Assessment of the Future Climate Change Projections on Streamflow Hydrology and Water Availability over Upper Xijiang River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.2.1. Geo-Spatial Data
2.2.2. Weather Data
2.2.3. Downscaling and Bias-Correction of Global Climate Model (GCM) Data
2.3. Soil and Water Assessment Tool (SWAT)
2.4. Model Calibration and Validation
2.4.1. SUFI-2 Algorithm
2.4.2. Statistical Performance Indices
3. Results
3.1. Sensitivity Analysis (SA)
3.2. Evaluation of LULC and Its Impacts on Streamflow
3.3. Future Projections of Mean Monthly Streamflow
3.4. Projected Changes in Mean Monthly Streamflow
3.5. Water Yield (WYLD) Response to Changing Climate under Future Scenarios
3.6. Limitations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Najafi, M.R.; Moradkhani, H.; Piechota, T.C. Ensemble Streamflow Prediction: Climate signal weighting methods vs. Climate Forecast System Reanalysis. J. Hydrol. 2012, 442–443, 105–116. [Google Scholar] [CrossRef]
- Chanapathi, T.; Thatikonda, S.; Raghavan, S. Analysis of rainfall extremes and water yield of Krishna river basin under future climate scenarios. J. Hydrol. Reg. Stud. 2018, 19, 287–306. [Google Scholar] [CrossRef]
- Anil, A.P.; Ramesh, H. Analysis of climate trend and effect of land use land cover change on Harangi streamflow, South India: A case study. Sustain. Water Resour. Manag. 2017, 3, 257–267. [Google Scholar] [CrossRef]
- Fan, X.; Ma, Z.; Yang, Q.; Han, Y.; Mahmood, R. Land use/land cover changes and regional climate over the Loess Plateau during 2001-2009. Part II: Interrelationship from observations. Clim. Chang. 2015, 129, 441–455. [Google Scholar] [CrossRef] [Green Version]
- Guzha, A.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. J. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A. Land use and climate change. Science 2005, 310, 1625–1626. [Google Scholar] [CrossRef] [Green Version]
- Khoi, D.N.; Nguyen, V.T.; Sam, T.T.; Nhi, P.T. Evaluation on Effects of Climate and Land-Use Changes on Streamflow and Water Quality in the La Buong River Basin, Southern Vietnam. Sustainability 2019, 11, 7221. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Song, S.; Sun, W.; Mu, X.; Wang, S.; Li, J.; Li, Y. Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960–2013. Atmos. Res. 2015, 157, 137–152. [Google Scholar] [CrossRef]
- Ruimin, H.E.; Jianyun, Z.H.; Zhenxin, B.A.; Xiaolin, Y.A.; Guoqing, W.A.; Cuishan, L.I. Response of runoff to climate change in the Haihe River basin. Adv. Water Resour. 2015, 26, 1–9. [Google Scholar]
- Al Aamery, N.; Fox, J.; Snyder, M. Evaluation of climate modeling factors impacting the variance of streamflow. J. Hydrol. 2016, 542, 125–142. [Google Scholar] [CrossRef]
- Chen, Y.; Takeuchi, K.; Xu, C.; Chen, Y.; Xu, Z. Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol. Process. 2006, 20, 2207–2216. [Google Scholar] [CrossRef]
- Watkins, R.; Kolokotroni, M. The London Urban Heat Island–upwind vegetation effects on local temperatures. In Proceedings of the PLEA2012-28th Conference, Opportunities, Limits & Needs towards an Environmentally Responsible Architecture, Lima, Perú, 7–9 November 2012. [Google Scholar]
- Zhang, X.; Dai, Z.; Chu, A.; Du, J. Impacts of relative sea level rise on the shoreface deposition, Shuidong Bay, South China. Environ. Earth Sci. 2014, 71, 3503–3515. [Google Scholar] [CrossRef]
- Khan, A.J.; Koch, M.; Tahir, A.A. Impacts of Climate Change on the Water Availability, Seasonality and Extremes in the Upper Indus Basin (UIB). Sustainability 2020, 12, 1283. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Lilhare, R. Hydrologic sensitivity of Indian sub-continental river basins to climate change. J. Glob. Planet. Chang. 2016, 139, 78–96. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, X.; Wang, H.; Yang, M.; Cai, S. Investigate the Applicability of CMADS and CFSR Reanalysis in Northeast China. Water 2020, 12, 996. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.; Zhang, D.; Guan, Y.; Xie, Y.; Huang, F. Application of SWAT Model with a Modified Groundwater Module to the Semi-Arid Hailiutu River Catchment, Northwest China. Sustainability 2019, 11, 2031. [Google Scholar] [CrossRef] [Green Version]
- Tufekcioglu, M.; Yavuz, M.; Zaimes, G.N.; Dinc, M.; Koutalakis, P.; Tufekcioglu, A. Application of soil water assessment tool (swat) to suppress wildfire at bayam forest, turkey. J. Environ. Biol. 2017, 38, 719. [Google Scholar] [CrossRef]
- Schuol, J.; Abbaspour, K.C.; Yang, H.; Srinivasan, R.; Zehnder, A.J. Modeling blue and green water availability in Africa. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Koutalakis, P.; Zaimes, G.; Ioannou, K.; Iakovoglou, V. Application of the SWAT model on torrents of the Menoikio, Greece. Fresen. Environ. Bull. 2017, 26, 1210–1215. [Google Scholar]
- Wagener, T.; Sivapalan, M.; McDonnell, J.; Hooper, R.; Lakshmi, V.; Liang, X.; Kumar, P. Predictions in ungauged basins as a catalyst for multidisciplinary hydrology. Eos Trans. Am. Geophys. Union 2004, 85, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.; Freund, E.R.; Vaghefi, S.A.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Jin, Y. Calibration of a Distributed Hydrological Model in a Data-Scarce Basin Based on GLEAM Datasets. Water 2020, 12, 897. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Zhao, C.; Jiang, Y.; Ren, L.; Shan, H.; Zhang, L.M.; Zhu, Y.; Chen, T.; Jiang, S.; Yang, X.-L.; et al. Evaluation on uncertainty sources in projecting hydrological changes over the Xijiang River basin in South China. J. Hydrol. 2017, 554, 434–450. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.; Higgitt, D.L.; Chen, C.-T.A.; Han, J.; Sun, H. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Glob. Planet. Chang. 2008, 60, 365–380. [Google Scholar] [CrossRef]
- Zhu, D.H.; Das, S.; Ren, Q.W. Hydrological Appraisal of Climate Change Impacts on the Water Resources of the Xijiang Basin, South China. Water 2017, 9, 793. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ma, Y.; Liu, T.; Luo, M. Climate Change Impacts on Extreme Flows Under IPCC RCP Scenarios in the Mountainous Kaidu Watershed, Tarim River Basin. Sustainability 2020, 12, 2090. [Google Scholar] [CrossRef] [Green Version]
- Vetter, T.; Reinhardt, J.; Flörke, M.; Van Griensven, A.; Hattermann, F.; Huang, S.; Koch, H.; Pechlivanidis, I.G.; Plötner, S.; Seidou, O.; et al. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Clim. Chang. 2017, 141, 419–433. [Google Scholar] [CrossRef]
- Hui, H.; Hong, L.; Yi, O. Flood Characteristics of the Xijiang River Basin in 1959–2008. Adv. Clim. Chang. Res. 2009, 3, 134–138. [Google Scholar]
- Lin, W.; Zhang, L.; Du, D.; Yang, L.; Lin, H.; Zhang, Y.; Li, J. Quantification of land use/land cover changes in Pearl River Delta and its impact on regional climate in summer using numerical modeling. Reg. Environ. Chang. 2009, 9, 75–82. [Google Scholar] [CrossRef]
- Seto, K.C.; Woodcock, C.E.; Song, C.; Huang, X.; Lu, J.; Kaufmann, R.K. Monitoring land-use change in the Pearl River Delta using Landsat TM. Int. J. Remote Sens. 2002, 23, 1985–2004. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, Y.; Chu, Z.; Zhou, J.; Zhang, A.; Guo, J.; Liu, X. Urbanization effects on observed surface air temperature trends in North China. J. Clim. 2008, 21, 1333–1348. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Hu, Q.; Jiang, T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. J. Hydrol. 2008, 355, 106–122. [Google Scholar] [CrossRef]
- Fischer, T.; Gemmer, M.; Su, B.; Scholten, T. Hydrological long-term dry and wet periods in the Xijiang River basin, South China. J. Hydrol. 2013, 17, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Githui, F.; Gitau, W.; Mutua, F.; Bauwens, W. Climate change impact on SWAT simulated streamflow in western Kenya. Int. J. Climatol. 2009, 29, 1823–1834. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction–the ISI-MIP approach. Earth Syst. Dyn. 2013, 4, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Vaghefi, S.A.; Abbaspour, K. Climate Change Toolkit (CCT) User Guide; 2W2E GmbH: Zürich, Switzerland, 2019. [Google Scholar]
- Vaghefi, S.A.; Keykhai, M.; Jahanbakhshi, F.; Sheikholeslami, J.; Ahmadi, A.; Yang, H.; Abbaspour, K.C.; Ahmadi, A. The future of extreme climate in Iran. Sci. Rep. 2019, 9, 1464. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. J. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Rostamian, R.; Jaleh, A.; Afyuni, M.; Mousavi, S.F.; Heidarpour, M.; Jalalian, A.; Abbaspour, K.C. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrol. Sci. J. 2010, 53, 977–988. [Google Scholar] [CrossRef]
- Wang, Y.J.; Meng, X.Y.; Liu, Z.H. Snowmelt Runoff Analysis under Generated Climate Change Scenarios for the Juntanghu River Basin, in Xinjiang, China. Tecnol. Cienc. Del Agua 2016, 7, 41–54. [Google Scholar]
- Dhami, B.; Himanshu, S.K.; Pandey, A.; Gautam, A.K. Evaluation of the SWAT model for water balance study of a mountainous snowfed river basin of Nepal. Environ. Earth Sci. 2018, 77, 21. [Google Scholar] [CrossRef]
- Ayivi, F.; Jha, M.K. Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina using SWAT. Int. Soil Water Conserv. Res. 2018, 6, 203–213. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Daggupati, P.; Pai, N.; Ale, S.; Douglas-Mankin, K.R.; Zeckoski, R.W.; Jeong, J.; Parajuli, P.B.; Saraswat, D.; Youssef, M.A. A recommended calibration and validation strategy for hydrologic and water quality models. Trans. ASABE 2015, 58, 1705–1719. [Google Scholar]
- Beven, K.J. Comment on “Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?” by Jasper A. Vrugt, Cajo JF ter Braak, Hoshin V. Gupta and Bruce A. Robinson. Stoch. Environ. Res. Risk Assess. 2009, 23, 1059–1060. [Google Scholar] [CrossRef]
- Clark, M.P.; Slater, A.; Rupp, D.E.; Woods, R.; Vrugt, J.A.; Gupta, H.V.; Wagener, T.; Hay, L.E. Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Kuczera, G.; Parent, E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm. J. Hydrol. 1998, 211, 69–85. [Google Scholar] [CrossRef]
- Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; DiLuzio, M.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B. Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. Open Hydrol. J. 2008, 2, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Imtiyaz, M.; Isaac, R.; Denis, D. Assessing the performance and uncertainty analysis of the SWAT and RBNN models for simulation of sediment yield in the Nagwa watershed, India. Hydrol. Sci. J. 2014, 59, 351–364. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ghoraba, S.M. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alex. Eng. J. 2015, 54, 583–594. [Google Scholar] [CrossRef] [Green Version]
- Leng, M.; Yu, Y.; Wang, S.; Zhang, Z. Simulating the Hydrological Processes of a Meso-Scale Watershed on the Loess Plateau, China. Water 2020, 12, 878. [Google Scholar] [CrossRef] [Green Version]
- Jun, Q. The Xijiang river basin flood disaster analysis and some flood prevention suggestions. J. GX Water Resour. Hydropower Eng. 2000, 2, 33–35. [Google Scholar]
- Dinguo, L. Combine with the Project of Flood Control of the Xijiang River Basin, Priority to Selection for Hydro-power Construction in Guangxi. J. Hongshui River 1995, 1, 19–23. [Google Scholar]
- Men, B.; Liu, H.; Tian, W.; Wu, Z.; Hui, J. The Impact of Reservoirs on Runoff Under Climate Change: A Case of Nierji Reservoir in China. Water 2019, 11, 1005. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Kalin, L.; Kuang, W.; Tian, H. Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama. J. Hydrol. Process. 2014, 28, 5530–5546. [Google Scholar] [CrossRef]
- Prestele, R.; Alexander, P.; Rounsevell, M.D.A.; Arneth, A.; Calvin, K.; Doelman, J.; Eitelberg, D.A.; Engström, K.; Fujimori, S.; Hasegawa, T.; et al. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison. Glob. Chang. Boil. 2016, 22, 3967–3983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Congalton, R.; Gu, J.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote. Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.; Prestele, R.; Verburg, P.H.; Arneth, A.; Baranzelli, C.; E Silva, F.B.; Brown, C.; Butler, A.; Calvin, K.; Dendoncker, N.; et al. Assessing uncertainties in land cover projections. Glob. Chang. Boil. 2017, 23, 767–781. [Google Scholar] [CrossRef] [Green Version]
- Kay, A.L.; Davies, H.N.; A Bell, V.; Jones, R.G. Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Clim. Chang. 2009, 92, 41–63. [Google Scholar] [CrossRef]
- Li, Y.; Chen, B.; Wang, Z.-G.; Peng, S.-L. Effects of temperature change on water discharge, and sediment and nutrient loading in the lower Pearl River basin based on SWAT modelling. Hydrol. Sci. J. 2011, 56, 68–83. [Google Scholar] [CrossRef] [Green Version]
- Memarian, H.; Balasundram, S.K.; Abbaspour, K.; Talib, J.B.; Sung, C.T.B.; Sood, A.M. SWAT-based hydrological modelling of tropical land-use scenarios. Hydrol. Sci. J. 2014, 59, 1808–1829. [Google Scholar] [CrossRef]
- Mengistu, D.T.; Sorteberg, A. Sensitivity of SWAT simulated streamflow to climatic changes within the Eastern Nile River basin. Hydrol. Earth Syst. Sci. 2012, 16, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Narsimlu, B.; Gosain, A.; Chahar, B.R.; Singh, S.K.; Srivastava, P.K. SWAT model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Environ. Process. 2015, 2, 79–95. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Dietrich, J. Modification of the SWAT model to simulate regional groundwater flow using a multicell aquifer. Hydrol. Process. 2018, 32, 939–953. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. J. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Biondi, D.; De Luca, D.L. Performance assessment of a Bayesian Forecasting System (BFS) for real-time flood forecasting. J. hydrol. 2013, 479, 51–63. [Google Scholar] [CrossRef]
- Gupta, R.D.; Kundu, D. Theory & methods: Generalized exponential distributions. Aust. N. Z. J. Stat. 1999, 41, 173–188. [Google Scholar]
- Cao, Y.; Zhang, J.; Yang, M.; Lei, X.; Guo, B.; Yang, L.; Zeng, Z.; Qu, J. Application of SWAT Model with CMADS Data to Estimate Hydrological Elements and Parameter Uncertainty Based on SUFI-2 Algorithm in the Lijiang River Basin, China. Water 2018, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- Du, F.-H.; Tao, L.; Chen, X.-M.; Yao, H.-X. Runoff Simulation Using SWAT Model in the Middle Reaches of the Dagu River Basin. In Sustainable Development of Water Resources and Hydraulic Engineering in China; Springer: Berlin/Heidelberg, Germany, 2019; pp. 115–126. [Google Scholar]
- Awotwi, A.; Yeboah, F.; Kumi, M. Assessing the impact of land cover changes on water balance components of White Volta Basin in West Africa. Water Environ. J. 2015, 29, 259–267. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef]
- Petpongpan, C.; Ekkawatpanit, C.; Kositgittiwong, D. Climate Change Impact on Surface Water and Groundwater Recharge in Northern Thailand. Water 2020, 12, 1029. [Google Scholar] [CrossRef] [Green Version]
Data Type | Spatial Resolution | Source |
---|---|---|
Digital Elevation Model | 90 m | Shuttle Radar Topography Mission Digital Elevation Model (SRTM-DEM) http://srtm.csi.cgiar.org/ |
Soil Data | 5 km | FAO-UNESCO Global Soil Map http://www.fao.org/nr/land/soils/digital-soil-map-of-the-world/en/ |
Land Use | 500 m | LULC-2001–2010 USGS Land Cover Institute (LCI) https://archive.usgs.gov/archive/sites/landcover.usgs.gov/global_climatology.html |
1000 m | Global Land Cover LULC-2000-Forest Resources and Carbon Emissions (IFORCE) https://forobs.jrc.ec.europa.eu/products/glc2000/products.php | |
300 m | LULC-1995, -2005, and -2015 European Space Agency CCI-LC http://maps.elie.ucl.ac.be/CCI/viewer/download.php | |
Climate | 500 m | (Meteorological Data) Global Climate Models (GCMs) CMIP5 https://pcmdi.llnl.gov/mips/cmip5/ |
- | Observed Precipitation and Temperature Data National Meteorological Information Centre (NMIC) of the China Meteorological Administration (CMA) | |
- | Observed Discharge Data National Meteorological Information Centre (NMIC) of the China Meteorological Administration (CMA) |
Objective Function | LULC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
USGS (2001–2010) | ESA 1995 | ESA 2005 | ESA 2015 | GLC 2000 | ||||||
Cal | Val | Cal | Val | Cal | Val | Cal | Val | Cal | Val | |
R2 | 0.85 | 0.8 | 0.89 | 0.89 | 0.89 | 0.86 | 0.90 | 0.91 | 0.90 | 0.83 |
NSE | 0.84 | 0.87 | 0.88 | 0.82 | 0.88 | 0.85 | 0.89 | 0.86 | 0.83 | 0.77 |
PBIAS | 7.7 | 11.9 | −11.5 | −15.1 | 2.8 | 6.5 | 0.7 | 18.3 | 22.5 | 21.3 |
KGE | 0.89 | 0.87 | 0.87 | 0.79 | 0.93 | 0.90 | 0.95 | 0.81 | 0.71 | 0.75 |
RSR | 0.40 | 0.36 | 0.35 | 0.42 | 0.35 | 0.39 | 0.33 | 0.37 | 0.42 | 0.48 |
P-Factor | 0.64 | 0.71 | 0.67 | 0.83 | 0.73 | 0.69 | 0.64 | 0.48 | 0.68 | 0.58 |
R-Factor | 0.42 | 0.48 | 0.68 | 0.81 | 0.44 | 0.50 | 0.32 | 0.36 | 0.42 | 0.48 |
Objective Function | LULC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
USGS (2001–2010) | ESA 1995 | ESA 2005 | ESA 2015 | GLC 2000 | ||||||
Cal | Val | Cal | Val | Cal | Val | Cal | Val | Cal | Val | |
R2 | 0.80 | 0.83 | 0.88 | 0.86 | 0.83 | 0.76 | 0.83 | 0.83 | 0.82 | 0.84 |
NSE | 0.78 | 0.79 | 0.79 | 0.85 | 0.82 | 0.74 | 0.82 | 0.77 | 0.81 | 0.78 |
PBIAS | 12.1 | 14.8 | −20.2 | −2.6 | 0.8 | 12.8 | 0.8 | 17.2 | 8.1 | 22.2 |
KGE | 0.83 | 0.83 | 0.75 | 0.83 | 0.91 | 0.80 | 0.91 | 0.79 | 0.87 | 0.75 |
RSR | 0.47 | 0.47 | 0.45 | 0.39 | 0.42 | 0.51 | 0.42 | 0.48 | 0.4 | 0.47 |
P-Factor | 0.61 | 0.67 | 0.67 | 0.50 | 0.74 | 0.71 | 0.73 | 0.50 | 0.65 | 0.71 |
R-Factor | 0.47 | 0.54 | 0.82 | 0.44 | 0.51 | 0.56 | 0.51 | 0.42 | 0.48 | 0.56 |
Indices | GFDL-ESM2M | HadGEM2-ES | IPSL-CM5A-LR | MIROC-ESM-CHEM | NorESM1-M |
---|---|---|---|---|---|
R2 | 0.69 | 0.78 | 0.75 | 0.55 | 0.69 |
NSE | −0.50 | −1.33 | −1.20 | −0.80 | −1.02 |
KGE | 0.50 | −0.40 | 0.20 | −0.29 | −1.23 |
PBIAS (%) | 7.3 | 6.9 | 9.5 | 11.08 | 8.5 |
RSR | 1.30 | 1.50 | 1.39 | 1.45 | 1.23 |
Parameters | Fitted Value | Initial Value | Final Value | P-Factor | T-Stat |
---|---|---|---|---|---|
R__CN2.mgt | −0.06 | −0.17 | 0.08 | 0.0001 | −6.02 |
V__ALPHA_BF.gw | 0.259 | 0.152 | 0.269 | 0.78 | 0.281 |
V__GW_DELAY.gw | 76.17 | 44.74 | 111.619 | 1.58 | 0.148 |
V__GW_REVAP.gw | 0.199 | 0.178 | 0.250 | −0.544 | 0.599 |
R__SOL_K(..).sol | 0.357 | 0.059 | 0.365 | 0.22 | 0.829 |
V__ESCO.hru | 0.728 | 0.7155 | 0.855 | −5.24 | 0.0005 |
R__RCHRG_DP.gw | 0.267 | 0.146 | 0.311 | −2.011 | 0.075 |
V__OV_N.hru | 5.01 | 4.25 | 6.99 | −0.536 | 0.6044 |
R__SOL_Z(..).sol | 0.403 | −0.017 | 0.175 | 4.279 | 0.002 |
R__SOL_AWC(..).sol | 0.35 | 0.284 | 0.465 | 0.082 | 0.935 |
LULC Description/Code | LULC Area Percentage | ||||
---|---|---|---|---|---|
USGS (2001–2010) | ESA 1995 | ESA 2005 | ESA 2015 | GLC 2000 | |
Agriculture (AGRL) | 23.552 | 30.23 | 31.17 | 29.523 | 16.67 |
Forest-Mixed (FRST) | 68.416 | 61.28 | 60.80 | 62.271 | 30.139 |
Forest-Deciduous (FRSD) | 0.006 | 1.34 | 1.39 | 1.348 | 34.942 |
Pasture (PAST) | NA | 0.43 | 0.15 | 0.122 | 4.98 |
Orchard (ORCD) | 0.009 | 5.65 | 5.27 | 5.312 | NA |
Wetlands (WETL) | 0.558 | 0.13 | 0.17 | 0.116 | 2.58 |
Residential-Low Density (URLD) | 0.982 | 0.15 | 0.29 | 0.587 | NA |
Water (WATR) | 0.237 | 0.71 | 0.73 | 0.721 | 0.601 |
Forest-Evergreen (FRSE) | 0.45 | NA | NA | NA | NA |
Agriculture Generic (AGRC) | 0.31 | NA | NA | NA | 2.02 |
Range-Grasses (RNGE) | 5.479 | NA | NA | NA | NA |
Meadow Bromgrass (BROM) | NA | NA | NA | NA | 8.04 |
GCMs Scenarios | GFDL-ESM2M | HadGEM2-ES | IPSL-CM5A-LR | MIROC-ESM-CHEM | NorESM1-M |
---|---|---|---|---|---|
Historical | 2433.94 (NA) | 2560.86 (NA) | 2546.93 (NA) | 2574.14 (NA) | 2546.93 (NA) |
RCP-2.6 | 2267.93 (−18.3) | 2458.32 (−8.2) | 2172.80 (−12.9) | 2268.74 (−8.8) | 2791.36 (7.63) |
RCP-4.5 | 2231.61 (−19.5) | 2639.80 (−2.8) | 2204.61 (−10.5) | 2250.32 (−14.6) | 2725.04 (6.46) |
RCP-6.0 | 2306.45 (−14.8) | 2350.47 (−14.7) | 2268.96 (−15.3) | 235.68 (−9.9) | 2635.87 (−2.3) |
RCP-8.5 | 2203.22 (−14.5) | 2516.08 (−8.9) | 1911.05 (−29.05) | 2241.57 (−12.2) | 2692.98 (−3.14) |
Water Balance Components | Depth (mm) |
---|---|
Precipitation | 1865.32 |
Surface Runoff | 58.55 |
Lateral Flow | 13.50 |
Baseflow | 1211.45 |
Evapotranspiration | 365.21 |
Total Water Yield | 1310.86 |
Components | Historical | RCP-2.6 | RCP-4.5 | RCP-6.0 | RCP-8.5 |
---|---|---|---|---|---|
Precipitation (mm) | 1394.77 | 1488 | 1508.51 | 1345.31 | 1477.68 |
Surface Runoff (mm) | 237.42 | 292.23 | 280.04 | 269.32 | 233.05 |
Lateral Flow (mm) | 12.52 | 12.20 | 12.60 | 10.58 | 13.22 |
Baseflow (mm) | 470.82 | 459.04 | 479.53 | 331.06 | 536.61 |
Evapotranspiration (mm) | 624.45 | 674.16 | 684.69 | 686.23 | 642.76 |
Total Water Yield (mm) | 746.53 | 788.73 | 798.53 | 629.68 | 812.20 |
Objective Function | R2 | NSE | PBIAS | KGE | RSR | |||||
---|---|---|---|---|---|---|---|---|---|---|
Cal | Val | Cal | Val | Cal | Val | Cal | Val | Cal | Val | |
Tianr | 0.83 | 0.82 | 0.80 | 0.79 | 8.4 | 13.9 | 0.85 | 0.80 | 0.43 | 0.46 |
Qianjiang | 0.88 | 0.85 | 0.86 | 0.83 | 9.04 | 14.62 | 0.87 | 0.82 | 0.37 | 0.40 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touseef, M.; Chen, L.; Masud, T.; Khan, A.; Yang, K.; Shahzad, A.; Wajid Ijaz, M.; Wang, Y. Assessment of the Future Climate Change Projections on Streamflow Hydrology and Water Availability over Upper Xijiang River Basin, China. Appl. Sci. 2020, 10, 3671. https://doi.org/10.3390/app10113671
Touseef M, Chen L, Masud T, Khan A, Yang K, Shahzad A, Wajid Ijaz M, Wang Y. Assessment of the Future Climate Change Projections on Streamflow Hydrology and Water Availability over Upper Xijiang River Basin, China. Applied Sciences. 2020; 10(11):3671. https://doi.org/10.3390/app10113671
Chicago/Turabian StyleTouseef, Muhammad, Lihua Chen, Tabinda Masud, Aziz Khan, Kaipeng Yang, Aamir Shahzad, Muhammad Wajid Ijaz, and Yan Wang. 2020. "Assessment of the Future Climate Change Projections on Streamflow Hydrology and Water Availability over Upper Xijiang River Basin, China" Applied Sciences 10, no. 11: 3671. https://doi.org/10.3390/app10113671
APA StyleTouseef, M., Chen, L., Masud, T., Khan, A., Yang, K., Shahzad, A., Wajid Ijaz, M., & Wang, Y. (2020). Assessment of the Future Climate Change Projections on Streamflow Hydrology and Water Availability over Upper Xijiang River Basin, China. Applied Sciences, 10(11), 3671. https://doi.org/10.3390/app10113671