Comparison of Current–Voltage Response to Diagnostic X-rays of Five Light-Emitting Diode Strips
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Apparatus and Experimental Setup
2.2. Irradiation and Exposure Settings
3. Results and Discussion
3.1. C–V Response to kVp
3.2. C–V Response to mAs
3.3. C–V Response to SID
3.4. C–V Response to Dose
3.5. Consistency of C–V Response
3.6. Degradation of C–V Response
3.7. Determination of the Optimum LED Strip Colour
3.8. Reproducibility Using Cold White LED Strip
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yukihara, E.; McKeever, S. Optically stimulated luminescence (OSL) dosimetry in medicine. Phys. Med. Biol. 2008, 53, R351. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.; Vanhavere, F.; Boogers, E.; Vandecasteele, J.; De Deene, Y. Medical dosimetry using a RL/OSL prototype. Radiat. Meas. 2014, 71, 359–363. [Google Scholar] [CrossRef]
- Damulira, E.; Yusoff, M.N.S.; Omar, A.F.; Taib, M.; Hartini, N. A Review: Photonic Devices Used for Dosimetry in Medical Radiation. Sensors 2019, 19, 2226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romei, C.; Di Fulvio, A.; Traino, C.A.; Ciolini, R.; d’Errico, F. Characterization of a low-cost PIN photodiode for dosimetry in diagnostic radiology. Phys. Med. 2015, 31, 112–116. [Google Scholar] [CrossRef]
- Paschoal, C.; Souza, D.D.N.; Santo, L. Characterization of three photo detector types for computed tomography dosimetry. World Acad. Sci. Eng. Technol. 2011, 56, 92–95. [Google Scholar] [CrossRef]
- Oliveira, C.N.; Khoury, H.J.; Santos, E.J. PiN photodiode performance comparison for dosimetry in radiology applications. Phys. Med. 2016, 32, 1495–1501. [Google Scholar] [CrossRef]
- Nazififard, M.; Suh, K.Y.; Mahmoudieh, A. Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology. Rev. Sci. Instrum. 2016, 87, 073502. [Google Scholar] [CrossRef]
- Kainka, B. Measure Gamma Rays with a Photodiode. Radiat. Detect. Using BPW34//Elektor Mag. 2011, 6, 22–26. Available online: https://pdfs.semanticscholar.org/9690/cf9481cbc75c1d920c5e9038a9940dd73c66.pdf (accessed on 26 December 2019).
- Oliver, S.M. Silicon Photodiodes for Gamma Ray Detection: First Sensor 2011. Available online: https://www.first-sensor.com/cms/upload/datasheets/gamma-ray-detection.pdf (accessed on 26 December 2019).
- Anđelković, M.S.; Ristić, G.S. Feasibility study of a current mode gamma radiation dosimeter based on a commercial PIN photodiode and a custom made auto-ranging electrometer. Nucl. Technol. Radiat. Prot. 2013, 28, 73–83. [Google Scholar] [CrossRef]
- Andjelković, M.S.; Ristić, G.S. Current mode response of phototransistors to gamma radiation. Radiat. Meas. 2015, 75, 29–38. [Google Scholar] [CrossRef]
- Pejovic, M.M. Application of p-channel power VDMOSFET as a high radiation doses sensor. IEEE Trans. Nucl. Sci. 2015, 62, 1905–1910. [Google Scholar] [CrossRef]
- Santos, L.A.; Araujo, G.G.; Oliveira, F.L.; Silva, E.F., Jr.; Santos, M.A. An alternative method for using bipolar junction transistors as a radiation dosimetry detector in breast cancer treatment. Radiat. Meas. 2014, 71, 407–411. [Google Scholar] [CrossRef]
- Dybek, M.; Kozłowska, B. Evaluation of the applicability of MOSFET detectors in radiotherapy. Radiat. Meas. 2014, 71, 412–415. [Google Scholar] [CrossRef]
- Andjelković, M.S.; Ristić, G.S.; Jakšić, A.B. Using RADFET for the real-time measurement of gamma radiation dose rate. Meas. Sci. Technol. 2015, 26, 025004. [Google Scholar] [CrossRef]
- Hofstetter, M.; Howgate, J.; Sharp, I.D.; Stutzmann, M.; Thalhammer, S. Development and evaluation of gallium nitride-based thin films for x-ray dosimetry. Phys. Med. Biol. 2011, 56, 3215. [Google Scholar] [CrossRef]
- Diab, H.; Ibrahim, A.; El-Mallawany, R. Silicon solar cells as a gamma ray dosimeter. Measurement 2013, 46, 3635–3639. [Google Scholar] [CrossRef]
- Zygmanski, P.; Abkai, C.; Han, Z.; Shulevich, Y.; Menichelli, D.; Hesser, J. Low-cost flexible thin-film detector for medical dosimetry applications. J. Appl. Clin. Med. Phys. 2014, 15, 311–326. [Google Scholar] [CrossRef]
- Chin, P.T.; Welling, M.M.; Meskers, S.C.; Olmos, R.A.V.; Tanke, H.; van Leeuwen, F.W. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1283–1291. [Google Scholar] [CrossRef]
- Robertson, R.; Germanos, M.S.; Li, C.; Mitchell, G.S.; Cherry, S.R.; Silva, M.D. Optical imaging of Cerenkov light generation from positron-emitting radiotracers. Phys. Med. Biol. 2009, 54, N355. [Google Scholar] [CrossRef]
- Nordstrom, R.; Cherry, S.; Azhdarinia, A.; Sevick-Muraca, E.; Van Brocklin, H. Photons across medicine: Relating optical and nuclear imaging. Biomed. Opt. Express 2013, 4, 2751–2762. [Google Scholar] [CrossRef] [Green Version]
- Roussakis, Y.; Zhang, R.; Heyes, G.; Webster, G.; Mason, S.; Green, S.; Pogue, B.; Dehghani, H. Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy. Phys. Med. Biol. 2015, 60, N419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciarrocchi, E.; Belcari, N. Cerenkov luminescence imaging: Physics principles and potential applications in biomedical sciences. EJNMMI Phys. 2017, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanha, K.; Pashazadeh, A.M.; Pogue, B.W. Review of biomedical Čerenkov luminescence imaging applications. Biomed. Opt. Express 2015, 6, 3053–3065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, A.H. Proton displacement damage in light-emitting and laser diodes. IEEE Trans. Nucl. Sci. 2001, 48, 1713–1720. [Google Scholar] [CrossRef]
- Omar, N.I.C.; Hasbullah, N.F.; Rashid, N.K.A.M.; Abdullah, J. Electrical properties of neutron-irradiated silicon and GaAs commercial diodes. In Proceedings of the 2012 IEEE Symposium on Industrial Electronics and Applications (ISIEA), Bandung, Indonesia, 23–26 September 2012. [Google Scholar] [CrossRef]
- Omar, N.I.C.; Hasbullah, N.F.; Rashid, N.K.A.M.; Abdullah, J. Effects on electrical characteristics of commercially available Si and GaAs diodes exposed to californium-252 radiation. In Proceedings of the 2012 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 3–5 July 2012. [Google Scholar] [CrossRef]
- Ali, K.; Khan, S.A.; MatJafri, M. 60Co γ-irradiation effects on electrical characteristics of monocrystalline silicon solar cell. Int. J. Electrochem. Sci. 2013, 8, 7831–7841. Available online: http://www.electrochemsci.org/papers/vol8/80607831.pdf (accessed on 26 December 2019).
- Lischka, H.; Henschel, H.; Kohn, O.; Lennartz, W.; Schmidt, H. Radiation effects in light emitting diodes, laser diodes, photodiodes, and optocouplers. In Proceedings of the RADECS 93, Second European Conference on Radiation and its Effects on Components and Systems, Saint Malo, France, 13–16 September 1993. [Google Scholar] [CrossRef]
- Orlova, K.; Gradoboev, A.; Asanov, I. Gamma degradation of light-emitting diodes based on heterostructures AlGaInP. In Proceedings of the 2012 7th International Forum on Strategic Technology (IFOST), Tomsk, Russia, 18–21 September 2012. [Google Scholar] [CrossRef]
- Nikolić, D.; Vasić-Milovanović, A. Comparative study of gamma and neutron irradiation effects on the silicon solar cells parameters. FME Transactions. 2016, 44, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Paschoal, M.A.; Tonon, C.C.; Spolidório, D.M.; Bagnato, V.S.; Giusti, J.S.; Santos-Pinto, L. Photodynamic potential of curcumin and blue LED against Streptococcus mutans in a planktonic culture. Photodiagnosis Photodyn. Ther. 2013, 10, 313–319. [Google Scholar] [CrossRef]
- Hempstead, J.; Jones, D.P.; Ziouche, A.; Cramer, G.M.; Rizvi, I.; Arnason, S.; Hasan, T.; Celli, J.P. Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models. Sci. Rep. 2015, 5, 10093. [Google Scholar] [CrossRef] [Green Version]
- Beringer, J.; Borer, K.; Mommsen, R.K.; Nickerson, R.B.; Weidberg, A.R.; Monnier, E.; Hou, H.Q.; Lear, K.L. Radiation hardness and lifetime studies of LEDs and VCSELs for the optical readout of the ATLAS SCT. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1999, 435, 375–392. [Google Scholar] [CrossRef] [Green Version]
- Dowell, J.D.; Homer, R.; Kenyon, I.; Mahout, G.; Oglesby, S.; Shaylor, H.; Wilson, J.A.; Nickerson, R.B.; Wastie, R.; Weidberg, A.R. Irradiation tests of photodiodes for the ATLAS SCT readout. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1999, 424, 483–494. [Google Scholar] [CrossRef] [Green Version]
- Bryant, J. Photodiodes and other Light Sensors. LEDs are Photodiodes Too 2014. Available online: https://www.analog.com/en/analog-dialogue/raqs/raq-issue-108.html (accessed on 10 December 2018).
- Stokes, E.; Buckley, D., Jr.; McNulty, T.; Doxsee, D. Layered phosphor coatings for LED devices. Google Patents No. 6,917,057, 12 July 2005. [Google Scholar]
- Lu, C.-H.; Hong, H.-C.; Jagannathan, R. Sol–gel synthesis and photoluminescent properties of cerium-ion doped yttrium aluminium garnet powders. J. Mater. Chem. 2002, 12, 2525–2530. [Google Scholar] [CrossRef]
- Shionoya, S.; Yen, W.M.; Yamamoto, H. Phosphor Handbook; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1420005235. [Google Scholar]
- Paschotta, R. Light-emitting Diodes. The Encyclopedia of Laser Physics and Technology 2008. Available online: https://www.rp-photonics.com/light_emitting_diodes.html (accessed on 7 April 2018).
- Sprawls, P. Physical Principles of Medical Imaging; Medical Physics Publishing Corporation: Madison, WI, USA, 1995; ISBN 0944838545. Available online: http://www.sprawls.org/ppmi2/XRAYPRO/ (accessed on 26 December 2019).
- Hendee, W.R.; Chaney, E.L.; Rossi, R.P. Radiologic Physics, Equipment, and Quality Control; Year Book Medical Publishers, Incorporated: Chicago, IL, USA, 1977; ISBN 0815142285. [Google Scholar]
- Sezdi, M. Dose Optimization for the Quality Control Tests of X-Ray Equipment. In Modern Approaches to Quality Control; Eldin, A.B., Ed.; IntechOpen: Rijeka, Croatia, 2011; Volume 295. [Google Scholar] [CrossRef] [Green Version]
- Santos, E.J.; Oliveira, C.N.; Khoury, H.J. Energy and air kerma dependence of response of a photodiode-based dosimetric system for radioprotection. Radiat. Meas. 2019, 122, 73–79. [Google Scholar] [CrossRef]
- Keister, J.W. Silicon photodiodes for absolute soft x-ray radiometry. Solar Physics and Space Weather Instrumentation II; International Society for Optics and Photonics: San Diego, CA, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, T. Measurement and Detection of Radiation; Taylor & Francis Inc.: Washington, WA, USA, 1995; ISBN 1560323175. [Google Scholar]
- Kelsey, C.A. Essentials of Radiology Physics; Warren H Green, Inc.: Saint Louis, MO, USA, 1985; ISBN 0875273548. [Google Scholar]
- Khan, F.M.; Gibbons, J.P. Khan’s the Physics of Radiation Therapy; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; ISBN 1451182457. [Google Scholar]
- Implementation of the International Code of Practice on Dosimetry in Diagnostic Radiology (TRS 457): Review of Test Results; International Atomic Energy Agency: Vienna, Austria, 2011.
- Christensen, O. Quantum efficiency of the internal photoelectric effect in silicon and germanium. J. Appl. Phys. 1976, 47, 689–695. [Google Scholar] [CrossRef]
- Tugwell, J.; Everton, C.; Kingma, A.; Oomkens, D.; Pereira, G.; Pimentinha, D.; Rouiller, C.A.I.; Stensrud, S.M.; Kjelle, E.; Jorge, J.; et al. Increasing source to image distance for AP pelvis imaging–Impact on radiation dose and image quality. Radiography 2014, 20, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Kubo, T.; Lin, P.-J.P.; Stiller, W.; Takahashi, M.; Kauczor, H.-U.; Ohno, Y.; Hatabu, H. Radiation dose reduction in chest CT: A review. Am. J. Roentgenol. 2008, 190, 335–343. [Google Scholar] [CrossRef]
- Riederer, I.; Zimmer, C.; Pfeiffer, D.; Wunderlich, S.; Poppert, H.; Rummeny, E.J.; Huber, A. Radiation dose reduction in perfusion CT imaging of the brain using a 256-slice CT: 80 mAs versus 160 mAs. Clin. Imaging 2018, 50, 188–193. [Google Scholar] [CrossRef]
- Srour, J.; Palko, J. Displacement damage effects in irradiated semiconductor devices. IEEE Trans. Nucl. Sci. 2013, 60, 1740–1766. [Google Scholar] [CrossRef]
Materials | Emission Wavelength |
---|---|
InGaN/GaN, ZnS | 450–530 nm |
GaP: N | 565 nm |
AlInGaP | 590–620 nm |
GaAsP, GaAsP: N | 610–650 nm |
InGaP | 660–680 nm |
AlGaAs, GaAs | 680–860 nm |
InGaAsP | 1000–1700 nm |
Variable/Parameter | Setting/Exposure | kVp | mAs | SID |
---|---|---|---|---|
Tube voltage/Kilovoltage peak (kVp) | 1 | 40 | 50 | 60 |
2 | 50 | 50 | 60 | |
3 | 70 | 50 | 60 | |
4 | 81 | 50 | 60 | |
5 | 102 | 50 | 60 | |
6 | 109 | 50 | 60 | |
7 | 117 | 50 | 60 | |
Tube current second/Milliampere second (mAs) | 8 | 70 | 0.5 | 60 |
9 | 70 | 5 | 60 | |
10 | 70 | 10 | 60 | |
11 | 70 | 20 | 60 | |
12 | 70 | 25 | 60 | |
13 | 70 | 50 | 60 | |
14 | 70 | 85 | 60 | |
15 | 70 | 100 | 60 | |
16 | 70 | 125 | 60 | |
17 | 70 | 150 | 60 | |
18 | 70 | 200 | 60 | |
19 | 70 | 250 | 60 | |
Source-to-image distance (SID) | 20 | 70 | 50 | 30 |
21 | 70 | 50 | 45 | |
22 | 70 | 50 | 60 | |
23 | 70 | 50 | 75 | |
24 | 70 | 50 | 90 | |
25 | 70 | 50 | 95 | |
26 | 70 | 50 | 100 |
LED Strip Color-Based Ranking | |||||
---|---|---|---|---|---|
Investigated Parameter | Cold White | Warm White | Red | Green | Blue |
1. C–V response to kVp | 2 | 1 | 3 | 5 | 4 |
2. C–V response to mAs | 3 | 5 | 2 | 1 | 4 |
3. C–V response to SID | 1 | 3 | 2 | 4 | 5 |
4. C–V response to Dose | 2 | 5 | 1 | 3 | 4 |
5. Consistency | 1 | 5 | 3 | 2 | 4 |
6. Degradation | 1 | 3 | 5 | 2 | 4 |
Cumulative Rank | 10 | 22 | 16 | 17 | 25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damulira, E.; Yusoff, M.N.S.; Sulaiman, S.; Zulkafli, N.F.H.; Zulkifli, N.A.; Shakir, N.S.A.; Zainun, M.A.; Omar, A.F.; Taib, N.H.M.; Ya Ali, N.k. Comparison of Current–Voltage Response to Diagnostic X-rays of Five Light-Emitting Diode Strips. Appl. Sci. 2020, 10, 200. https://doi.org/10.3390/app10010200
Damulira E, Yusoff MNS, Sulaiman S, Zulkafli NFH, Zulkifli NA, Shakir NSA, Zainun MA, Omar AF, Taib NHM, Ya Ali Nk. Comparison of Current–Voltage Response to Diagnostic X-rays of Five Light-Emitting Diode Strips. Applied Sciences. 2020; 10(1):200. https://doi.org/10.3390/app10010200
Chicago/Turabian StyleDamulira, Edrine, Muhammad Nur Salihin Yusoff, Suharti Sulaiman, Nur Farah Huda Zulkafli, Nur Amiela Zulkifli, Nur Shahirah Ahmad Shakir, Mohamad Azlan Zainun, Ahmad Fairuz Omar, Nur Hartini Mohd Taib, and Nik kamarullah Ya Ali. 2020. "Comparison of Current–Voltage Response to Diagnostic X-rays of Five Light-Emitting Diode Strips" Applied Sciences 10, no. 1: 200. https://doi.org/10.3390/app10010200
APA StyleDamulira, E., Yusoff, M. N. S., Sulaiman, S., Zulkafli, N. F. H., Zulkifli, N. A., Shakir, N. S. A., Zainun, M. A., Omar, A. F., Taib, N. H. M., & Ya Ali, N. k. (2020). Comparison of Current–Voltage Response to Diagnostic X-rays of Five Light-Emitting Diode Strips. Applied Sciences, 10(1), 200. https://doi.org/10.3390/app10010200