Authentication of Sorrento Walnuts by NIR Spectroscopy Coupled with Different Chemometric Classification Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Dataset
2.2. Chemometric Tools
2.2.1. Partial Least Squares Discriminant Analysis (PLS-DA)
2.2.2. Sequential and Orthogonalized Partial Least Squares Linear Discriminant Analysis (SO-PLS-LDA)
- X1 is used to estimate y by PLS. Scores Tx1 and y-residuals e are calculated.
- X2 is orthogonalized with respect to Tx1, obtaining X2orth
- X2,orth is used to estimate e by PLS.
- The equation y = X1b + X2c + f is solved (b and c being the regression coefficients and f the residuals).
2.2.3. Sequential and Orthogonalized Covariance Selection Linear Discriminant Analysis (SO-CovSel-LDA)
- Variables in X1 are selected by CovSel, obtaining the reduced matrix X1sel
- X1sel is used to predict y by ordinary least squares
- X2 is orthogonalized with respect to X1sel, obtaining X2orth
- Variables in X2orth are selected by CovSel, obtaining the reduced matrix X2orth,sel
- X2orth,sel is used to estimate the residuals from step 2
- The equation y = X1b + X2c + f is solved (b and c being the regression coefficients and f the residuals).
3. Results
3.1. PLS-DA Analysis of NIR Spectra Collected on the Shell
3.2. PLS-DA Analysis of NIR Spectra Collected on the Kernel
3.3. Multi-Block Analysis
3.3.1. SO-PLS-LDA Analysis
3.3.2. SO-CovSel-LDA Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Hayes, D.; Angove, M.J.; Tucci, J.; Dennis, C. Walnuts (Juglans regia) Chemical Composition and Research in Human Health. Crit. Rev. Food Sci. Nutr. 2016, 56, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Foroni, I.; Woeste, K.; Monti, L.M.; Rao, R. Identification of Sorrento walnut using simple sequence repeats (SSRs). Genet. Resour. Crop Evol. 2007, 54, 1081–1094. [Google Scholar] [CrossRef]
- Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap–Orbitrap mass spectrometry. Food Chem. 2014, 152, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, F.; Marhuenda, J.; Zafrilla, P.; Villaño, D.; Martínez-Cachá, A.; Tejada, L.; Mulero, J. High-performance liquid chromatography-diode array detector determination and availability of phenolic compounds in 10 genotypes of walnuts. Int. J. Food Prop. 2017, 20, 1074–1084. [Google Scholar] [CrossRef] [Green Version]
- Grace, M.H.; Warlick, C.W.; Neff, S.A.; Lila, M.A. Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS. Food Chem. 2014, 158, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Bendini, A.; Cerretani, L.; Malaguti, D.; Cozzolino, E.; Caboni, M.F. Capillary gas chromatography analysis of lipid composition and evaluation of phenolic compounds by micellar electrokinetic chromathography in Italian walnut (Juglans regia L.): Irrigation and fertilization influence. J. Food Qual. 2009, 32, 262–281. [Google Scholar] [CrossRef]
- Fan, F.; Li, H.; Xu, Y.; Liu, Y.; Zheng, Z.; Kan, H. Thermal behaviour of walnut shells by thermogravimetry with gas chromatography–mass spectrometry analysis. R. Soc. Open Sci. 2018, 5, 180331. [Google Scholar] [CrossRef] [Green Version]
- Juranović Cindrić, I.; Zeiner, M.; Hlebec, D. Mineral Composition of Elements in Walnuts and Walnut Oils. Int. J. Environ. Res. Public Health 2018, 15, 2674. [Google Scholar] [CrossRef] [Green Version]
- Foroni, I.; Rao, R.; Woeste, K.; Gallitelli, M. Characterisation of Juglans regia L. with SSR markers and evaluation of genetic relationships among cultivars and the Sorrento landrace. J. Hortic. Sci. Biotech. 2005, 80, 49–53. [Google Scholar] [CrossRef]
- Ercisli, S.; Sayinci, B.; Kara, M.; Yildiz, C.; Ozturk, I. Determination of size and shape features of walnut (Juglans regia L.) cultivars using image processing. Sci. Hortic. 2012, 133, 47–55. [Google Scholar] [CrossRef]
- Sinesio, F.; Moneta, E. Sensory evaluation of walnut fruit. Food Qual. Prefer. 1997, 8, 35–43. [Google Scholar] [CrossRef]
- Sampaio, P.S.; Castanho, A.; Almeida, A.S.; Oliveira, J.; Brites, C. Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods. Eur. Food Res. Technol. 2020, 246, 527–537. [Google Scholar] [CrossRef]
- Biancolillo, A.; Firmani, P.; Bucci, R.; Magrì, A.; Marini, F. Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy. Microchem. J. 2019, 145, 252–258. [Google Scholar] [CrossRef]
- Huang, J.; Ren, G.; Sun, Y.; Jin, S.; Li, L.; Wang, Y.; Ning, J.; Zhang, Z. Qualitative discrimination of Chinese dianhong black tea grades based on a handheld spectroscopy system coupled with chemometrics. Food Sci. Nutr. 2020, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firmani, P.; De Luca, S.; Bucci, R.; Marini, F.; Biancolillo, A. Near infrared (NIR) spectroscopy-based classification for the authentication of Darjeeling black tea. Food Control 2019, 100, 292–299. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Morais, C.L.M.; Lima, K.M.G.; Leite, G.W.P.; Oliveira, G.S.; Casagrande, I.P.; Santos Neto, J.P.; Teixeira, G.H.A. Using Intact Nuts and Near Infrared Spectroscopy to Classify Macadamia Cultivars. Food Anal. Meth. 2018, 11, 1857–1866. [Google Scholar] [CrossRef] [Green Version]
- Biancolillo, A.; De Luca, S.; Bassi, S.; Roudier, L.; Bucci, R.; Magrì, A.D.; Marini, F. Authentication of an Italian PDO hazelnut (“Nocciola Romana”) by NIR spectroscopy. Environ. Sci. Pollut. Res. 2018, 25, 28780–28786. [Google Scholar] [CrossRef]
- Borraz-Martínez, S.; Boqué, R.; Simó, J.; Mestre, M.; Gras, A. Development of a methodology to analyze leaves from Prunus dulcis varieties using near infrared spectroscopy. Talanta 2019, 204, 320–328. [Google Scholar] [CrossRef]
- Firmani, P.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of Avola almonds by near infrared (NIR) spectroscopy and chemometrics. J. Food Compos. Anal. 2019, 82, 103235. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F. Chemometrics Applied to Plant Spectral Analysis. In Vibrational Spectroscopy for Plant Varieties and Cultivars Characterization, Comprehensive Analytical Chemistry; Lopes, J., Sousa, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–104. [Google Scholar]
- Nogales-Bueno, J.; Feliz, L.; Baca-Bocanegra, B.; Hernández-Hierro, J.M.; Heredia, F.J.; Barroso, J.M.; Rato, A.E. Comparative study on the use of three different near infrared spectroscopy recording methodologies for varietal discrimination of walnuts. Talanta 2020, 206, 120189. [Google Scholar] [CrossRef]
- Lee, K.-M.; Jeon, J.-Y.; Lee, B.-J.; Lee, H.; Choi, H.-K. Application of metabolomics to quality control of natural product derived medicines. Biomol. Ther. 2017, 25, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.; Liland, K.H.; Kvaal, K.; Risvik, E.; Biancolillo, A.; Scholderer, J.; Nørskov, S.; Næs, T. Mining online community data: The nature of ideas in online communities. Food Qual. Prefer. 2017, 62, 246–256. [Google Scholar] [CrossRef]
- dos Santos, A.; Oumar, Z.; Arnhold, A.; da Silva, N.; Oliveira Silva, C.; Zanetti, R. Multispectral characterization, prediction and mapping of Thaumastocoris peregrinus (Hemiptera: Thamascoridae) attack in Eucalyptus plantations using remote sensing. J. Spat. Sci. 2017, 62, 127–137. [Google Scholar]
- Marzetti, E.; Picca, A.; Marini, F.; Biancolillo, A.; Coelho-Junior, H.J.; Gervasoni, J.; Bossola, M.; Cesari, M.; Onder, G.; Landi, F.; et al. Inflammatory signatures in older persons with physical frailty and sarcopenia: The frailty “cytokinome” at its core. Exp. Gerontol. 2019, 122, 129–138. [Google Scholar] [CrossRef]
- Di Donato, F.; Di Cecco, V.; Torricelli, R.; D’Archivio, A.A.; Di Santo, M.; Albertini, E.; Veronesi, F.; Garramone, R.; Aversano, R.; Marcantonio, G.; et al. Discrimination of Potato (Solanumtuberosum L.) Accessions Collected in Majella National Park (Abruzzo, Italy) Using Mid-Infrared Spectroscopy and Chemometrics Combined with Morphological and Molecular Analysis. Appl. Sci. 2020, 10, 1630. [Google Scholar] [CrossRef] [Green Version]
- De Luca, S.; Ciotoli, E.; Biancolillo, A.; Bucci, R.; Magrì, A.D.; Marini, F. Simultaneous quantification of caffeine and chlorogenic acid in coffee green beans and varietal classification of the samples by HPLC-DAD coupled with chemometrics. Environ. Sci. Pollut. Res. 2018, 25, 28748–28759. [Google Scholar] [CrossRef]
- Campmajó, G.; Saez-Vigo, R.; Saurina, J.; Núñez, O. High-performance liquid chromatography with fluorescence detection fingerprinting combined with chemometrics for nut classification and the detection and quantitation of almond-based product adulterations. Food Control 2020, 114, 107265. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J.A.M.; Câmara, J.S. Current trends and recent advances on food authenticity technologies and chemometric approaches. Trends Food Sci. Technol. 2019, 85, 163–176. [Google Scholar] [CrossRef]
- Biancolillo, A.; Måge, I.; Næs, T. Combining SO-PLS and linear discriminant analysis for multi-block classification. Chemom. Intell. Lab. 2015, 141, 58–67. [Google Scholar] [CrossRef]
- Biancolillo, A.; Marini, F.; Roger, J.-M. SO-CovSel: A novel method for variable selection in a multiblock framework. J. Chemom. 2020, 34, e3120. [Google Scholar] [CrossRef]
- Picca, A.; Ponziani, F.R.; Calvani, R.; Marini, F.; Biancolillo, A.; Coelho-Junior, H.J.; Gervasoni, J.; Primiano, A.; Putignani, L.; Del Chierico, F.; et al. Gut microbial, inflammatory and metabolic signatures in older people with physical frailty and sarcopenia: Results from the BIOSPHERE study. Nutrients 2020, 12, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biancolillo, A.; Marini, F.; D’Archivio, A.A. Geographical discrimination of red garlic (Allium sativum L.) using fast and non-invasive Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) spectroscopy combined with chemometrics. J. Food Compos. Anal. 2020, 86, 103351. [Google Scholar] [CrossRef]
- Schiavone, S.; Marchionni, B.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of Grappa (Italian grape marc spirit) by Mid and Near Infrared spectroscopies coupled with chemometrics. Vib. Spectrosc. 2020, 107, 103040. [Google Scholar] [CrossRef]
- Biancolillo, A.; Boqué, R.; Cocchi, M.; Marini, F. Data Fusion strategies in food analysis. In Data Handling in Science and Technology; Cocchi, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 31, pp. 271–310. [Google Scholar]
- Snee, R.D. Validation of regression models: Methods and examples. Technometrics 1977, 19, 415–428. [Google Scholar] [CrossRef]
- Firmani, P.; Nardecchia, A.; Nocente, F.; Gazza, L.; Marini, F.; Biancolillo, A. Multi-block classification of Italian semolina based on Near Infrared Spectroscopy (NIR) analysis and alveographic indices. Food Chem. 2020, 309, 125677. [Google Scholar] [CrossRef]
- Ståhle, L.; Wold, S. Partial least squares analysis with cross-validation for the two-class problem: A Monte Carlo study. J. Chemom. 1987, 1, 185–196. [Google Scholar] [CrossRef]
- Sjöström, M.; Wold, S.; Söderström, B. PLS discriminate plots. In Pattern Recognition in Practice; Kanal, E.S.H.N., Ed.; Elsevier: Amsterdam, The Netherlands, 1986; pp. 461–470. [Google Scholar]
- Biancolillo, A.; Marini, F. Chemometric methods for spectroscopy-based pharmaceutical analysis. Front. Chem. 2018, 6, 576. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemom. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- Martens, H.; Naes, T. Multivariate Calibration; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Geladi, P.; Kowalski, P.B. Partial least squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Kemsley, E.K. Discriminant analysis of high-dimensional data: A comparison of principal components analysis and partial least squares data reduction methods. Chemometr. Intell. Lab. 1996, 33, 47–61. [Google Scholar] [CrossRef]
- Nocairi, H.; Qannari, E.M.; Vigneau, E.; Bertrand, D. Discrimination on latent components with respect to patterns. Application to multicollinear data. Comput. Stat. Data Anal. 2005, 48, 139–147. [Google Scholar] [CrossRef]
- Indahl, U.G.; Martens, H.; Næs, T. From dummy regression to prior probabilities in PLS-DA. J. Chemometr. 2007, 21, 529–536. [Google Scholar] [CrossRef]
- Pérez, N.F.; Ferré, J.; Boqué, R. Calculation of the reliability of classification in discriminant partial least-squares binary classification. Chemometr. Intell. Lab. 2009, 95, 122–128. [Google Scholar] [CrossRef]
- Næs, T.; Tomic, O.; Mevik, B.H.; Martens, H. Path modelling by sequential PLS regression. J. Chemometr. 2011, 25, 28–40. [Google Scholar] [CrossRef]
- Biancolillo, A.; Næs, T. The sequential and orthogonalised PLS regression (SO-PLS) for multi-block regression: Theory, examples and extensions. In Data Handling in Science and Technology; Cocchi, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 31, pp. 157–177. [Google Scholar]
- Matlab Functions for SO-PLS and SO-PLS-LDA. Available online: https://www.chem.uniroma1.it/romechemometrics/research/algorithms/so-pls/ (accessed on 9 June 2020).
- Roger, J.M.; Palagos, B.; Bertrand, D.; Fernandez-Ahumada, E. CovSel: Variable selection for highly multivariate and multi-response calibration application to IR spectroscopy. Chemom Intel. Lab. Syst. 2011, 106, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Matlab Functions for SO-CovSel and SO-CovSel-LDA. Available online: https://www.chem.uniroma1.it/romechemometrics/research/algorithms/so-covsel/ (accessed on 9 June 2020).
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectr. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Wold, S.; Johansson, E.; Cocchi, M. PLS: Partial least squares projections to latent structures. In 3D QSAR in Drug Design: Theory, Methods and Applications; Kubinyi, H., Ed.; Kluwer Escom Science Publisher: Leiden, The Netherlands, 1993; pp. 523–550. [Google Scholar]
- Grabska, J.; Bec, K.B.; Ishigaki, M.; Huck, C.W.; Ozak, Y. NIR Spectra Simulations by Anharmonic DFT-Saturated and Unsaturated Long-Chain Fatty Acids. J. Phys. Chem. B 2018, 122, 6931–6944. [Google Scholar] [CrossRef]
- Sun, D.-W. (Ed.) Infrared Spectroscopy for Food Quality Analysis and Control, 1st ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Biancolillo, A.; Liland, K.H.; Måge, I.; Næs, T.; Bro, R. Variable selection in multi-block regression. Chemometr. Intell. Lab. 2016, 156, 89–101. [Google Scholar] [CrossRef]
Type | Number of Samples | Class |
---|---|---|
California | 32 | Non-Sorrento |
Italy (no Sorrento) | 87 | Non-Sorrento |
Moldavia | 13 | Non-Sorrento |
Sorrento | 105 | Sorrento |
Pre-Treatment | LVs | Average Classification Error (%CV) |
---|---|---|
Mean Centering (MC) | 9 | 2.8 |
1st derivative (+ MC) | 11 | 1.6 |
2nd derivative (+ MC) | 9 | 2.9 |
SNV (+ MC) | 12 | 3.4 |
SNV+ 1st derivative (+ MC) | 11 | 2.8 |
SNV+ 2nd derivative (+ MC) | 9 | 2.9 |
Pre-Treatment | LVs | Average Classification Error (%CV) |
---|---|---|
Mean Centering (MC) | 10 | 2.8 |
1st derivative (+ MC) | 12 | 1.6 |
2nd derivative (+ MC) | 10 | 4.1 |
SNV (+ MC) | 10 | 7.1 |
SNV+ 1st derivative (+ MC) | 12 | 2.8 |
SNV+ 2nd derivative (+ MC) | 10 | 2.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amendola, L.; Firmani, P.; Bucci, R.; Marini, F.; Biancolillo, A. Authentication of Sorrento Walnuts by NIR Spectroscopy Coupled with Different Chemometric Classification Strategies. Appl. Sci. 2020, 10, 4003. https://doi.org/10.3390/app10114003
Amendola L, Firmani P, Bucci R, Marini F, Biancolillo A. Authentication of Sorrento Walnuts by NIR Spectroscopy Coupled with Different Chemometric Classification Strategies. Applied Sciences. 2020; 10(11):4003. https://doi.org/10.3390/app10114003
Chicago/Turabian StyleAmendola, Luigi, Patrizia Firmani, Remo Bucci, Federico Marini, and Alessandra Biancolillo. 2020. "Authentication of Sorrento Walnuts by NIR Spectroscopy Coupled with Different Chemometric Classification Strategies" Applied Sciences 10, no. 11: 4003. https://doi.org/10.3390/app10114003
APA StyleAmendola, L., Firmani, P., Bucci, R., Marini, F., & Biancolillo, A. (2020). Authentication of Sorrento Walnuts by NIR Spectroscopy Coupled with Different Chemometric Classification Strategies. Applied Sciences, 10(11), 4003. https://doi.org/10.3390/app10114003