High and Low Air Temperatures and Natural Wildfire Ignitions in the Sierra Nevada Region
Abstract
:1. Introduction
2. Site Description
3. Methods
3.1. Weather Estimates and Spatial Wildfire Data
3.2. High- and Low-Temperature Months
3.3. Analysis
4. Results
4.1. Regional Change from 1992 to 2015
4.2. The Magnitude of High and Low Temperatures and Wildfire Ignitions
4.3. The Frequency of High- and Low-Temperature Months and Wildfire Ignitions
5. Discussion
5.1. How Broadly Is Air Temperature Associated with Wildfire?
5.2. Managing for Wildfire
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dillon, G.; Holden, Z.; Morgan, P.; Crimmins, M.; Heyerdahl, E.; Luce, C. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2011, 2, 1–33. [Google Scholar] [CrossRef]
- Miller, J.; Safford, H. Trends in wildfire severity: 1984 to 2010 in the Sierra Nevada, Modoc Plateau, and southern Cascades, California, USA. Fire Ecol. 2012, 8, 41–57. [Google Scholar] [CrossRef]
- Calkin, D.; Thompson, M.; Finney, M. Negative consequences of positive feedbacks in US wildfire management. For. Ecosyst. 2015, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Doerr, S.; Santin, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed]
- Dennison, P.; Brewer, S.; Arnold, J.; Moritz, M. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Miller, R.; Chambers, J.; Pellant, M. A Field Guide for Selecting the Most Appropriate Treatment in Sagebrush and Pinon-Juniper Ecosystems in the Great Basin; USDA Forest Service General Technical Report; U.S. Department of Agriculture, Rocky Mountain Research Station: Ft. Collins, CO, USA, 2014; pp. 1–76. [Google Scholar]
- Fann, N.; Alman, B.; Broome, R.; Morgan, G.; Johnston, F.; Pouliot, G.; Rappold, A. The health impacts and economic value of wildland fire episodes in the US: 2008–2012. Sci. Total. Environ. 2018, 610, 802–809. [Google Scholar] [CrossRef]
- Spracklen, D.; Mickley, L.; Logan, J.; Hudman, R.; Yevich, R.; Flannigan, M.; Westerling, A. Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. J. Geophys. Res. Atmos. 2009, 114, D20301. [Google Scholar] [CrossRef]
- Stavros, E.; Abatzoglou, J.; McKenzie, D.; Larkin, N. Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States. Clim. Change 2014, 126, 455–468. [Google Scholar] [CrossRef]
- Barbero, R.; Abatzoglou, J.; Larkin, N.; Kolden, C.; Stocks, B. Climate change presents increased potential for very large fires in the contiguous United States. Int. J. Wildland Fire 2015, 24, 892–899. [Google Scholar] [CrossRef]
- Podschwit, H.; Larkin, N.; Steel, E.; Cullen, A.; Alvarado, E. Multi-Model Forecasts of Very-Large Fire Occurences during the End of the 21st Century. Climate 2018, 6, 100. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Abatzoglou, J.; Gershunov, A.; Guzman-Morales, J.; Bishop, D.; Balch, J.; Lettenmaier, D. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 2019, 7, 892–910. [Google Scholar] [CrossRef] [Green Version]
- Collins, B.; Kelly, M.; Van Wagtendonk, J.; Stephens, S. Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landsc. Ecol. 2007, 22, 545–557. [Google Scholar] [CrossRef]
- Liang, S.; Hurteau, M.; Westerling, A. Response of Sierra Nevada forests to projected climate–wildfire interactions. Glob. Chang. Biol. 2017, 23, 2016–2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syphard, A.; Keeley, J.; Pfaff, A.; Ferschweiler, K. Human presence diminishes the importance of climate in driving fire activity across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 13750–13755. [Google Scholar] [CrossRef] [Green Version]
- Syphard, A.; Sheehan, T.; Rustigian-Romsos, H.; Ferschweiler, K. Mapping future fire probability under climate change: Does vegetation matter? PLoS ONE 2018, 13, e0201680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, K. Spatial Wildfire Occurrence Data for the United States, 1992–2015 [FPA_FOD_20170508], 4th ed.; Forest Service Research Data Archive; United States Department of Agriculture: Fort Collins, CO, USA, 2017. [Google Scholar] [CrossRef]
- Flannigan, M.; Wotton, B. Chapter 10—Climate, Weather, and Area Burned. In Forest Fires: Behavior and Ecological Effects; Academic Press: Cambridge, MA, USA, 2001; pp. 351–373. [Google Scholar] [CrossRef]
- Hardy, C. Wildland fire hazard and risk: Problems, definitions, and context. For. Ecol. Manag. 2005, 211, 73–82. [Google Scholar] [CrossRef]
- Littell, J.; Peterson, D.; Riley, K.; Liu, Y.; Luce, C. A review of the relationships between drought and forest fire in the United States. Glob. Chang. Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef]
- Stevens, J.; Collins, B.; Miller, J.; North, M.; Stephens, S. Changing spatial patterns of stand-replacing fire in California conifer forests. For. Ecol. Manag. 2017, 406, 28–36. [Google Scholar] [CrossRef]
- Littell, J.; McKenzie, D.; Peterson, D.; Westerling, A. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef]
- Podschwit, H.; Cullen, A. Patterns and trends in simultaneous wildfire activity in the United States from 1984 to 2015. Int. J. Wildland Fire 2020, 29, 1057–1071. [Google Scholar] [CrossRef]
- United States Forest Service. Ecological Subregions of the United States. 1994. Available online: https://www.fs.fed.us/land/pubs/ecoregions/ch33.html (accessed on 24 June 2020).
- Hanberry, B. Compositional changes in selected forest ecosystems of the western United States. Appl. Geogr. 2014, 52, 90–98. [Google Scholar] [CrossRef]
- Price, C.; Rind, D. Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res. Atmos. 1994, 99, 10823–10831. [Google Scholar] [CrossRef]
- Bajocco, S.; Koutsias, N.; Ricotta, C. Linking fire ignitions hotspots and fuel phenology: The importance of being seasonal. Ecol. Indic. 2017, 82, 433–440. [Google Scholar] [CrossRef]
- Finney, D.; Doherty, R.; Wild, O.; Stevenson, D.; MacKenzie, I.; Blyth, A. A projected decrease in lightning under climate change. Nat. Clim. Change 2018, 8, 210–213. [Google Scholar] [CrossRef]
- Westerling, A.; Hidalgo, H.; Cayan, D.; Swetnam, T. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerling, A. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.; Stanturf, J. Future US wildfire potential trends projected using a dynamically downscaled climate change scenario. For. Ecol. Manag. 2013, 294, 120–135. [Google Scholar] [CrossRef]
- Crockett, J.; Westerling, A. Greater temperature and precipitation extremes intensify Western US droughts, wildfire severity, and Sierra Nevada tree mortality. J. Clim. 2018, 31, 341–354. [Google Scholar] [CrossRef]
- Turner, M.; Romme, W. Landscape dynamics in crown fire ecosystems. Landsc. Ecol. 1994, 9, 59–77. [Google Scholar] [CrossRef]
- Parks, S.; Holsinger, L.; Panunto, M.; Jolly, W.; Dobrowski, S.; Dillon, G. High-severity fire: Evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 2018, 13, 044037. [Google Scholar] [CrossRef]
- Moritz, M.; Moody, T.; Krawchuk, M.; Hughes, M.; Hall, A. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophys. Res. Lett. 2010, 37, L04801. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.; Kolden, C. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 2013, 22, 1003–1020. [Google Scholar] [CrossRef]
- Flannigan, M.; Wotton, B.; Marshall, G.; De Groot, W.; Johnston, J.; Jurko, N.; Cantin, A. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Clim. Chang. 2016, 134, 59–71. [Google Scholar] [CrossRef]
- Balch, J.; Bradley, B.; Abatzoglou, J.; Nagy, R.; Fusco, E.; Mahood, A. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Geological Survey. Physiographic Divisions of the Conterminous U. S. 2004. Available online: https://water.usgs.gov/GIS/metadata/usgswrd/XML/physio.xml (accessed on 21 October 2019).
- PRISM Climate Group. Oregon State University, Created 4 February 2004. 2019. Available online: http://www.prism.oregonstate.edu (accessed on 18 December 2019).
- Miller, J.; Safford, H.; Crimmins, M.; Thode, A. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems 2009, 12, 16–32. [Google Scholar] [CrossRef]
- Stephens, S.; Collins, B.; Fettig, C.; Finney, M.; Hoffman, C.; Knapp, E.; North, M.; Safford, H.; Wayman, R. Drought, tree mortality, and wildfire in forests adapted to frequent fire. BioScience 2018, 68, 77–88. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.; Williams, A. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallema, D.; Sun, G.; Caldwell, P.; Norman, S.; Cohen, E.; Liu, Y.; Bladon, K.; McNulty, S. Burned forests impact water supplies. Nat. Commun. 2018, 9, 1307. [Google Scholar] [CrossRef] [Green Version]
- Fortin, M.; Dale, M. Spatial Analysis: A Guide for Ecologists; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System, Open Source Geospatial Foundation Project. 2021. Available online: http://qgis.osgeo.org (accessed on 24 June 2020).
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; ISBN 3-900051-07-0. [Google Scholar]
- National Wildfire Coordinating Group. Size Class of Fire. 2020. Available online: https://www.nwcg.gov/term/glossary/size-class-of-fire (accessed on 24 June 2020).
- Coelho, C.A.S.; Ferro, C.A.T.; Stephenson, D.B. Methods for exploring spatial and temporal variability of extreme events in climate data. J. Clim. 2008, 21, 2072–2092. [Google Scholar] [CrossRef] [Green Version]
- Petrie, M.; Bradford, J.; Lauenroth, W.; Schlaepfer, D.; Andrews, C.; Bell, D. Non-analog increases to air, surface and belowground temperature extremes in the 21st century due to climate change. Clim. Chang. 2020, 163, 2233–2256. [Google Scholar] [CrossRef]
- National Interagency Fire Center. Total Wildland Fires and Acres. 2019. Available online: https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html (accessed on 26 June 2020).
- Van Wagtendonk, J.; van Wagtendonk, K.; Thode, A. Factors associated with the severity of intersecting fires in Yosemite National Park, California, USA. Fire Ecol. 2012, 8, 11–31. [Google Scholar] [CrossRef]
- Lutz, J.; van Wagtendonk, J.; Thode, A.; Miller, J.; Franklin, J. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA. Int. J. Wildland Fire 2009, 18, 765–774. [Google Scholar] [CrossRef]
- Preisler, H.; Brillinger, D.; Burgan, R.; Benoit, J. Probability based models for estimation of wildfire risk. Int. J. Wildland Fire 2004, 13, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Zhu, Z.; Bu, R.; Chen, H.; Feng, Y.; Li, Y.; Hu, Y.; Wang, Z. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landsc. Ecol. 2013, 28, 1989–2004. [Google Scholar] [CrossRef]
- Flannigan, M.; Logan, K.; Amiro, B.; Skinner, W.; Stocks, B. Future area burned in Canada. Clim. Chang. 2005, 72, 1–16. [Google Scholar] [CrossRef]
- Marlon, J.; Bartlein, P.; Gavin, D.; Long, C.; Anderson, R.; Briles, C.; Brown, K.; Colombaroli, D.; Hallett, D.; Power, M.; et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 2012, 109, E535–E543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, K. A spatial database of wildfires in the United States, 1992–2011. Earth Syst. Sci. Data 2014, 6, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Strachan, S.; Daly, C. Testing the daily PRISM air temperature model on semiarid mountain slopes. J. Geophys. Res. Atmos. 2017, 122, 5697–5715. [Google Scholar] [CrossRef]
- Parks, S.; Miller, C.; Holsinger, L.; Baggett, L.; Bird, B. Wildland fire limits subsequent fire occurrence. Int. J. Wildland Fire 2016, 25, 182–190. [Google Scholar] [CrossRef]
- North, M.; Collins, B.; Stephens, S. Using fire to increase the scale, benefits, and future maintenance of fuels treatments. J. For. 2012, 110, 392–401. [Google Scholar] [CrossRef]
- Stephens, S.; Collins, B.; Biber, E.; Fule, P. US federal fire and forest policy: Emphasizing resilience in dry forests. Ecosphere 2016, 7, e01584. [Google Scholar] [CrossRef]
(a) High-Ta months. | ||||||||
---|---|---|---|---|---|---|---|---|
Time Period | Spring | Summer | Fall | Winter | ||||
# obs. | (°C) | # obs. | (°C) | # obs. | (°C) | # obs. | (°C) | |
1992:1999 | 29,541 | 22.8 | 33,485 | 31.6 | 27,878 | 24.9 | 20,147 | 17.1 |
2000:2007 | 32,926 | 24.1 | 29,990 | 31.1 | 29,625 | 25.6 | 19,751 | 17.2 |
2008:2015 | 18,027 | 23.7 | 19,826 | 32.5 | 27,667 | 28.1 | 20,828 | 16.7 |
(b) High-Ta months, fire ignition locations. | ||||||||
Time period | Spring | Summer | Fall | Winter | ||||
# obs. | (°C) | # obs. | (°C) | # obs. | (°C) | # obs. | (°C) | |
1992:1999 | 83 | 25.6 | 318 | 31.9 | 89 | 28.5 | 5 | 21.4 |
2000:2007 | 23 | 27.6 | 213 | 31.2 | 84 | 27.4 | 5 | 18.4 |
2008:2015 | 15 | 29.3 | 175 | 32.1 | 58 | 29.9 | 0 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrie, M.D.; Savage, N.P.; Stephen, H. High and Low Air Temperatures and Natural Wildfire Ignitions in the Sierra Nevada Region. Environments 2022, 9, 96. https://doi.org/10.3390/environments9080096
Petrie MD, Savage NP, Stephen H. High and Low Air Temperatures and Natural Wildfire Ignitions in the Sierra Nevada Region. Environments. 2022; 9(8):96. https://doi.org/10.3390/environments9080096
Chicago/Turabian StylePetrie, Matthew D., Neil P. Savage, and Haroon Stephen. 2022. "High and Low Air Temperatures and Natural Wildfire Ignitions in the Sierra Nevada Region" Environments 9, no. 8: 96. https://doi.org/10.3390/environments9080096
APA StylePetrie, M. D., Savage, N. P., & Stephen, H. (2022). High and Low Air Temperatures and Natural Wildfire Ignitions in the Sierra Nevada Region. Environments, 9(8), 96. https://doi.org/10.3390/environments9080096