Experimental Study of Entrainment and Mixing of Renewable Active Particles in Fluidized Beds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Fuels and Bed Material
2.2. Particle Size Analysis
2.3. Particle Entrainment Measurements
- –
- Filling the riser with about 50 g of the investigated particles.
- –
- Increasing the fluidization air velocity.
- –
- Measuring the entrained fuel amount in the filter at five fluidization velocities within the range of 1–3 m/s.
- –
- Plotting the entrainment curve between the normalized entrained mass and the fluidization velocity.
2.4. Particle Mixing Measurements
- –
- Filling the plexi tube with a mixture of about 50 g fuel and 1500 g sand.
- –
- Fluidizing the mixture with air of a velocity of 1.2 times the minimum fluidization velocity of the sand till the steady state is achieved (2 –20 min).
- –
- Sudden closing of the fluidization air.
- –
- Slicing the bed into three vertical partitions with copper separators, at heights of 2 and 8 cm.
- –
- Evacuating the sliced partitions using a vacuum pump.
- –
- Measuring the fuel mass after sieving.
- –
- Repeating the measurement at other fluidization velocities, at 1.4, 1.6, 1.8, and 2.0 times the minimum fluidization velocity of the sand.
- –
- Plotting the measured fuel mass fraction with the dimensionless fluidization velocity.
3. Results and Discussion
3.1. Particle Size Distribution
3.2. Particle Entrainment
3.3. Mixing in Binary-Mixture Fluidized Beds
4. Conclusions
- –
- The sunflower shell entrained at the highest degree.
- –
- At very low velocity, the entrainment of the wheat shells is the most intensive.
- –
- SRF and bark has similar entrainment behavior, but with a less steep gradient.
- –
- SRF has relatively high mass fraction in the bottom and center regions of the fluidized bed at low superficial velocities.
- –
- Unlike all the biomass fuels, SRF tends to shift upwards at elevated velocities.
- –
- The nonspherical active particles have higher concentrations at the bottom region than spherical ones.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, W.C. (Ed.) Handbook of Fluidization and Fluid-Particle Systems; Number 91 in Chemical Industries; OCLC: ocm52260128; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- ECN-Netherlands. RDF (ID-Number: 849). Available online: https://phyllis.nl/Biomass/View/84 (accessed on 27 April 2020).
- ECN-Netherlands. Bark (ID-Number: 51). Available online: https://phyllis.nl/Biomass/View/51 (accessed on 27 April 2020).
- Demirbaş, A. Fuel Characteristics of Olive Husk and Walnut, Hazelnut, Sunflower, and Almond Shells. Energy Sour. 2002, 24, 215–221. [Google Scholar] [CrossRef]
- Fryda, L. Wheat Straw (ID-Number: 3563). Available online: https://phyllis.nl/Biomass/View/356 (accessed on 27 April 2020).
- ECN-Netherlands. Coal, Lignite (ID-Number: 2847). Available online: https://phyllis.nl/Biomass/View/2847 (accessed on 27 April 2020).
- Estejab, B.; Battaglia, F. Modeling of Coal-Biomass Fluidization Using Computational Fluid Dynamics. In Volume 7A: Fluids Engineering Systems and Technologies; American Society of Mechanical Engineers: San Diego, CA, USA, 2013; p. V07AT08A058. [Google Scholar] [CrossRef]
- Mätzing, H.; Gehrmann, H.J.; Seifert, H.; Stapf, D. Modelling grate combustion of biomass and low rank fuels with CFD application. Waste Manag. 2018, 78, 686–697. [Google Scholar] [CrossRef]
- Haaf, M.; Peters, J.; Hilz, J.; Unger, A.; Ströhle, J.; Epple, B. Combustion of Solid Recovered Fuels within the Calcium Looping Process—Experimental Demonstration at 1 MWth Scale. Exp. Therm. Fluid Sci. 2019, 113, 110023. [Google Scholar] [CrossRef]
- Vonk, G.; Piriou, B.; Felipe Dos Santos, P.; Wolbert, D.; Vaïtilingom, G. Comparative analysis of wood and solid recovered fuels gasification in a downdraft fixed bed reactor. Waste Manag. 2019, 85, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Valin, S.; Ravel, S.; Pons de Vincent, P.; Thiery, S.; Miller, H. Fluidized bed air gasification of solid recovered fuel and woody biomass: Influence of experimental conditions on product gas and pollutant release. Fuel 2019, 242, 664–672. [Google Scholar] [CrossRef]
- De Gisi, S.; Chiarelli, A.; Tagliente, L.; Notarnicola, M. Energy, environmental and operation aspects of a SRF-fired fluidized bed waste-to-energy plant. Waste Manag. 2017, 73, 271–286. [Google Scholar] [CrossRef]
- Hervy, M.; Remy, D.; Dufour, A.; Mauviel, G. Air-blown gasification of Solid Recovered Fuels (SRFs) in lab-scale bubbling fluidized-bed: Influence of the operating conditions and of the SRF composition. Energy Convers. Manag. 2019, 181, 584–592. [Google Scholar] [CrossRef]
- Morris, J.D.; Daood, S.S.; Chilton, S.; Nimmo, W. Mechanisms and mitigation of agglomeration during fluidized bed combustion of biomass: A review. Fuel 2018, 230, 452–473. [Google Scholar] [CrossRef]
- Behainne, J.J.R.; Martinez, J.D. Performance analysis of an air-blown pilot fluidized bed gasifier for rice husk. Energy Sustain. Dev. 2014, 18, 75–82. [Google Scholar] [CrossRef]
- Szentannai, P.; Szücs, B. Vertical arrangement of SRF particles in a stationary fluidized bed. Powder Technol. 2018, 325, 209–217. [Google Scholar] [CrossRef]
- Zhou, T.; Yang, S.; Wei, Y.; Hu, J.; Wang, H. Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier. Renew. Energy 2019, 148, 534–547. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, T.; Wei, Y.; Hu, J.; Wang, H. Influence of size-induced segregation on the biomass gasification in bubbling fluidized bed with continuous lognormal particle size distribution. Energy Convers. Manag. 2019, 198, 111848. [Google Scholar] [CrossRef]
- Kraft, S.; Kirnbauer, F.; Hofbauer, H. Investigations using a cold flow model of char mixing in the gasification reactor of a dual fluidized bed gasification plant. Powder Technol. 2017, 316, 687–696. [Google Scholar] [CrossRef]
- Köhler, A.; Rasch, A.; Pallarès, D.; Johnsson, F. Experimental characterization of axial fuel mixing in fluidized beds by magnetic particle tracking. Powder Technol. 2017, 316, 492–499. [Google Scholar] [CrossRef]
- Win, K.K.; Nowak, W.; Matsuda, H.; Hasatani, M.; Bis, Z.; Krzywanski, J.; Gajewski, W. Transport Velocity of Coarse Particles in Multi-Solid Fluidized Bed. J. Chem. Eng. Jpn. 1995, 28, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Nie, Z.; An, A.; Gong, J.; Wang, X. A particle shape extraction and evaluation method using a deep convolutional neural network and digital image processing. Powder Technol. 2019, 353, 156–170. [Google Scholar] [CrossRef]
- Wu, L.C.; Yu, C. Powder Particle Size Measurement with Digital Image Processing Using Matlab. Adv. Mater. Res. 2012, 443-444, 589–593. [Google Scholar] [CrossRef]
- Lu, Z.; Hu, X.; Lu, Y. Particle Morphology Analysis of Biomass Material Based on Improved Image Processing Method. Int. J. Anal. Chem. 2017, 2017, 5840690. [Google Scholar] [CrossRef]
- Huilin, L.; Yurong, H.; Gidaspow, D.; Lidan, Y.; Yukun, Q. Size segregation of binary mixture of solids in bubbling fluidized beds. Powder Technol. 2003, 134, 86–97. [Google Scholar] [CrossRef]
- Wu, S.; Baeyens, J. Segregation by size difference in gas fluidized beds. Powder Technol. 1998, 98, 139–150. [Google Scholar] [CrossRef]
- Olivieri, G.; Marzocchella, A.; Salatino, P. Segregation of fluidized binary mixtures of granular solids. AIChE J. 2004, 50, 3095–3106. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, B.; Zhong, W. Experimental investigation on mixing and segregation behavior of biomass particle in fluidized bed. Chem. Eng. Process. Process. Intensif. 2009, 48, 745–754. [Google Scholar] [CrossRef]
- Haider, A.; Levenspiel, O. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol. 1989, 58, 63–70. [Google Scholar] [CrossRef]
- Szücs, B.; Szentannai, P. Experimental Investigation on Mixing and Segregation Behavior of Oxygen Carrier and Biomass Particle in Fluidized Bed. Period. Polytech. Mech. Eng. 2019, 63, 188–194. [Google Scholar] [CrossRef]
- Wirsum, M.; Fett, F.; Bausch, T.; Lütge, C. Über die Eignung von Feuerungsanlagen mit Wirbelschicht zur Verbrennung von kommunalem Klärschlamm. VDI Berichte 1996, 1280, 209–224. [Google Scholar]
- Wirsum, M.; Fett, F.; Iwanowa, N.; Lukjanow, G. Particle mixing in bubbling fluidized beds of binary particle systems. Powder Technol. 2001, 120, 63–69. [Google Scholar] [CrossRef]
- Fotovat, F.; Chaouki, J.; Bergthorson, J. Distribution of large biomass particles in a sand-biomass fluidized bed: Experiments and modeling. AIChE J. 2014, 60, 869–880. [Google Scholar] [CrossRef]
- Cluet, B.; Mauviel, G.; Rogaume, Y.; Authier, O.; Delebarre, A. Segregation of wood particles in a bubbling fluidized bed. Fuel Process. Technol. 2015, 133, 80–88. [Google Scholar] [CrossRef]
SRF | Bark | Sunflower Shell | Wheat Straw | Lignite | |
---|---|---|---|---|---|
Calorific value, MJ/kg | 13.6–14.9 [2] | 16.0–17.5 [3] | 17.4–18.8 [4] | 18.5–19.8 [5] | 23.6–24.6 [6] |
Moisture | Ash | Volatile | S | C | H | HHV | LHV | Cl | N | |
---|---|---|---|---|---|---|---|---|---|---|
(wt.%) | (wt.%) | (wt.%) | (wt.%) | (wt.%) | (wt.%) | (MJ/kg) | (MJ/kg) | (wt.%) | (wt.%) | |
SRF | Analysis data in wet (raw) state | |||||||||
13.20 | 34.90 | – | 0.160 | – | – | 14.40 | 12.60 | 0.510 | – | |
– | – | – | – | – | – | – | – | – | – | |
Analysis data in dry state | ||||||||||
3.37 | 74.7 | – | 0.28 | – | – | 24.20 | 22.20 | 0.870 | – | |
– | – | – | – | – | – | – | – | – | – | |
Bark | Analysis data in wet (raw) state | |||||||||
15.83 | 4.07 | 61.5 | 0.057 | 41.81 | 6.89 | 15.94 | 14.05 | 0.076 | 0.384 | |
EN 14774 | EN 14775 | EN 15148 | – | – | – | ISO 1928 | ISO 1928 | ISO 587 | – | |
Analysis data in dry state | ||||||||||
– | 4.84 | 73.1 | 0.067 | 49.68 | 8.18 | 18.94 | 17.15 | 0.090 | 0.456 | |
– | EN 14775 | EN 15148 | – | – | – | ISO 1928 | ISO 1928 | ISO 587 | – | |
Sunflower shell | Analysis data in wet (raw) state | |||||||||
8.47 | 2.28 | 69.1 | 0.180 | 46.81 | 7.87 | 19.16 | 17.24 | 0.058 | 0.884 | |
EN 14774 | EN 14775 | EN 15148 | – | – | – | ISO 1928 | ISO 1928 | ISO 587 | – | |
Analysis data in dry state | ||||||||||
– | 2.49 | 75.5 | 0.190 | 51.14 | 8.60 | 20.94 | 19.06 | 0.063 | 0.966 | |
– | EN 14775 | EN 15148 | – | – | – | ISO 1928 | ISO 1928 | ISO 587 | – | |
Wheat shell | Analysis data in wet (raw) state | |||||||||
12.97 | 9.90 | 64.4 | 0.347 | 40.95 | 8.09 | 17.01 | 14.93 | 0.085 | 1.808 | |
EN 14774 | EN 14775 | EN 15148 | – | – | – | ISO 1928 | ISO 1928 | ISO 587 | – | |
Analysis data in dry state | ||||||||||
– | 11.38 | 74.0 | 0.399 | 47.05 | 9.29 | 19.54 | 17.52 | 0.098 | 2.077 | |
– | EN 14775 | EN 15148 | – | – | – | ISO 1928 | ISO 1928 | ISO 587 | – |
SRF | Bark | Sunflower Shell | Wheat Shell | |
---|---|---|---|---|
Skeleton density, kg/m | 1400 | 1253 | 1876 | 1446 |
Apparent density, kg/m | 325 | 600 | 338 | 415 |
Particle shape, – | diverse irregular shapes | stringy and chips-like | half-ellipsoidal shell-like | ellipsoidal shell-like |
Particle structure, – | ductile (big-sizes), hard (small-sizes) | ductile (stringy), hard (chips) | hard | elastic |
Source, – | waste (textile, plastic, etc) | wood industry | sunflower seeds | wheat crop |
Cumulative Fraction, | |||
---|---|---|---|
: Equivalent Particle Diameter, mm | |||
Mean Diameter | Spread Parameter | Regression | |
, mm | n, – | , % | |
SRF | 23.69 | 1.61 | 98.98 |
Bark | 13.30 | 1.55 | 98.96 |
Sunflower shell | 7.26 | 7.00 | 99.75 |
Wheat shell | 6.99 | 4.00 | 99.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szucs, B.; Alagha, M.S.; Szentannai, P. Experimental Study of Entrainment and Mixing of Renewable Active Particles in Fluidized Beds. Appl. Sci. 2020, 10, 4268. https://doi.org/10.3390/app10124268
Szucs B, Alagha MS, Szentannai P. Experimental Study of Entrainment and Mixing of Renewable Active Particles in Fluidized Beds. Applied Sciences. 2020; 10(12):4268. https://doi.org/10.3390/app10124268
Chicago/Turabian StyleSzucs, Botond, Mohamed Sobhi Alagha, and Pal Szentannai. 2020. "Experimental Study of Entrainment and Mixing of Renewable Active Particles in Fluidized Beds" Applied Sciences 10, no. 12: 4268. https://doi.org/10.3390/app10124268
APA StyleSzucs, B., Alagha, M. S., & Szentannai, P. (2020). Experimental Study of Entrainment and Mixing of Renewable Active Particles in Fluidized Beds. Applied Sciences, 10(12), 4268. https://doi.org/10.3390/app10124268