Pump-Controlled Plasmonic Random Lasers from Dye-Doped Nematic Liquid Crystals with TiN Nanoparticles in Non-Oriented Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Letokhov, V.S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 1968, 26, 835. [Google Scholar]
- Redding, B.; Choma, M.A.; Cao, H. Speckle-free laser imaging using random laser illumination. Nat. Photonics 2012, 6, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, W.Z.W.; Liu, G.Z.; Zhang, K.; Goldys, E.M.; Dawes, J.M. Dopamine sensing and measurement using threshold and spectral measurements in random lasers. Opt. Express 2015, 24, A85–A91. [Google Scholar] [CrossRef]
- Uppu, R.; Mujumdar, S. Lévy exponents as universal identifiers of threshold and criticality in random lasers. Phys. Rev. A 2014, 90, 025801. [Google Scholar] [CrossRef] [Green Version]
- Wiersma, D. The physics and applications of random laser. Nat. Phys. 2008, 4, 359–367. [Google Scholar] [CrossRef]
- Shi, X.Y.; Liao, Y.M.; Lin, H.Y.; Tsao, P.W.; Wu, M.J.; Lin, S.Y.; Hu, H.H.; Wang, Z.N.; Lin, T.Y.; Lai, Y.C.; et al. Dissolvable and recyclable random lasers. ACS Nano 2017, 11, 7600–7607. [Google Scholar] [CrossRef]
- Cao, H.; Zhao, Y.G.; Ho, S.T.; Seeling, E.W.; Wang, Q.H.; Chang, R.P. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278–2281. [Google Scholar] [CrossRef] [Green Version]
- Frolov, S.V.; Vardeny, Z.V.; Yoshino, K.; Zakhidov, A.; Baughman, R.H. Stimulated emission in high-gain organic media. Phys. Rev. B 1999, 59, R5284. [Google Scholar] [CrossRef]
- Polson, R.C.; Vardeny, Z.V. Random lasing in human tissues. Appl. Phys. Lett. 2004, 85, 1289–1291. [Google Scholar] [CrossRef]
- Cao, M.X.; Zhang, Y.T.; Song, X.X.; Che, Y.L.; Zhang, H.T.; Dai, H.T.; Zhang, G.Z.; Yao, J.Q. Random lasing in a colloidal quantum dot-doped disordered polymer. Opt. Express 2016, 24, 9325–9331. [Google Scholar] [CrossRef]
- Chang, Q.; Shi, X.Y.; Liu, X.; Tong, J.H.; Liu, D.H.; Wang, Z.N. Broadband plasmonic silver nanoflowers for high-performance random lasing covering visible region. Nanophotonics 2017, 6, 1151–1160. [Google Scholar] [CrossRef]
- Wang, L.; Wan, Y.; Shi, L.J.; Zhong, H.Z.; Deng, L.G. Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles. Opt. Express 2016, 24, 17593–17602. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.G.; Fujita, K.; Zong, Y.H.; Murai, S.; Tanaka, K. Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles. Appl. Phys. Lett. 2008, 92, 201112. [Google Scholar] [CrossRef]
- Ferjani, S.; Barna, V.; De Luca, A.; Versace, C.; Scaramuzza, N.; Bartolino, R.; Strangi, G. Thermal behavior of random lasing in dye doped nematic liquid crystals. Appl. Phys. Lett. 2006, 89, 121109. [Google Scholar] [CrossRef]
- Bian, H.T.; Yao, F.F.; Liu, H. Optically controlled random lasing based on photothermal effect in dye-doped nematic liquid crystals. Liq. Cryst. 2014, 41, 1436–1441. [Google Scholar] [CrossRef]
- Li, L.W.; Deng, L.G. Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells. Eur. Phys. J. B 2013, 86, 112. [Google Scholar] [CrossRef]
- Dice, G.D.; Mujumdar, S.; Elezzabi, A.Y. Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser. Appl. Phys. Lett. 2005, 86, 131105. [Google Scholar] [CrossRef]
- Popov, O.; Zilbershtein, A.; Davidov, D. Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength. Appl. Phys. Lett. 2006, 89, 436. [Google Scholar] [CrossRef]
- Ye, L.H.; Liu, B.; Li, F.J.; Feng, Y.Y.; Cui, Y.P.; Lu, Y.Q. The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals. Laser Phys. Lett. 2016, 13, 105001. [Google Scholar] [CrossRef]
- Wan, Y.; Deng, L.G. Recyclable coherent random lasers assisted by plasmonic nanoparticles in DCM-PVA thin films. Opt. Express 2019, 27, 27103–27111. [Google Scholar] [CrossRef]
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press Inc.: New York, NY, USA, 1993; p. 139. [Google Scholar]
- Lee, C.R.; Lin, S.H.; Guo, J.W. Electrically and thermally controllable nanoparticle random laser in a well-aligned dyedoped liquid crystal cell. Opt. Mater. Express 2015, 5, 1469–1481. [Google Scholar] [CrossRef]
- Wiersma, D.S.; Cavalieri, S. A temperature-tunable random laser. Nature 2001, 414, 708–709. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Lin, S.H.; Guo, C.H.; Chang, S.H.; Mo, T.S.; Chu, S.C. All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets. Opt. Express 2010, 18, 2406–2412. [Google Scholar] [CrossRef] [PubMed]
- Perumbilavil, S.; Kauranen, M.; Assanto, G. Magnetic steering of beam-confined random laser in liquid crystals. Appl. Phys. Lett. 2018, 113, 121107. [Google Scholar] [CrossRef]
- Wan, Y.; An, Y.S.; Deng, L.G. Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes. Sci. Rep. 2017, 7, 16185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, S.Y.; Wu, Z.X.; Dong, H.; Ma, L.; Jiao, B.; Ding, L.; Ding, L.P.; Zhang, F.H. The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles. Org. Electron. 2016, 30, 165–170. [Google Scholar] [CrossRef]
- Ye, L.H.; Liu, B.; Zhao, C.; Wang, Y.; Cui, Y.P.; Lu, Y.Q. The electrically and magnetically controllable random laser from dye-doped liquid crystals. J. Appl. Phys. 2014, 116, 053103. [Google Scholar] [CrossRef]
- Andreasen, J.; Cao, H. Spectral behavior of partially pumped weakly scattering random lasers. Opt. Express 2011, 9, 3418–3433. [Google Scholar] [CrossRef]
- Meng, X.G.; Fujita, K.; Murai, S.; Matoba, T.; Tanaka, K. Plasmonically Controlled Lasing Resonance with Metallic-Dielectric Core-Shell Nanoparticles. Nano Lett. 2011, 11, 1374–1378. [Google Scholar] [CrossRef]
- Wang, Z.N.; Shi, X.Y.; Wei, S.J.; Sun, Y.Y.; Wang, Y.R.; Zhou, J.; Shi, J.W.; Liu, D.H. Two-threshold silver nanowire-based random laser with different dye concentrations. Laser Phys. Lett. 2014, 11, 095002. [Google Scholar] [CrossRef]
- Perumbilavil, S.; Piccardi, A.; Barboza, R.; Buchnev, O.; Kauranen, M.; Strangi, G.; Assanto, G. Beaming random lasers with soliton control. Nat. Commun. 2018, 9, 3863. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, S.; Hatae, Y.; Yoshioka, T.; Moritsugu, M.; Ogata, T.; Nonaka, T. Photo-tuning of lasing from a dye-doped cholesteric liquid crystals by photoisomerization of a sugar derivative having plural azobenzene groups. Appl. Phys. Lett. 2006, 88, 103121. [Google Scholar] [CrossRef]
- Ziegler, J.; Djiango, M.; Vidal, C.; Hrelescu, C.; Klar, T.A. Gold nanostars for random lasing enhancement. Opt. Express 2015, 23, 15152. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Subhashree, O.N.N.; Shivakiran, B.B.N. Effect of photonic stop-band on the modes of a weakly scattering DCM-PVA waveguide random laser. Appl. Phys. Lett. 2017, 110, 251104. [Google Scholar] [CrossRef]
- Ye, L.H.; Feng, Y.Y.; Cheng, Z.X.; Wang, C.L.; Lu, C.G.; Lu, Y.Q.; Cui, Y.P. Coherent random lasing from dye aggregates in polydimethylsiloxane thin films. ACS Appl. Mater. Interfaces 2017, 9, 27232–27238. [Google Scholar] [CrossRef]
- Nesrullajev, A.; Avc, N. Oriented and non-oriented textures of nematic liquid crystals: Comparative peculiarities of the thermotropic behavior. Mater. Chem. Phys. 2011, 131, 455–461. [Google Scholar] [CrossRef]
- Ferjani, S.; Barna, V.; De Luca, A.; Versace, C.; Strangi, G. Random lasing in freely suspended dye-doped nematic liquid crystals. Opt. Lett. 2008, 33, 557–559. [Google Scholar] [CrossRef]
- Bian, H.T.; Yao, F.F.; Gao, Y.P.; Pei, Y.B.; Zhang, J.L.; Sun, X.D. Random lasing in unbounded dye-doped nematic liquid crystals. Liq. Cryst. 2016, 43, 581–586. [Google Scholar] [CrossRef]
- Andreasen, J.; Bachelard, N.; Bhaktha, S.B.N.; Cao, H.; Sebbah, P.; Vannsete, C. Partially pumped random lasers. Int. J. Mod. Phys. B 2014, 28, 1430001. [Google Scholar] [CrossRef]
- Leonetti, M.; Conti, C.; Lopez, C. The mode-locking transition of random lasers. Nat. Photonics 2011, 5, 615. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Deng, L. Pump-Controlled Plasmonic Random Lasers from Dye-Doped Nematic Liquid Crystals with TiN Nanoparticles in Non-Oriented Cells. Appl. Sci. 2020, 10, 199. https://doi.org/10.3390/app10010199
Wan Y, Deng L. Pump-Controlled Plasmonic Random Lasers from Dye-Doped Nematic Liquid Crystals with TiN Nanoparticles in Non-Oriented Cells. Applied Sciences. 2020; 10(1):199. https://doi.org/10.3390/app10010199
Chicago/Turabian StyleWan, Yuan, and Luogen Deng. 2020. "Pump-Controlled Plasmonic Random Lasers from Dye-Doped Nematic Liquid Crystals with TiN Nanoparticles in Non-Oriented Cells" Applied Sciences 10, no. 1: 199. https://doi.org/10.3390/app10010199
APA StyleWan, Y., & Deng, L. (2020). Pump-Controlled Plasmonic Random Lasers from Dye-Doped Nematic Liquid Crystals with TiN Nanoparticles in Non-Oriented Cells. Applied Sciences, 10(1), 199. https://doi.org/10.3390/app10010199