Damage Evaluation of Porcelain Insulators with 154 kV Transmission Lines by Various Support Vector Machine (SVM) and Ensemble Methods Using Frequency Response Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Porcelain Insulator Specimen
2.2. Frequency Response Function (FRF)
2.3. Test Methods
2.4. Feature Extration
3. Machine Learning Technique
3.1. Support Vector Machine (SVM)
- : the data closest to the hyperplane among the data of ;
- : the data closest to the hyperplane among the data of .
3.2. Ensemble Method
3.3. Principal Component Analysis (PCA)
4. Analysis and Result
4.1. Binary Linear Separation with SVM
4.2. Nonlinear Separation with a Single SVM
4.3. Nonlinear Separation with Multiple SVMs
4.4. Ensemble Analysis Using Adaboost
5. Conclusions
- A nonlinear classification prediction SVM model was more accurate than a linear classification one, and a combination of three nonlinear SVM models resulted in the development of the most reliable model.
- The ensemble model could obtain more accurate prediction results than the SVM model by combining multiple single classifiers, weighting the classification result errors, and increasing the number of learners. Moreover, when seven learners were used, the prediction accuracy was the highest and the data distribution area could be finely divided.
- The classification of porcelain damage specimens was correct; however, it could be difficult to set the division area because certain data of some internal damage specimens are close to the distribution range of normal data. Therefore, it is necessary to establish a dataset by measuring several types of defects that may occur, in order to more accurately set a damage distribution area and develop a predictive model.
Author Contributions
Funding
Conflicts of Interest
References
- Looms, J.S.T. Introduction. In Insulators for High Voltages, 7th ed.; Peter Peregrinus Ltd.: London, UK, 1988; pp. 1–3. [Google Scholar]
- Vaillancourt, G.H.; Bellerive, J.P.; St-Jean, M.; Jean, C. New live line tester for porcelain suspension insulators on high-voltage power lines. IEEE Trans. Power Deliv. 1994, 9, 208–219. [Google Scholar] [CrossRef]
- Momen, G.; Farzaneh, M. Survey of Micro/Nano Filler Use to Improve Silicone Rubber for Outdoor Insulators. Rev. Adv. Mater. Sci. 2011, 27, 1–13. [Google Scholar]
- Karady, G.G.; Shah, M.; Brown, R.L. Flashover mechanism of silicone rubber insulators used for outdoor insulation. IEEE Trans. Power Deliv. 1995, 10, 1965–1971. [Google Scholar] [CrossRef]
- Choi, I.H.; Kim, T.K.; Yoon, Y.B.; Kim, T.Y.; Nguyen, H.T.; Yi, J.S. A Study on the Life-Time Assessment Ways and Various Failure Types of 154 kV Porcelain Insulators Installed in South Korea. Trans. Electr. Electron. Mater. 2018, 19, 188–194. [Google Scholar] [CrossRef]
- Bardeen, A.W.; Sheadel, J.M. Corrosion as it affects insulator and conductor hardware. In Proceedings of the AIEE Winter General Meeting, New York, NY, USA, 30 January–3 February 1956; pp. 491–501. [Google Scholar]
- Cavallini, A.; Chandrasekar, S.; Montanari, G.C.; Puletti, F. Inferring ceramic insulator pollution by an innovative approach resorting to PD detection. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 23–29. [Google Scholar] [CrossRef]
- Vaillancourt, G.H.; Carignan, S.; Jean, C. Experience with the detection of faulty composite insulators on high-voltage power lines by the electric field measurement method. IEEE Trans. Power Deliv. 1998, 13, 661–666. [Google Scholar] [CrossRef]
- Padma, V.; Raghavan, V.S. Analysis of insulation degradation in Insulators using Partial Discharge analysis. In Proceedings of the 2011 3rd International Conference on Electronics Computer (ICECT), Kanyakumari, India, 8–10 April 2011; pp. 110–114. [Google Scholar]
- Cherney, E.A.; Am, D.E. Development and application of a hot-line suspension insulator tester. IEEE Trans. Power Appar. Syst. 1981, 4, 1525–1528. [Google Scholar] [CrossRef]
- Ha, H.; Han, S.; Lee, J. Fault detection on transmission lines using a microphone array and an infrared thermal imaging camera. IEEE Trans. Instrum. Meas. 2012, 61, 267–275. [Google Scholar] [CrossRef]
- Miao, X.R.; Liu, X.Y.; Chen, J.; Zhuang, S.B.; Fan, J.W.; Jiang, H. Insulator Detection in Aerial Images for Transmission Line Inspection Using Single Shot Multibox Detector. IEEE Access 2019, 7, 9945–9956. [Google Scholar] [CrossRef]
- Jeon, S.H.; Kim, T.Y.; Lee, Y.J.; Shin, J.J.; Choi, I.H.; Son, J.A. Porcelain Suspension Insulator for OHTL: A Comparative Study of New and Used Insulators using 3D-CT. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1654–1659. [Google Scholar] [CrossRef]
- Ryder, S.A. Diagnosing transformer faults using frequency response analysis. IEEE Electr. Insul. Mag. 2003, 19, 16–22. [Google Scholar] [CrossRef]
- Christain, J.; Feser, K. Procedures for detecting winding displacements in power transformer by the transfer function method. IEEE Trans. Power Deliv. 2004, 19, 214–220. [Google Scholar] [CrossRef]
- Miyazaki, S.; Mizutani, Y.; Matsumoto, K.; Nakamura, S. On-Site Diagnosis of Transformer Winding by Frequency Response Analysis. IEEJ Trans. Power Energy 2010, 130, 451–459. [Google Scholar] [CrossRef]
- Miyazaki, S.; Mizutani, Y.; Taguchi, A.; Murakami, J.; Tsuji, N.; Takashima, M.; Kato, O. Diagnosis Criterion of Abnormality of Transformer Winding by Frequency Response Analysis (FRA). Electr. Eng. Jpn. 2017, 201, 25–34. [Google Scholar] [CrossRef]
- Miletiev, R.; Simeonov, I.; Iontchev, E.; Yordanov, R. Time and frequency analysis of the vehicle suspension dynamics. Int. J. Syst. Appl. 2013, 7, 287–294. [Google Scholar]
- Li, J.C.; Dackermann, U.; Xu, Y.L.; Samali, B. Damage identification in civil engineering structures utilizing PCA-compressed residual frequency response functions and neural network ensembles. Struct. Control Health Monit. 2011, 18, 207–226. [Google Scholar] [CrossRef]
- Kim, Y.S.; Shong, K.M.; Jeon, Y.J. A Study on the site vibration for the breakage analysis of glass insulators on the high-speed railway. IEEE Trans. Power Deliv. 2009, 24, 1809–1814. [Google Scholar] [CrossRef]
- Pearson, K. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 2, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Tang, L.Q.; Zhou, L.C.; Liu, Z.J.; Liu, Y.P.; Jiang, Z.Y. Principal Component Analysis Method with Space and Time Windows for Damage Detection. Sensors 2019, 19, 2521. [Google Scholar] [CrossRef] [Green Version]
- Raghu, S.H.; Sriraam, N.J. Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms. Expert Syst. Appl. 2018, 113, 18–32. [Google Scholar] [CrossRef]
- Mantero, P.; Moser, G.; Serpico, S.B. Partially supervised classification of remote sensing images through SVM-based probability density estimation. IEEE Trans. Geosci. Remote Sens. 2005, 43, 559–570. [Google Scholar] [CrossRef]
- Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Rokach, L. Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Comput. Stat. Data Anal. 2009, 53, 4046–4072. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, S.L.; Hsieh, S.H.; Cheng, P.H.; Chen, C.H.; Hsu, K.P.; Lee, I.S.; Wang, Z.; Lai, F. Design Ensemble Machine Learning Model for Breast Cancer Diagnosis. J. Med. Syst. 2011, 36, 2841–2847. [Google Scholar] [CrossRef] [PubMed]
- ES (Technical Standards of KEPCO). Testing Methods for Insulators; Korea Electric Power Corporation: Daejeon, Korea, 2014. [Google Scholar]
- Vapnik, V.; Cortes, C. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar]
- Kavzoglu, T.; Colkesen, I. A kernel functions analysis for support vector machines for land cover classification. Int. J. Appl. Earth Obs. Geoinformation 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Benkaddour, M.K.; Bounoua, A. Feature extraction and classification using deep convolutional neural networks, PCA and SVC for face recognition. Traitement du Signal 2017, 34, 77–91. [Google Scholar] [CrossRef]
- Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 10, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
Categorization | Cristobalite | Alumina | Sum | |
---|---|---|---|---|
Total | 80 | 37 | 117 | |
Normal | 74 | 37 | 111 | |
Defect type | Sub total | 6 | - | 6 |
Porcelain | 4 | - | 4 | |
Internal | 2 | - | 2 |
True Label | Predict Label | Posterior | ||
---|---|---|---|---|
SVM1 | SVM2 | SVM3 | ||
Alumina | ‘Alumina’ | 0.1043 | 0.8955 | 0.0002 |
Cristobalite | ‘Cristobalite’ | 0.9990 | 0.0001 | 0.0009 |
Cristobalite | ‘Cristobalite’ | 0.9990 | 0.0001 | 0.0009 |
Cristobalite | ‘Cristobalite’ | 0.9993 | 0.0006 | 0.0001 |
Cristobalite | ‘Cristobalite’ | 0.9993 | 0.0002 | 0.0005 |
Alumina | ‘Alumina’ | 0.0000 | 0.9899 | 0.0101 |
Cristobalite | ‘Cristobalite’ | 0.9992 | 0.0000 | 0.0008 |
Alumina | ‘Alumina’ | 0.0000 | 0.9936 | 0.0063 |
Defect | ‘Defect’ | 0.0589 | 0.0116 | 0.9295 |
Cristobalite | ‘Cristobalite’ | 0.9986 | 0.0003 | 0.0011 |
Type | Cristobalite | Alumina | Defect | Boundary |
---|---|---|---|---|
Cristobalite | 72 (97.3%) | - | - | 2 (2.7%) |
Alumina | - | 36 (97.3%) | - | 1 (2.7%) |
Defect | - | - | 6 (100%) | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, I.H.; Koo, J.B.; Woo, J.W.; Son, J.A.; Bae, D.Y.; Yoon, Y.G.; Oh, T.K. Damage Evaluation of Porcelain Insulators with 154 kV Transmission Lines by Various Support Vector Machine (SVM) and Ensemble Methods Using Frequency Response Data. Appl. Sci. 2020, 10, 84. https://doi.org/10.3390/app10010084
Choi IH, Koo JB, Woo JW, Son JA, Bae DY, Yoon YG, Oh TK. Damage Evaluation of Porcelain Insulators with 154 kV Transmission Lines by Various Support Vector Machine (SVM) and Ensemble Methods Using Frequency Response Data. Applied Sciences. 2020; 10(1):84. https://doi.org/10.3390/app10010084
Chicago/Turabian StyleChoi, In Hyuk, Ja Bin Koo, Jung Wook Woo, Ju Am Son, Do Yeon Bae, Young Geun Yoon, and Tae Keun Oh. 2020. "Damage Evaluation of Porcelain Insulators with 154 kV Transmission Lines by Various Support Vector Machine (SVM) and Ensemble Methods Using Frequency Response Data" Applied Sciences 10, no. 1: 84. https://doi.org/10.3390/app10010084
APA StyleChoi, I. H., Koo, J. B., Woo, J. W., Son, J. A., Bae, D. Y., Yoon, Y. G., & Oh, T. K. (2020). Damage Evaluation of Porcelain Insulators with 154 kV Transmission Lines by Various Support Vector Machine (SVM) and Ensemble Methods Using Frequency Response Data. Applied Sciences, 10(1), 84. https://doi.org/10.3390/app10010084