Accuracy of Molar Solubility Prediction from Hansen Parameters. An Exemplified Treatment of the Bioantioxidant l-Ascorbic Acid
Abstract
:1. Introduction
2. Methods
2.1. Determination of Molar Volume
2.2. Determination of Solubility Parameter
2.3. Determination of Solute Melting Parameters
2.4. Solubility Calculations
3. Results and Discussion
3.1. Molar Volumes
3.2. Solubility Parameters
3.3. Solute Fusion Parameters
3.4. Solubilities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hildebrand, J.H.; Scott, R.L. The Solubility of Nonelectrolytes, 3rd ed.; American Chemical Society Monograph No. 17; Reinhold Publishing Corp.: New York, NY, USA, 1950; pp. 27, 122, 129, 271. [Google Scholar]
- Prausnitz, J.M. Molecular Thermodynamics of Fluid-Phase Equilibria; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1969. [Google Scholar]
- Hildebrand, J.H.; Prausnitz, J.M.; Scott, R.L. Regular and Related Solutions; Van Nostrand Reinhold Co.: New York, NY, USA, 1970. [Google Scholar]
- Shinoda, K. Principles of Solution and Solubility; Marcel Dekker: New York, NY, USA, 1978. [Google Scholar]
- Barton, A.F.M. CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1991; pp. 95–107, 177–193, 341–367. [Google Scholar]
- Jouyban, A. Handbook of Solubility Data for Pharmaceuticals; CRC Press: Boca Raton, FL, USA, 2010; pp. 30–31. [Google Scholar]
- Van Krevelen, D.W.; te Nijenhuis, K. Properties of Polymers. Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 71–108, 189–227. [Google Scholar]
- Hansen, C.M. Hansen Solubility Parameters. A User’s Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 1–43, 345–483. [Google Scholar]
- Abbott, S.; Hansen, C.M.; Yamamoto, H. Hansen Solubility Parameters in Practice, 5th ed.; Hansen-Solubility: Boca Raton, FL, USA, 2015; pp. 1–38, 227–239. ISBN 978-0-9551220-2-6. [Google Scholar]
- Chertkoff, M.J.; Martin, A.N. The solubility of Benzoic Acid in Mixed Solvents. J. Am. Pharmaceut. Assoc. 1960, 49, 444–447. [Google Scholar] [CrossRef]
- ISO/IEC Guide 98-3:2008, Uncertainty of Measurement. Part 3: Guide to the Expression of Uncertainty in Measurement, Revision 2010, and Supplement 1: Propagation of Distributions Using a Monte Carlo Method; International Organization for Standardization: Geneva, Switzerland, 2008.
- CRC Handbook of Chemistry and Physics, 95th ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 3-1–3-553.
- Yaws, C.L. Chemical Properties Handbook; Mc-Graw Hill: New York, NY, USA, 1998; pp. 13, 195. [Google Scholar]
- Daubert, T.E.; Danner, R.P. Part 3, extent 1993. In Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation; Taylor and Francis: New York, NY, USA, 1989; pp. II-1–V-1, Table C6H8O6. [Google Scholar]
- Hvoslef, J. The Crystal Structure of L-Ascorbic Acid, ‘Vitamin C’. I. The X-ray Analysis. J. Acta Cryst. 1968, B24, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Banipal, T.S.; Singh, H.; Banipal, P.K.; Singh, V. Volumetric and viscometric studies on L-ascorbic acid, nicotinic acid, thiamine hydrochloride and pyridoxine mcmcloride in water at temperatures (288.15–318.15) K and at atmospheric pressure. Thermochim. Acta 2013, 553, 31–39. [Google Scholar] [CrossRef]
- Dhondge, S.S.; Deshmukh, D.W.; Paliwal, L.J.; Dahasahasra, P.N. The study of molecular interactions of ascorbic acid and sodium ascorbate with water at temperatures (278.15, 288.15 and 298.15) K. J. Chem. Thermodyn. 2013, 67, 217–226. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, G.; Gardas, R.L. Exploration of the solvation behaviour of ascorbic acid in aqueous solutions of 1,2,4-triazolium based ionic liquid. J. Mol. Liquids 2017, 244, 55–64. [Google Scholar] [CrossRef]
- Sharma, R.; Thakur, R.C.; Sani, B.; Kumar, H. Properties of L-Ascorbic Acid in Water and Binary Aqueous Mixtures of D-Glucose and D-Fructose at Different Temperatures. Russ. J. Phys. Chem. A 2017, 91, 2389–2396. [Google Scholar] [CrossRef]
- Rieche, A.; Hitz, F. Über Monomethyl-hydroperoxyd. (III. Mitteilung über Alkylperoxyde). Ber. Dtsch. Chem. Ges. 1929, 62, 2458–2474. [Google Scholar] [CrossRef]
- SciFinder (Copyright American Chemical Society). Available online: https://scifinder.cas.org (accessed on 21 March 2020).
- Stefanis, E.; Panayiotou, C. A new expanded solubility parameter approach. Int. J. Pharm. 2012, 426, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.M. Polymer additives and solubility parameters. Prog. Org. Coat. 2004, 51, 109–112. [Google Scholar] [CrossRef]
- Park, K.A.; Lee, H.J.; Hong, I.K. Solubility prediction of bioantioxidants for functional solvent by groupd contribution method. J. Ind. Eng. Chem. 2010, 16, 490–495. [Google Scholar] [CrossRef]
- Lehnert, R.J.; Kandelbauer, A. Comments on “Solubility parameter of chitin and chitosan” Carbohydrate Polymers 36 (1998) 121–127. Carbohydr. Polym. 2017, 175, 601–602. [Google Scholar] [CrossRef] [PubMed]
- Lerdkanchanaporn, S.; Dollimore, D.; Alexander, K.S. A thermogravimetric study of ascorbic acid and its exipients in pharmaceutical formulations. Thermochim. Acta 1996, 284, 115–126. [Google Scholar] [CrossRef]
- Vemin, G.; Chakib, S.; Rogacheva, S.M.; Obretenov, T.D.; Parkanyi, C. Thermal decomposition of ascorbic acid. Carbohydr. Res. 1998, 305, 1–15. [Google Scholar]
- Tan, Y. Study on Thermal Stability and Kinetics of VC by Using DSC. J. Wuxi Univ. Light Ind. 2003, 22, 102–105. [Google Scholar]
- Jingyan, S.; Yuwen, L.; Zhiyong, W.; Cunxin, W. Investigation of thermal decomposition of ascorbic acid by TG-FTIR and thermal kinetics analysis. J. Pharm. Biomed. Anal. 2013, 77, 116–119. [Google Scholar] [CrossRef]
- Corvis, Y.; Menet, M.-C.; Ne´grier, P.; Lazergesa, M.; Espeau, P. The role of stearic acid in ascorbic acid protection from degradation: A heterogeneous system for homogeneous thermodynamic data. New J. Chem. 2013, 37, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Kofler, L.; Sitte, H. Zur Schmelzpunktbestimmung von Substanzen, die unter Zersetzung schmelzen. Mon. Chem. 1950, 81, 619–626. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook, Standard Reference Database Number 69. Available online: https://webbook.nist.gov/chemistry/ (accessed on 26 March 2020). [CrossRef]
- Ziderman, I.I.; Gregorski, K.S.; Lopez, S.V.; Friedman, M. Thermal Interaction of Ascorbic Acid and Sodium Ascorbate with Proteins in relation to Nonenzymatic Browning and Maillard Reactions of Foods. J. Agric. Food Chem. 1989, 37, 1480–1486. [Google Scholar] [CrossRef]
- Shalmashi, A.; Eliassi, A. Solubility of L-(+)-Ascorbic Acid in Water, Ethanol, Methanol, Propan-2-ol, Acetone, Acetonitrile, Ethyl Acetate, and Tetrahydrofuran from (293 to 323) K. J. Chem. Eng. Data 2008, 53, 1332–1334. [Google Scholar] [CrossRef]
- Neto, A.C.R.; Pires, R.F.; Malagoni, R.A.; Franco, M.R. Solubility of Vitamin C in Water, Ethanol, Propanol-1-ol, Water+Ethanol, and Water+Propan-1-ol at (298.15 and 308.15) K. J. Chem. Eng. Data 2010, 55, 1718–1721. [Google Scholar] [CrossRef]
- Galvão, A.C.; Robazza, W.S.; Bianchi, A.D.; Matiello, J.A.; Paludo, A.R.; Thomas, R. Solubility and thermodynamics of vitamin C in binary liquid mixtures involving water, methanol, ethanol and isopropanol at different temperatures. J. Chem. Thermodyn. 2018, 121, 8–16. [Google Scholar] [CrossRef]
- Acree, W.E. Thermodynamic Properties of Nonelectrolyte Solutions; Academic Press Inc.: Orlando, FL, USA, 1984; pp. 197–239. [Google Scholar]
Method | V1 (cm3/mol) | Remark | T (°C) | Ref. |
---|---|---|---|---|
X-ray | 103.7 | crystallographic unit cell volume | r.t. | [15] |
aq. solution density | 105.4 | partial molar volume (median), values from 102.38 to 106.49 | 25 | [16,17,18,19] |
particle density | 106.7 | solid state: purity and crystallinity unknown | 25 | [12,13,14] |
melt density | 109.5 ± 4 | subcooled liquid state: values | 20 | [13,14] |
109.9 ± 4 | extrapolated from melt data, presumed probable error ± 4 % | 25 |
State of Solute | δd | δp | δh | δ1 | Reference | V1 | T |
---|---|---|---|---|---|---|---|
(cm3/mol) | (°C) | ||||||
subcooled liq. | 18.1 | 12.0 | 27.8 | 35.3 | this work | 109.9 | 25 |
subcooled liq. | 18.2 | 12.0 | 27.9 | 35.4 | this work | 109.5 | 20 |
subcooled liq. | 18.0 | 15.7 | 27.4 | 36.4 | Hansen [23] | 109.9 | 25 |
solid particle | 18.6 | 20.4 | 28.2 | 39.5 | Park et al. [24] | 106.7 | 25 |
unspecified | 18.0 | 11.7 | 25.5 | 33.3 | Abbott et al. [9] | 124.8 | unspecified |
Parameter | Range | Remark | Ref. |
---|---|---|---|
Fusion temperature Tm,1 (°C) | 188 ± 5 | DTA measurements | [31,32] |
191 ± 2 | Kofler bench measurements | [31,32] | |
191 ± 4 | compound value, various sources | [12] | |
192 ± 6 | none | [14] | |
190.6 ± 5 | weighted mean ± probable error | this study | |
Heat of fusion | 37.0–47.1 | DSC measurements from 7 studies | [30,33] |
ΔH1 (kJ/mol) | 42.1 ± 5 | mid-range value ±½∙(max-min) | this study |
Solvent | δ2 (MPa)0.5 | x1a | Interquartile Range of x1 b | 95% CI b | ||
---|---|---|---|---|---|---|
Q1 | Q3 | |||||
Pentane | 14.50 | 1.13 × 10−11 | 3.30 × 10−12 | 3.63 × 10−11 | 11.0 | 483.2 |
n-Hexane | 14.90 | 2.34 × 10−11 | 8.46 × 10−12 | 7.22 × 10−11 | 8.5 | 424.9 |
Heptane | 15.30 | 4.79 × 10−11 | 1.67 × 10−11 | 1.37 × 10−10 | 8.2 | 313.9 |
Diethyl ether | 15.49 | 6.65 × 10−11 | 2.27 × 10−11 | 1.96 × 10−10 | 8.6 | 363.4 |
Cyclohexane | 16.80 | 6.19 × 10−10 | 2.23 × 10−10 | 1.74 × 10−9 | 7.8 | 282.9 |
n-Butyl acetate | 17.41 | 1.65 × 10−9 | 5.52 × 10−10 | 4.19 × 10−9 | 7.6 | 209.0 |
Xylene | 18.10 | 4.79 × 10−9 | 1.74 × 10−9 | 1.25 × 10−8 | 7.2 | 171.9 |
Ethyl acetate | 18.15 | 5.24 × 10−9 | 1.88 × 10−9 | 1.37 × 10−8 | 7.3 | 174.1 |
Toluene | 18.16 | 5.33 × 10−9 | 1.93 × 10−9 | 1.24 × 10−8 | 6.4 | 165.0 |
Benzene | 18.51 | 8.92 × 10−9 | 3.63 × 10−9 | 2.44 × 10−8 | 6.7 | 161.9 |
Tetrahydrofuran | 19.46 | 3.53 × 10−8 | 1.36 × 10−8 | 8.00 × 10−8 | 5.9 | 128.3 |
Acetone | 19.94 | 6.80 × 10−8 | 2.82 × 10−8 | 1.61 × 10−7 | 5.7 | 106.7 |
Acetic acid | 21.37 | 4.35 × 10−7 | 2.08 × 10−7 | 9.37 × 10−7 | 4.5 | 62.2 |
Propan-2-ol | 23.58 | 5.35 × 10−6 | 2.75 × 10−6 | 1.03 × 10−5 | 3.7 | 38.9 |
Acetonitrile | 24.40 | 1.22 × 10−5 | 6.66 × 10−6 | 2.32 × 10−5 | 3.5 | 34.8 |
1-Propanol | 24.60 | 1.48 × 10−5 | 8.17 × 10−6 | 2.96 × 10−5 | 3.6 | 30.4 |
Ethanol | 26.52 | 7.76 × 10−5 | 4.55 × 10−5 | 1.27 × 10−4 | 2.8 | 19.8 |
Methyl hydroperoxide | 29.40 | 5.03 × 10−4 | 3.46 × 10−4 | 7.76 × 10−4 | 2.2 | 9.9 |
Methanol | 29.41 | 5.03 × 10−4 | 3.38 × 10−4 | 7.26 × 10−4 | 2.1 | 10.4 |
Ethylene glycol | 32.95 | 1.83 × 10−3 | 1.20 × 10−3 | 2.49 × 10−3 | 2.1 | 2.8 |
Variable | Uncertainty | Span Ratio | |
---|---|---|---|
Absolute | Relative | R = max(x1)/min(x1) | |
ΔH1 | ±5 kJ/mol | (±11.9%) | 17.8 |
Tm,1 | ±5 K | (±1.1%) | 1.3 |
V1 | ±4 cm3/mol | (±3.6%) | 1.6 to 4.0 b |
δ1 | ±1 (MPa)0.5 | (±2.8%) | 1.5 to 40.0 b |
δ2 | ±1 (MPa)0.5 | (≤±6.8%) a | 1.5 to 40.0 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehnert, R.J.; Schilling, R. Accuracy of Molar Solubility Prediction from Hansen Parameters. An Exemplified Treatment of the Bioantioxidant l-Ascorbic Acid. Appl. Sci. 2020, 10, 4266. https://doi.org/10.3390/app10124266
Lehnert RJ, Schilling R. Accuracy of Molar Solubility Prediction from Hansen Parameters. An Exemplified Treatment of the Bioantioxidant l-Ascorbic Acid. Applied Sciences. 2020; 10(12):4266. https://doi.org/10.3390/app10124266
Chicago/Turabian StyleLehnert, Ralph J., and Richard Schilling. 2020. "Accuracy of Molar Solubility Prediction from Hansen Parameters. An Exemplified Treatment of the Bioantioxidant l-Ascorbic Acid" Applied Sciences 10, no. 12: 4266. https://doi.org/10.3390/app10124266
APA StyleLehnert, R. J., & Schilling, R. (2020). Accuracy of Molar Solubility Prediction from Hansen Parameters. An Exemplified Treatment of the Bioantioxidant l-Ascorbic Acid. Applied Sciences, 10(12), 4266. https://doi.org/10.3390/app10124266