 639, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, M.; Giorcelli, M.; Jagdale, P.; Rovere, M.; Tagliaferro, A. A Review of Non-Soil Biochar Applications. Materials 2020, 13, 261. [Google Scholar] [CrossRef] [Green Version]
- Draper, K.; Schmidt, H. Biochar Paper-Elevating Biochar from Novelty to Ubiquity. Available online: https://www.biochar-journal.org/en/ct/15 (accessed on 7 July 2022).
- Hulse, V. Biochar as A Substitute for Carbon Black in Lithographic Ink Production, M.Sc Dissertation; Rochester Institute of Technology: Rochester, NY, USA, 2019; Available online: https://scholarworks.rit.edu/theses/10130/ (accessed on 5 March 2021).
- Edberg, J.; Brooke, R.; Hosseinaei, O.; Fall, A.; Wijeratne, K.; Sandberg, M. Laser-Induced Graphitization of a Forest-Based Ink for Use in Flexible and Printed Electronics. npj Flex. Electron. 2020, 4, 17. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Factors Determining the Potential of Biochar As a Carbon Capturing and Sequestering Construction Material: Critical Review. J. Mater. Civ. Eng. 2017, 29, 04017086. [Google Scholar] [CrossRef]
- Dahal, R.K.; Acharya, B.; Saha, G.; Bissessur, R.; Dutta, A.; Farooque, A. Biochar as a Filler in Glassfiber Reinforced Composites: Experimental Study of Thermal and Mechanical Properties. Compos. Part B Eng. 2019, 175, 107169. [Google Scholar] [CrossRef]
- Adilla Rashidi, N.; Yusup, S. A Mini Review of Biochar Synthesis, Characterization, and Related Standardization and Legislation. In Applications of Biochar for Environmental Safety; IntechOpen: London, UK, 2020; Volume 32, pp. 1–16. ISBN 9781626239777. [Google Scholar]
- Meyer, S.; Genesio, L.; Vogel, I.; Schmidt, H.-P.; Soja, G.; Someus, E.; Shackley, S.; Verheijen, F.G.A.; Glaser, B. Biochar Standardization and Legislation Harmonization. J. Environ. Eng. Landsc. Manag. 2017, 25, 175–191. [Google Scholar] [CrossRef]
- Gollenbeek, L.; Ehlert, P.; Buisonjé, F. Perspectives of Ecochar in Europe: Uses and Regulatory Requirements; Wageningen Livestock Research: Wageningen, The Netherlands, 2018. [Google Scholar]
- Parlamento Europeu e o Conselho da União Europeia. Regulamento (CE) No 1907/2006 de 18 de Dezembro de 2006 (REACH); European Union: Maastricht, The Netherlands, 2006; pp. 3–275. [Google Scholar]
- European Biochar Industry European Biochar Market Report 2021/2022. Available online: https://www.biochar-industry.com/2022/european-biochar-market-report-2021-2022-available-now/ (accessed on 6 July 2022).
- González-Pernas, F.M.; Grajera-Antolín, C.; García-Cámara, O.; González-Lucas, M.; Martín, M.T.; González-Egido, S.; Aguirre, J.L. Effects of Biochar on Biointensive Horticultural Crops and Its Economic Viability in the Mediterranean Climate. Energies 2022, 15, 3407. [Google Scholar] [CrossRef]
- Governo de Portugal. Resolução Do Conselho de Ministros No 163/2017–Plano Nacional Para a Promoção Das Biorrefinarias; Governo de Portugal: Lisboa, Portugal, 2017. [Google Scholar]
- Soka, O.; Oyekola, O. A Feasibility Assessment of the Production of Char Using the Slow Pyrolysis Process. Heliyon 2020, 6, e04346. [Google Scholar] [CrossRef]
- Askeland, M.; Clarke, B.; Paz-Ferreiro, J. Comparative Characterization of Biochars Produced at Three Selected Pyrolysis Temperatures from Common Woody and Herbaceous Waste Streams. PeerJ 2019, 7, e6784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibero Massa Florestal Estudo Do Poder Calorífico de Biomassa Agrícola e Florestal Carbonizado Pelo Processo de Pirólise. Available online: https://www.imflorestal.com/docs/5.1.-Estudo-do-poder-calorífico-de-biomassa-agrícola-e-florestal-carbonizado-pelo-processo-de-pirólise.pdf (accessed on 8 July 2022).
- Zabaniotou, A.; Ioannidou, O.; Antonakou, E.; Lappas, A. Experimental Study of Pyrolysis for Potential Energy, Hydrogen and Carbon Material Production from Lignocellulosic Biomass. Int. J. Hydrogen Energy 2008, 33, 2433–2444. [Google Scholar] [CrossRef]
- Park, J.H.; Ok, Y.S.; Kim, S.H.; Kang, S.W.; Cho, J.S.; Heo, J.S.; Delaune, R.D.; Seo, D.C. Characteristics of Biochars Derived from Fruit Tree Pruning Wastes and Their Effects on Lead Adsorption. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 751–760. [Google Scholar] [CrossRef]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and Characterization of Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef]
- Hunt, J.; McIntosh, C. The Big California Biochar Model: Forest Biomass Management, Carbon Drawdown, Drought Resiliency, and Nitrogen Conservation on a Statewide Scale. Available online: https://pacificbiochar.com/resources/the-big-california-biochar-model/ (accessed on 10 July 2022).
- Chiaramonti, D.; Panoutsou, C. Policy Measures for Sustainable Sunflower Cropping in EU-MED Marginal Lands Amended by Biochar: Case Study in Tuscany, Italy. Biomass Bioenergy 2019, 126, 199–210. [Google Scholar] [CrossRef]
- Instituto Nacional De Estatística Recenseamento Agrícola–Análise Dos Principais Resultados. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=437178558&PUBLICACOEStema=55505&PUBLICACOESmodo=2 (accessed on 6 July 2022).
- Lehmann, J.; Abiven, S.; Kleber, M.; Pan, G.; Singh, B.P.; Sohi, S. Persistence of Biochar in Soil Johannes. In Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: London, UK, 2015; pp. 212–260. ISBN 9780203762264. [Google Scholar]
- Borchard, N.; Schirrmann, M.; Cayuela, M.L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizábal, T.; Sigua, G.; Spokas, K.; Ippolito, J.A.; et al. Biochar, Soil and Land-Use Interactions That Reduce Nitrate Leaching and N2O Emissions: A Meta-Analysis. Sci. Total Environ. 2019, 651, 2354–2364. [Google Scholar] [CrossRef] [PubMed]
- Leng, R.A.; Preston, T.R.; Inthapanya, S. Biochar Reduces Enteric Methane and Improves Growth and Feed Conversion in Local “Yellow” Cattle Fed Cassava Root Chips and Fresh Cassava Foliage. Livest. Res. Rural Dev. 2012, 24, 1–7. [Google Scholar]
- United States Department of Agriculture. Unlock the Secrets in the Soil: Soil Health Key Points; United States Department of Agriculture: Washington, DC, USA, 2015.
- ERSAR Entidade Reguladora Dos Serviços de Água e Resíduos. Available online: https://www.ersar.pt/pt (accessed on 6 July 2022).
- Hestrin, R.; Torres-Rojas, D.; Dynes, J.J.; Hook, J.M.; Regier, T.Z.; Gillespie, A.W.; Smernik, R.J.; Lehmann, J. Fire-Derived Organic Matter Retains Ammonia through Covalent Bond Formation. Nat. Commun. 2019, 10, 664. [Google Scholar] [CrossRef]
- Agência Portuguesa do Ambiente. Plano de Gestão Das Bacias Hidrográficas Integradas Na Região Hidrográfica Do Sado e Mira (RH6)–Parte 2; Agência Portuguesa do Ambiente: Bairro do Zambujal, Alfragide, 2012. [Google Scholar]
- Agência Portuguesa do Ambiente. Plano de Gestão Das Bacias Hidrográficas Integradas Na Região Hidrográfica Do Guadiana (RH7)–Parte 2; Agência Portuguesa do Ambiente: Bairro do Zambujal, Alfragide, 2012. [Google Scholar]
Process | Temperature (°C) | Residence Time (min) | Pressure (atm) | Other Conditions | Biochar Yield (%) |
---|---|---|---|---|---|
Slow pyrolysis | 300–800 | >60 | 1 | No oxygen; Moisture content < 15–20%; Heating rate < 10 °C/min | 30–55 |
Fast pyrolysis | 450–600 | ~0.02 | 1 | No oxygen; Moisture content < 15–20%; Heating rate ≥ 200 °C/min | 10–25 |
Gasification | 750–1000 | 0.2–0.4 | 1–3 | Limited oxygen supply Moisture content 10–20%; Heating rate ~1000 °C/min | 14–25 |
Torrefaction | 200–300 | 15–60 | 1 | No oxygen; Moisture content < 10%; Heating rate < 50 °C/min | 70–80 |
HTC | 180–300 | 5–240 | 1–200 | Moisture content 75–90% | 50–80 |
Property | SSA (m2g−1) | CEC (cmol kg−1) | AEC (cmol kg−1) | CCE (%) | PV (m3 t−1) | APS (nm) | Ash (%) | pH | EC (dS m−1) |
---|---|---|---|---|---|---|---|---|---|
Pyrolysis type | |||||||||
Slow | 183 | 44.9 | 4.90 | 6.10 | 2.04 | 52.3 | 19.2 | 8.7 | 4.45 |
Fast | 98.6 | 48.1 | 5.33 | 11.2 | 3.66 | 1190 | 22.0 | 8.7 | 5.85 |
Feedstock | |||||||||
Wood-based | 184 | 23.9 | 5.65 | 9.04 | 7.01 | 74.6 | 10.2 | 8.3 | 6.20 |
Crop wastes | 98.2 | 56.3 | 4.51 | 6.12 | 2.05 | 2320 | 21.1 | 8.9 | 5.72 |
Other grasses | 63.4 | 63.3 | 5.05 | n.d. | 3.36 | 268 | 18.0 | 8.9 | 5.20 |
Manures/biosolids | 52.2 | 66.1 | 7.77 | 14.2 | 0.82 | 27.3 | 44.6 | 8.9 | 3.98 |
Process temperature (°C) | |||||||||
<300 | 27.1 | 44.4 | n.d. | 7.16 | 0.06 | 8.16 | 12.3 | 6.0 | 3.60 |
300–399 | 57.2 | 52.8 | 3.65 | 9.17 | 3.45 | 2340 | 17.8 | 7.8 | 5.72 |
400–499 | 108 | 35.0 | n.d. | 9.08 | 1.18 | 78.0 | 19.0 | 8.5 | 2.77 |
500–599 | 97.2 | 56.4 | 3.38 | 10.1 | 4.68 | 1140 | 23.2 | 9.0 | 8.05 |
600–699 | 178 | 33.7 | n.d. | 9.50 | 1.77 | 2000 | 23.5 | 9.5 | 4.85 |
700–799 | 204 | 53.0 | 5.27 | 12.9 | 8.87 | 9.19 | 26.6 | 10.0 | 4.29 |
>800 | 208 | 85.3 | 8.83 | 19.6 | 0.09 | 8.45 | 28.5 | 9.9 | 6.44 |
Biochar Use | Application Conditions | Obtained Results | References |
---|---|---|---|
Soil amendment | Grapevine pruning biochar was applied to vineyard clay soils |
| Marshall et al. (2019) [34] |
Biochar was applied to sandy loam soils at 5% (w/w) and 12.6 dS m−1 salinity rate |
| Ibrahim et al. (2020) [35] | |
Eucalyptus wood waste biochar (550 °C) applied to different soils of mixture grassland (10 t ha−1) |
| Mia et al. (2018) [36] | |
The addition of biochar to soils promoted an increase in crop yields |
| Jeffery et al. (2011) [37] Huang and Gu (2019) [38] | |
Composting additive | Biochar was applied at a 10% rate (wt.%) |
| Sanchez-Monedero et al. (2017) [39] |
Woody biochar (550 °C) was applied at a 10% rate (wt.%) to a mixture of slaughter waste, swine slurry, and sawdust compost |
| Febrisiantosa et al. (2018) [40] | |
Peat substitute & Growing medium | Biochar as a peat substitute |
| A.J. Margenot (2018) [41] |
| Méndez et al. (2015) [42] | ||
| Zhang et al. (2014) [43] | ||
| Huang et al. (2019) [44] | ||
Mixtures of Biochar (at 0, 20, and 35%), humic acid (at 0, 0.5, and 0.7%), and composted green waste |
| Zhang et al. (2014) [43] | |
Rice husk biochar mixed with perlite (1:1) as hydroponics growing medium |
| Awad et al. (2017) [45] | |
Bedding litter | Addition of biochar at 10 to 20 wt.% to pine shavings for poultry bedding |
| Linhoss et al. (2019) [46] |
Feed Additive | <1% of daily rice husk biochar diet to ruminants, goats, and pigs; 2–6% of daily woody biochar feed to ducks and poultry |
| Man et al. (2021) [32] |
Heavy metal immobilization | Biochar was applied (up to 10% rate) to heavy metal-contaminated soils. |
| Kim et al. (2015) [47] |
Soil reclamation | Wheat straw biochar and NPK added for sandy soil reclamation |
| Bednick et al. (2020) [48] |
Biochar Use | Application Conditions | Relevant Results | Reference |
---|---|---|---|
CO2-capture |
| CO2 adsorption performance was better for biochar from olive stones at 25 °C (3 mmol g−1). Good regeneration capabilities were found for both biochars. | González et al. (2013) [51] |
CO2-capture |
| Adsorption results were similar for both feedstocks and ranged between 3–21 mmol g−1, with the highest results achieved when the pressure increased. | Coromina et al. (2015) [52] |
GHG mitigation |
| Soils amended with biochar presented a reduction of CO2 emissions of 33% and a global reduction of GHGs (CO2, N2O, and CH4) of 37%. | Case et al. (2014) [53] |
| No significant variations in CO2 emissions were observed for all crop types, but N2O emissions were suppressed by 27% with corn crops. | Fidel et al. (2019) [54] |
Biochar Use | Application Conditions | Obtained Results | References |
---|---|---|---|
Wastewater treatment | Catalytic ozonation of refinery wastewater with activated biochar from petroleum waste sludge. | Removal efficiencies for the following contaminants: total organic carbon (53.5%), Ox (33.4%), NOx (58.2%), and OxS contaminants (12.5%). | Chen et al. (2019) [57] |
Removal of heavy metals | Pb2+ removal from battery manufacturing wastewater using bagasse biochar. | Maximum removal efficiency of 12.7 mg g−1 (75.4%) of Pb2+ was reached. | Poonam and Kumar (2018) [58] |
Jazaurin, ficus, orange, and mango biochars were used as filter media to retain several heavy metals. | Biochars were more effective with particle sizes <0.1 cm and initial concentrations between 50–150 mg L−1, generating 99% of removal efficiencies for Cu2+, Cd2+, Pb2+, and Zn2+. | Hefny et al. (2020) [59] | |
Removal of nitrogen and phosphorus | Dairy manure runoff batch sorption using biochars produced from biomass | Adsorption results of 20–43% of ammonium and 19–65% of phosphate were achieved within 24 h | Ghezzehei et al. (2014) [60] |
Phosphorous removal from treated municipal wastewater | Phosphorous was removed effectively with relatively fast kinetics (<8 h) and a good adsorption capacity (8.34 g kg−1) | Zheng et al. (2019) [61] | |
Removal of organic contaminants | Biochar was produced by thermal activation (600 °C) from anaerobically digested bagasse | Sulfamethoxazole and sulfapyridin were removed from aqueous solutions with maximum adsorption capacities of 54.38 mg g−1 and 8.60 mg g−1, respectively | Yao et al. (2018) [62] |
Gliricidia sepium biochar was used in batch sorption studies to remove aqueous dyes | Biochars produced at higher temperatures presented better adsorption efficiencies | Wathukarage et al. (2017) [63] | |
Stormwater management | Use of sand and biochar filters |
| Mohanty et al. (2018) [64] |
Use of biochar in enhanced bio infiltration/bioretention system |
| ||
Constructed wetlands | Biochar was prepared from cattail and introduced into constructed wetlands | Results showed an improvement in removal efficiencies of chemical oxygen demand, NH4+ and total nitrogen, and a reduction of N2O emissions. Heavy metals such as As2+, Zn2+,, and Cu2+ were retained with rates of 35.4–83.9%, 8.2–23.7%, and 0.3–0.9%, respectively | Guo et al. (2020) [65] |
Biochar derived from wood was placed in a horizontal subsurface flow constructed wetland | Nutrient uptake by plant roots, plant biomass growth, and nutrient removal from wastewater were all enhanced with the biochar system. A pH reduction induced by plants in filter media was observed | Kasak et al. (2018) [66] |
Biochar Use | Application Conditions | Obtained Results | References |
---|---|---|---|
Biochar paper and cardboard | Biochar (up to 30%) and paper pulp were blended |
| Draper and Schmidt (2014) [68] |
Biochar ink | Biochar was used as a substitute for carbon black in ink production | Similar visual density results were obtained as the standard carbon black ink | Hulse (2019) [69] |
Production of a biochar-based conductive ink | The product is compatible with printed electronics | Edberg et al. (2020) [70] | |
Biochar as construction material | Biochar was added to pavement bitumen (5–15%) | This application resulted in improved moisture and cracking resistance, as well as in an increased viscosity of the product | Gupta and Kua (2017) [71] |
Biochar applied at 5% cement replacement in mortar |
| ||
A composite of biochar–clay plaster (30–50 wt.%) was mixed with clay and sand |
| ||
Biochar composites | Biochar (10 wt.%) was added as a filler to glass fibre reinforced composite | Compared to glass fiber reinforced polymer, the new composite material presented:
| Dahal et al. (2019) [72] |
European Regulation | National Regulation | Voluntary Regulation | |
---|---|---|---|
Not in force yet. Proposals are being developed and are expected to be implemented soon. It is anticipated that carbon and nutrient-rich biochars will be regulated by “end-of-waste criteria”. | In force in Germany, Austria, Switzerland, and Italy. Biochar of vegetable origin only. | In other EU countries, free trade is only possible after obtaining registration or a permit. | Serves certification but does not have a legal basis. There are three main organizations: European Biochar Certificate (EBC); Biochar Quality Mandate (BQM); and International Biochar Initiative (IBI-BS). |
Parameter | Units | IBI-BS | EBC | BQM | ||
---|---|---|---|---|---|---|
Basic | Premium | Standard | High Grade | |||
Organic C | % | ≥10 | ≥50 | ≥10 | ||
H/C | --- | ≤0.7 | ≤0.7 | ≤0.7 | ||
O/C | --- | ≤0.4 | --- | |||
Moisture | % | --- | ≥30 | ≥20 | ||
Ash | √ | √ | √ | |||
EC | mS m−1 | √ | √ | Optional | ||
Liming | --- | √ | --- | --- | ||
pH | √ | √ | √ | |||
PSD | mm | √ | --- | √ | ||
SSA | m2g−1 | --- | √ | Optional | ||
AWC | % | --- | √ | Optional | ||
VM | Optional | √ | --- | |||
Germination | - | Pass/Fail | Optional | --- | ||
Total N | % | √ | √ | √ | ||
P, K, Mg, Ca | Optional | √ | Total P&K | |||
PAH | mg kg−1, db | ≤300 | <12 | <4 | <20 | |
B(a)P | ≤3 | --- | --- | |||
PCB | ≤1 | <0.2 | <0.5 | |||
PCDD/F | ≤17 | <20 | <20 | |||
As | mg kg−1, db (max.) | 12–100 | --- | 100 | 10 | |
Cd | 1.4–39 | 1.5 | 1 | 39 | 3 | |
Cr | 64–1200 | 90 | 80 | 100 | 15 | |
Co | 40–150 | --- | -- | |||
Cu | 65–1500 | 100 | 1500 | 40 | ||
Pb | 70–500 | 150 | 120 | 500 | 60 | |
Hg | 1–17 | 1 | 17 | 1 | ||
Mn | --- | --- | --- | 3500 | ||
Mo | 5–20 | --- | 75 | 10 | ||
Ni | 47–600 | 50 | 30 | 600 | 10 | |
Se | 2–36 | --- | 100 | 5 | ||
Zn | 200–7000 | 400 | 2800 | 150 | ||
B | √ | --- | --- | |||
Cl | ||||||
Na |
Market | Current Biochar Production |
---|---|
China | >300,000 (up to 500,000) t/y and rapidly growing |
USA | ~50,000 t/y and growing |
Europe | >20,000 t/y and growing |
Australia | ~5000 t/y and growing |
Feedstock Type | Amount (kt/y) [79] | Biochar Yield (wt.%) | Biochar Production (kt/y) |
---|---|---|---|
Agricultural wastes | |||
Corn stalks | 768.8 | 28.0 [80] | 215.3 |
Rice straw | 129.0 | 25.0 [81] | 32.3 |
Vine prunings | 296.1 | 30.0 [82] | 88.8 |
Olive prunings | 188.1 | 10.0 [83] | 18.8 |
Fruit tree prunings | 32.7 | 23.6 [84] | 7.71 |
Forestry wastes | |||
Pine | 84.5 | 21.0 [81] | 17.7 |
Eucalyptus | 124.4 | 22.0 [82] | 27.4 |
Cork oak | 130.4 | 24.5 [82] | 32.0 |
Green herbaceous wastes | 89.0 | 27.8 [85] | 24.7 |
Shrubs | 129.6 | 20.0 [82] | 25.9 |
Total | 1 972.6 | - | 490.9 |
Parameter | Value | Remarks |
Biochar application in agricultural land | ||
Biochar application rate (t/ha) | 5 | Biochar application rate from Chiaramonti and Panoutsou (2019) [87] |
Land covered (ha/y) | 98,104 | |
Time until 100% coverage (y) | 22 | Total agricultural land in Alentejo: 2.14 Mha [88]. |
Direct carbon sequestration | ||
Carbon sequestration potential, C (kt-C) | 441.8 | Direct carbon sequestration of 3.12 t-CO2/t-biochar. Calculated from Lehmann et al. (2015) [89] |
Carbon sequestration potential, CO2 (kt-CO2-eq) | 1529 | |
GHG emissions reduction (ER)—ancillary | ||
GHG ER, Enteric fermentation (kt-CO2-eq) | 348.9 | GHG emission reductions of 22%, 20%, and 36% for enteric fermentation, manure management, and soil, respectively [90,91]. |
GHG ER, Manure management (kt-CO2-eq) | 37.60 | |
GHG ER, Soil (annual) (kt-CO2-eq) | 11.20 | |
GHG ER, Combined ancillary benefits (kt-CO2-eq) | 397.7 | |
GHG ER + Direct sequestration (kt-CO2-eq) | 1927 | |
Cost per t of CO2drawdown | ||
Direct sequestration (€/t-CO2-eq) | 257 | Considering an average biochar price of 800 €/t [78]. |
GHG ER, Ancillary (€/t-CO2-eq) | 987 | |
Total of direct and ancillary (€/t-CO2-eq) | 204 | |
Water conservation | ||
Increased WHC (million m3) | 6.20 | Considering that soil WHC improves by 62 m3/ha (+ 0.25–1% SOM, top 15 cm) [92]. Soil bulk density is taken from INFOSOLO database [29]. |
Days of water use in Alentejo (d) | 46 | Residential water consumption is taken from ERSAR [93]. |
Nitrogen management | ||
Maximum nitrogen retention capacity (kt-N) | 88.36 | N retention capacity of 0.18 g-N/g-biochar from Hestrin et al. (2019) [94]. |
N Leaching reduction, agricultural land (t-N/y) | 127.0 | N-leaching from agriculture in Alentejo: 10 830 t-N/y [95,96]. |
Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, B.; Alves, O.; Rijo, B.; Lourinho, G.; Nobre, C. Biochar: Production, Applications, and Market Prospects in Portugal. Environments 2022, 9, 95. https://doi.org/10.3390/environments9080095
Garcia B, Alves O, Rijo B, Lourinho G, Nobre C. Biochar: Production, Applications, and Market Prospects in Portugal. Environments. 2022; 9(8):95. https://doi.org/10.3390/environments9080095
Chicago/Turabian StyleGarcia, Bruno, Octávio Alves, Bruna Rijo, Gonçalo Lourinho, and Catarina Nobre. 2022. "Biochar: Production, Applications, and Market Prospects in Portugal" Environments 9, no. 8: 95. https://doi.org/10.3390/environments9080095
APA StyleGarcia, B., Alves, O., Rijo, B., Lourinho, G., & Nobre, C. (2022). Biochar: Production, Applications, and Market Prospects in Portugal. Environments, 9(8), 95. https://doi.org/10.3390/environments9080095