Discrete Element Analysis of the Strength Anisotropy of Fiber-Reinforced Sands Subjected to Direct Shear Load
Abstract
:1. Introduction
2. DEM Simulation of Direct Shear Test
2.1. Development of PFC3D Model
2.2. Modeling Contact in the Samples
2.2.1. Linear Model
2.2.2. Rolling Resistance Linear Model
2.2.3. Linear Parallel-Bond Model
2.3. Calibration of PFC3D Model
3. Results and Discussion
3.1. Shear Stress–Strain Analysis
3.2. Microscopic Observations
3.2.1. Characterization of Contact Networks and Force Transmission
3.2.2. Particles Displacement Vector
3.2.3. Average Normal Contact Force around Fibers
3.2.4. Coordination Number for Sand–Fiber Contact
3.2.5. Fiber Tensile Force
3.2.6. Energy Storage and Dissipation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Al Adili, A.; Azzam, R.; Spagnoli, G.; Schrader, J. Strength of soil reinforced with fiber materials (Papyrus). Soil Mech. Found. Eng. 2012, 48, 241–247. [Google Scholar] [CrossRef]
- Santoni, R.L.; Tingle, J.S.; Webster, S.L. Engineering Properties of Sand-Fiber Mixtures for Road Construction. J. Geotech. Geoenviron. Eng. 2001, 127, 258–268. [Google Scholar] [CrossRef]
- Attom, M.F.; Al-Tamimi, A.K. Effects of polypropylene fibers on the shear strength of sandy soil. Int. J. Geosci. 2010, 1, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Zaimoglu, A.S.; Yetimoglu, T. Strength behavior of fine grained soil reinforced with randomly distributed polypropylene fibers. Geotech. Geol. Eng. 2012, 30, 197–203. [Google Scholar] [CrossRef]
- Anagnostopoulos, C.A.; Papaliangas, T.T.; Konstantinidis, D.; Patronis, C. Shear strength of sands reinforced with polypropylene fibers. Geotech. Geol. Eng. 2013, 31, 401–423. [Google Scholar] [CrossRef]
- Shao, W.; Cetin, B.; Li, Y.; Li, J.; Li, L. Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber. Geotech. Geol. Eng. 2014, 32, 901–910. [Google Scholar] [CrossRef]
- Noorzad, R.; Zarinkolaei, S.T.G. Comparison of mechanical properties of fiber-reinforced sand under triaxial compression and direct shear. Open Geosci. 2015, 7. [Google Scholar] [CrossRef]
- Ateş, A. Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Compos. Part B Eng. 2016, 96, 295–304. [Google Scholar] [CrossRef]
- Eldesouky, H.M.; Morsy, M.M.; Mansour, M.F. Fiber-reinforced sand strength and dilation characteristics. Ain Shams Eng. J. 2016, 7, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Yixian, W.; Panpan, G.; Shengbiao, S.; Haiping, Y.; Binxiang, Y. Study on strength influence mechanism of fiber-reinforced expansive soil using jute. Geotech. Geol. Eng. 2016, 34, 1079–1088. [Google Scholar] [CrossRef]
- Gray, D.H.; Ohashi, H. Mechanics of Fiber Reinforcement in Sand. J. Geotech. Eng. 1983, 109, 335–353. [Google Scholar] [CrossRef]
- Waldron, L.J. The Shear Resistance of Root-Permeated Homogeneous and Stratified Soil. J. Soil Sci. Soc. Am. 1977, 41, 843–849. [Google Scholar] [CrossRef]
- Maher, M.H.; Gray, D.H. Static Response of Sands Reinforced with Randomly Distributed Fibers. J. Geotech. Eng. 1990, 116, 1661–1677. [Google Scholar] [CrossRef]
- Ranjan, G.; Vasan, R.; Charan, H. Probabilistic analysis of randomly distributed fiber-reinforced soil. J. Geotech. Eng. 1996, 122, 419–426. [Google Scholar] [CrossRef]
- Zornberg, J. Discrete framework for limit equilibrium analysis of fibre-reinforced soil. Géotechnique 2002, 52, 593–604. [Google Scholar] [CrossRef]
- Shukla, S.; Sivakugan, N.; Singh, A. Analytical model for fiber-reinforced granular soils under high confining stresses. J. Mater. Civ. Eng. 2010, 22, 935–942. [Google Scholar] [CrossRef]
- Babu, G.S.; Vasudevan, A.; Haldar, S. Numerical simulation of fiber-reinforced sand behavior. Geotext. Geomembr. 2008, 26, 181–188. [Google Scholar] [CrossRef]
- Lobo-Guerrero, S.; Vallejo, L.E. Fibre-reinforcement of granular materials: DEM visualisation and analysis. Geomech. Geoengin. Int. J. 2010, 5, 79–89. [Google Scholar] [CrossRef]
- Ibraim, E.; Camenen, J.F.; Diambra, A.; Kairelis, K.; Visockaite, L.; Consoli, N.C. Energy efficiency of fibre reinforced soil formation at small element scale: Laboratory and numerical investigation. Geotext. Geomembr. 2018, 46, 497–510. [Google Scholar] [CrossRef]
- Bourrier, F.; Kneib, F.; Chareyre, B.; Fourcaud, T. Discrete modeling of granular soils reinforcement by plant roots. Ecol. Eng. 2013, 61, 646–657. [Google Scholar] [CrossRef]
- Mao, Z.; Yang, M.; Bourrier, F.; Fourcaud, T. Evaluation of root reinforcement models using numerical modelling approaches. Plant Soil 2014, 381, 249–270. [Google Scholar] [CrossRef]
- Soriano, I.; Ibraim, E.; Ando, E.; Diambra, A.; Laurencin, T.; Moro, P.; Viggiani, G. 3D fibre architecture of fibre-reinforced sand. Granular Matter 2017, 19, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalowski, R. Limit analysis with anisotropic fibre-reinforced soil. Geotechnique 2008, 58, 489–501. [Google Scholar] [CrossRef]
- Diambra, A.; Russell, A.R.; Ibraim, E.; Muir Wood, D.J.G. Determination of fibre orientation distribution in reinforced sands. Geotechnique 2007, 57, 623–628. [Google Scholar] [CrossRef]
- Sadek, S.; Najjar, S.S.; Freiha, F. Shear strength of fiber-reinforced sands. J. Geotech. Geoenvironmental Eng. 2010, 136, 490–499. [Google Scholar] [CrossRef]
- Chen, R.H.; Chi, P.C.; Wu, T.C.; Ho, C.C. Shear strength of continuous-filament reinforced sand. J. Geoengin. 2011, 6, 99–107. [Google Scholar]
- Kanchi, G.M.; Neeraja, V.; Sivakumar Babu, G. Effect of anisotropy of fibers on the stress-strain response of fiber-reinforced soil. Int. J. Geomech. 2014, 15, 06014016. [Google Scholar] [CrossRef]
- Neeraja, V.; Geetha Manjari, K.; Sivakumar Babu, G. Numerical analysis of effect of orientation of fibers on stress–strain response of fiber reinforced soil. Int. J. Geotech. Eng. 2014, 8, 328–334. [Google Scholar] [CrossRef]
- Hejazi, S.M.; Baghulizadeh, A.R.; Nateghi, M.; Mardani, M. Shear modeling of polypropylene-fiber-reinforced soil composite using electrical conductivity contour technique. J. Ind. Text. 2015, 45, 133–151. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D. A discrete numerical model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Mahmud, S. Effect of Particle Size Distribution and Packing Characteristics on Railroad Ballast Shear Strength: A Numerical Study Using the Discrete Element Method. Master’s Thesis, Boise State University, Boise, ID, USA, 2017. [Google Scholar]
- Darvishi, A.; Erken, A. Effect of Polypropylene Fiber on Shear Strength Parameters of Sand. In Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering, Budapest, Hungary, 8–10 April 2018. [Google Scholar]
- Nguyen, T.T.; Indraratna, B. Hydraulic behaviour of parallel fibres under longitudinal flow: A numerical treatment. Can. Geotech. J. 2016, 53, 1081–1092. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Indraratna, B.; Rujikiatkamjorn, C. A numerical investigation into the transverse permeability of fibrous geomaterials. In Proceedings of the 19th International conference on soil mechanics and geotechnical engineering ICSMGE, Seoul, Korea, 17–22 September 2017. [Google Scholar]
- Ngo, N.T.; Indraratna, B.; Rujikiatkamjorn, C. DEM simulation of the behaviour of geogrid stabilised ballast fouled with coal. Comput. Geotech. 2014, 55, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Meguid, M. Effect of particle shape on the response of geogrid-reinforced systems: Insights from 3D discrete element analysis. Geotext. Geomembr. 2018, 46, 685–698. [Google Scholar] [CrossRef]
- Wang, Z.; Jacobs, F.; Ziegler, M. Experimental and DEM investigation of pull-out behaviour of geogrid embedded in granular soil. In Proceedings of the 10th International Conference on Geosynthetics, Berlin, Germany, 21–25 September 2014. [Google Scholar]
- Yang, H.; Xu, W.J.; Sun, Q.C.; Feng, Y. Study on the meso-structure development in direct shear tests of a granular material. Powder Technol. 2017, 314, 129–139. [Google Scholar] [CrossRef]
- Cui, L.; O’sullivan, C. Exploring the macro-and micro-scale response of an idealised granular material in the direct shear apparatus. Geotechnique 2006, 56, 455–468. [Google Scholar] [CrossRef]
- Wang, J.; Gutierrez, M. Discrete element simulations of direct shear specimen scale effects. Géotechnique 2010, 60, 395. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Zhao, J. Evaluation on failure of fiber-reinforced sand. J. Geotech. Geoenvironmental Eng. 2012, 139, 95–106. [Google Scholar] [CrossRef]
- Lai, H.J.; Zheng, J.J.; Zhang, J.; Zhang, R.J.; Cui, L. DEM analysis of “soil”-arching within geogrid-reinforced and unreinforced pile-supported embankments. Comput. Geotech. 2014, 61, 13–23. [Google Scholar] [CrossRef]
- Tang, C.S.; Shi, B.; Zhao, L.Z.J.G. Interfacial shear strength of fiber reinforced soil. Geotext. Geomembr. 2010, 28, 54–62. [Google Scholar] [CrossRef]
- Shah, S.G.; Bhogayata, A.C.; Shukla, S.K. Feasibility of Utilization of Metalized Plastic Waste in Cohesionless Soil. In Proceedings of the International Congress and Exhibition” Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”, Sharm El Sheikh, Egypt, 15–17 July 2017; pp. 49–54. [Google Scholar]
Parameters | Value |
---|---|
Density of sand particle/(kg/m3) | 2690 |
Effective modulus of sand particle/Pa | 5e7 |
Normal-to-shear stiffness ratio of sand particle | 1 |
Friction coefficient of sand particle | 0.2 |
Rolling resistance coefficient of sand particle | 0.25 |
Density of fiber particle/(kg/m3) | 910 |
Normal stiffness of fiber particle/(N/m) | 5e4 |
Normal-to-shear stiffness ratio of fiber particle | 1 |
Parallel bond normal stiffness of fiber particle/(N/m) | 1e11 |
Parallel bond stiffness ratio of fiber particle | 1 |
Tensile strength of fiber particle/Pa | 1e12 |
Cohesion of fiber particle/Pa | 1e12 |
Friction coefficient of sand–fiber contacts | 0.90 |
Friction coefficient of fiber–fiber contacts | 0.90 |
Damping coefficient | 0.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, L.; Nie, L.; Xu, Y. Discrete Element Analysis of the Strength Anisotropy of Fiber-Reinforced Sands Subjected to Direct Shear Load. Appl. Sci. 2020, 10, 3693. https://doi.org/10.3390/app10113693
Gong L, Nie L, Xu Y. Discrete Element Analysis of the Strength Anisotropy of Fiber-Reinforced Sands Subjected to Direct Shear Load. Applied Sciences. 2020; 10(11):3693. https://doi.org/10.3390/app10113693
Chicago/Turabian StyleGong, Linxian, Lei Nie, and Yan Xu. 2020. "Discrete Element Analysis of the Strength Anisotropy of Fiber-Reinforced Sands Subjected to Direct Shear Load" Applied Sciences 10, no. 11: 3693. https://doi.org/10.3390/app10113693
APA StyleGong, L., Nie, L., & Xu, Y. (2020). Discrete Element Analysis of the Strength Anisotropy of Fiber-Reinforced Sands Subjected to Direct Shear Load. Applied Sciences, 10(11), 3693. https://doi.org/10.3390/app10113693