Compositional Modeling to Analyze the Effect of CH4 on Coupled Carbon Storage and Enhanced Oil Recovery Process
Abstract
:1. Introduction
2. Methodology
2.1. Calculation of Minimum Miscibility Pressure (MMP)
- The system temperature is defined and the starting pressure for the process is estimated.
- A calculation is performed for the displacing gas and the displaced oil to obtain the new equilibrium compositions of liquid and vapor after the first contact.
- Step 2 is repeated for each contact using the previous and new equilibrium compositions, injected gas, and reservoir oil to obtain the updated compositions until the lengths of all key tie-lines converge to a tolerance of 10−8.
- The tie-line length is computed for the pressure and the minimum tie-line length (TL) is saved.
- The pressure is increased and Steps 2–4 are repeated.
- A multiple-parameter TL regression is performed to determine the exponent , the slope , and the constant in the equation (power-law extrapolation), and the resulting function is plotted.
- The MMP is determined when the power-law extrapolation gives zero to within the desired accuracy of 20 psia at the latest three pressures.
2.2. The Three-Phase Hysteresis Model for Residual Trapping
2.3. Solubility Model
3. Results
3.1. Fluid Modeling
3.2. Effects of CH4 Injection on EOR Efficiency
3.3. Effects of CH4 Injection on Carbon Storage Efficiency
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
α | Reduction exponent |
fi,o | Fugacity of the i-th component in the oil phase |
fi,g | Fugacity of the i-th component in the gas phase |
fi,w | Fugacity of the i-th component in the water phase |
Henry’s constant for the i-th component at the saturation pressure of water, MPa | |
Relative permeability of the gas during the secondary and following drainage processes | |
Input relative permeability of gas | |
Relative permeability of gas imbibition process | |
nc | Number of components |
p | Reservoir pressure, MPa |
pc | Critical pressure, kPa |
Saturation pressure of water at temperature T, MPa | |
R | Gas constant |
Water saturation at the start of the drainage process | |
Gas saturation at the start of the drainage process (end of previous imbibition) | |
Swi | Initial water saturation |
Sgf | Free gas saturation |
Endpoint gas saturation of imbibition | |
Sgc | Critical gas saturation in the input relative permeability table |
Sgm | Maximum gas saturation reached by drainage |
Sg,max | Maximum gas saturation associated with the imbibition |
Modified minimum residual oil saturation | |
Tc | Critical temperature, K |
Reduced temperature of water | |
Partial molar volume of CO2 at infinite dilution (cm3·mol−1) |
References
- Arvanitis, A.; Koutsovitis, P.; Koukouzas, N.; Tyrologou, P.; Karapanos, D.; Karkalis, C.; Pomonis, P. Potential Sites for Underground Energy and CO2 Storage in Greece: A Geological and Petrological Approach. Energies 2020, 13, 2707. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). 20 Years of Carbon Capture and Storage: Accelerating Future Deployment; IEA Publications: Paris, France, 2016. [Google Scholar]
- International Energy Agency (IEA). Storing CO2 through Enhanced Oil Recovery; IEA Publications: Paris, France, 2015. [Google Scholar]
- International Energy Agency (IEA). Transforming Industry through CCUS; IEA Publications: Paris, France, 2019. [Google Scholar]
- International Energy Agency (IEA). Tracking Fuel Supply; IEA Publications: Paris, France, 2019. [Google Scholar]
- Zanganeh, P.; Dashti, H.; Ayatollahi, S. Comparing the effects of CH4, CO2, and N2 injection on asphaltene precipitation and deposition at reservoir condition: A visual and modeling study. Fuel 2018, 217, 633–641. [Google Scholar] [CrossRef]
- Zhang, Y.; Di, Y.; Shi, Y.; Hu, J. Cyclic CH4 injection for enhanced oil recovery in the Eagle Ford shale reservoirs. Energies 2018, 11, 3094. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Von Gonten, W.D. An investigation of oil recovery by injecting CO2 and LPG mixtures. In Proceedings of the Fall Meeting of the Society of Petroleum Engineers of AIME, Las Vegas, NV, USA, 30 September–3 October 1973. [Google Scholar]
- Sebastian, H.M.; Wenger, R.S.; Renner, T.A. Correlation of minimum miscibility pressure for impure CO2 streams. J. Pet. Technol. 1985, 37, 2076–2082. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Huang, S.; Sayegh, S.; Zhou, X.L. Effect of CO2 impurities on gas-injection EOR processes. In Proceedings of the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, USA, 17–21 April 2004. [Google Scholar]
- Shokir, E.M.E.-M. CO2–oil minimum miscibility pressure model for impure and pure CO2 streams. J. Petrol. Sci. Eng. 2007, 58, 173–185. [Google Scholar] [CrossRef]
- Teklu, T.W.; Alharthy, N.; Kazemi, H.; Yin, X.; Graves, R.M. Hydrocarbon and non-hydrocarbon gas miscibility with light oil in shale reservoirs. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014. [Google Scholar]
- Jin, L.; Pekot, L.J.; Hawthorne, S.B.; Gobran, B.; Greeves, A.; Bosshart, N.W.; Jiang, T.; Hamling, J.A.; Gorecki, C.D. Impact of CO2 impurity on MMP and oil recovery performance of the Bell Creek oil field. Energy Procedia 2017, 114, 6997–7008. [Google Scholar] [CrossRef]
- He, C.; Mu, L.; Xu, A.; Zhao, L.; He, J.; Zhang, A.; Shan, F.; Luo, E. Phase behavior and miscible mechanism in the displacement of crude oil with associated sour gas. Oil Gas Sci. Technol. – Rev. d’IFP 2019, 74, 54. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change. Climate Change 2014: Mitigation of Climate Change: Working Group III Contribution to the IPCC Fifth Assessment Report. Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Blanco, S.T.; Rivas, C.; Fernández, J.; Artal, M.; Velasco, I. Influence of methane in CO2 transport and storage for CCS technology. Environ. Sci. Technol. 2012, 46, 13016–13023. [Google Scholar] [CrossRef]
- Blanco, S.T.; Rivas, C.; Bravo, R.; Fernández, J.; Artal, M.; Velasco, I. Discussion of the influence of CO and CH4 in CO2 transport, injection, and storage for CCS technology. Environ. Sci. Technol. 2014, 48, 10984–10992. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Amooie, M.A.; Cole, D.R.; Darrah, T.H.; Graham, D.E.; Pfiffner, S.M.; Phelps, T.J.; Moortgat, J. Impacts of Methane on Carbon Dioxide Storage in Brine Formations. Ground Water 2018, 56, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Gimeno, B.; Martínez-Casasnovas, S.; Velasco, I.; Blanco, S.T.; Fernández, J. Thermodynamic properties of CO2 + SO2 + CH4 mixtures over wide ranges of temperature and pressure. Evaluation of CO2/SO2 co-capture in presence of CH4 for CCS. Fuel 2019, 255, 115800. [Google Scholar] [CrossRef]
- Cho, J.; Kim, T.H.; Chang, N.; Lee, K.S. Effects of asphaltene deposition-derived formation damage on three-phase hysteretic models for prediction of coupled CO2 enhanced oil recovery and storage performance. J. Petrol. Sci. Eng. 2019, 172, 988–997. [Google Scholar] [CrossRef]
- Makimura, D.; Kunieda, M.; Liang, Y.; Matsuoka, T.; Takahashi, S.; Okabe, H. Application of molecular simulations to CO2-enhanced oil recovery: Phase equilibria and interfacial phenomena. SPE J. 2013, 18, 319–330. [Google Scholar] [CrossRef]
- Stalkup, F., Jr. I. Miscible Displacement; Society of Petroleum Engineers of AIME: Dallas, TX, USA, 1984. [Google Scholar]
- Razak, W.N.A.W.; Daud, W.A.W.; Faisal, A.H.; Zakaria, N.A. Multi component mass transfer in multiple contact miscibility test; Forward and backward method. In Proceedings of the SPE/EAGE Reservoir Characterization and Simulation Conference, Abu Dhabi, UAE, 19–21 October 2009. [Google Scholar]
- Jessen, K.; Orr, F.M. On interfacial-tension measurements to estimate minimum miscibility pressures. SPE Reserv. Eval. Eng. 2008, 11, 933–939. [Google Scholar] [CrossRef]
- Yellig, W.F.; Metcalfe, R.S. Determination and prediction of CO2 minimum miscibility pressures (includes associated paper 8876). J. Pet. Technol. 1980, 32, 160–168. [Google Scholar] [CrossRef]
- Christiansen, R.L.; Haines, H.K. Rapid measurement of minimum miscibility pressure with the rising-bubble apparatus. SPE Reserv. Eng. 1987, 2, 523–527. [Google Scholar] [CrossRef]
- Rao, D.N. A new technique of vanishing interfacial tension for miscibility determination. Fluid Phase Equilib. 1997, 139, 311–324. [Google Scholar] [CrossRef]
- Ahmadi, K.; Johns, R.T. Multiple-mixing-cell method for MMP calculations. SPE J. 2011, 16, 732–742. [Google Scholar] [CrossRef]
- Spiteri, E.J.; Juanes, R. Impact of relative permeability hysteresis on the numerical simulation of WAG injection. J. Pet. Sci. Eng. 2006, 50, 115–139. [Google Scholar] [CrossRef]
- Larsen, J.A.; Skauge, A. Methodology for numerical simulation with cycle-dependent relative permeabilities. SPE J. 1998, 3, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Shahrokhi, O.; Fatemi, M.; Sohrabi, M.; Ireland, S.; Ahmed, K. Assessment of three phase relative permeability and hysteresis models for simulation of water-alternating-gas (WAG) injection in water-wet and mixed-wet systems. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014. [Google Scholar]
- Chen, Y.; Wu, S.; Zhou, D.; Chawathe, A.; Inouye, A. Impact of relative permeability hysteresis on water-alternating-gas WAG injectivity: Modeling and experimental study. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 9–11 October 2017. [Google Scholar]
- Land, C.S. Calculation of imbibition relative permeability for two- and three-phase flow from rock properties. SPE J. 1968, 8, 149–156. [Google Scholar] [CrossRef]
- Holtz, M.H. Residual gas saturation to aquifer influx: A calculation method for 3-D computer reservoir model donstruction. In Proceedings of the SPE Gas Technology Symposium, Calgary, AB, Canada, 30 April–2 May 2002. [Google Scholar]
- Aziz, K.; Settari, A. Petroleum reservoir simulation; Applied Science Publishers: London, UK, 1979. [Google Scholar]
- Mahzari, P.; Sohrabi, M. An improved approach for estimation of flow and hysteresis parameters applicable to WAG experiments. Fuel 2017, 197, 359–372. [Google Scholar] [CrossRef]
- Peng, D.Y.; Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Robinson, D.B.; Peng, D.Y. The Characterization of the Heptanes and Heavier Fractions for the GPA Peng-Robinson Programs; Research Report 28; Gas Processors Association: Tulsa, OK, USA, 1978. [Google Scholar]
- Nghiem, L.X.; Li, Y.K. Effect of phase behavior on CO2 displacement efficiency at low temperatures: Model studies with an equation of state. SPE Reserv. Eng. 1986, 1, 414–422. [Google Scholar] [CrossRef]
- Saul, A.; Wagner, W. International equations for the saturation properties of ordinary water substance. J. Phys. Chem. Ref. Data 1987, 16, 893–901. [Google Scholar] [CrossRef]
- Harvey, A.H. Semiempirical correlation for Henry’s constants over large temperature ranges. AIChE J. 1996, 42, 1491–1494. [Google Scholar] [CrossRef]
- Duan, Z.; Sun, R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem. Geol. 2003, 193, 257–271. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Huang, S.S.; Dong, M. Laboratory investigation of Weyburn CO2 miscible flooding. J. Can. Petrol. Technol. 2000, 39, 41–51. [Google Scholar]
- White, D.J. Geophysical monitoring of the Weyburn CO2 flood: Results during 10 years of injection. Energy Procedia 2011, 4, 3628–3635. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R.K.; Huang, S.S.; Dong, M. Asphaltene deposition during CO2 flooding. SPE Prod. Facil. 1999, 14, 235–245. [Google Scholar] [CrossRef]
- Ettehadtavakkol, A.; Lake, L.W.; Bryant, S.L. CO2 EOR and Storage Design Optimization. Int. J. Greenh. Gas Control. 2014, 25, 79–92. [Google Scholar] [CrossRef]
Component | Composition | Critical Pressure | Critical Temperature | Acentric Factor | Molecular Weight |
---|---|---|---|---|---|
N2 | 0.0207 | 3394.4 | 126.2 | 0.040 | 28.0 |
CO2 | 0.0074 | 7376.5 | 304.2 | 0.225 | 44.0 |
H2S | 0.0012 | 8936.9 | 373.2 | 0.100 | 34.1 |
Methane, C1 | 0.0749 | 4600.2 | 190.6 | 0.008 | 16.0 |
Ethane, C2 | 0.0422 | 4883.9 | 305.4 | 0.098 | 30.1 |
Propane, C3 | 0.0785 | 4245.5 | 369.8 | 0.152 | 44.1 |
Butane, C4 | 0.0655 | 3722.7 | 416.5 | 0.185 | 58.1 |
Pentane, C5 | 0.0459 | 3379.4 | 464.9 | 0.239 | 72.1 |
C6-9 | 0.2156 | 3019.6 | 556.3 | 0.331 | 102.5 |
C10-17 | 0.2202 | 2017.5 | 692.2 | 0.584 | 184.0 |
C18-27 | 0.1027 | 1327.0 | 808.4 | 0.893 | 306.2 |
C28+ | 0.1252 | 1155.1 | 915.5 | 1.100 | 565.6 |
Parameters | W3 | Fluid Model | Difference (%) |
---|---|---|---|
Saturation pressure (kPa) | 4920 | 4780 | 2.85 |
Oil density at saturation pressure (kg/m3) | 806.4 | 806.8 | −0.05 |
Viscosity at saturation pressure (mPa·s) | 1.76 | 1.75 | 0.57 |
Formation volume factor (m3/m3) | 1.12 | 1.11 | 0.89 |
API (°) | 31 | 34.8 | −12.26 |
MMP with CO2 (kPa) | 14,196 | 13,872 | 2.28 |
Components | MMP (kPa) |
---|---|
CO2 100% | 13,872 |
CO2 90% + CH4 10% | 21,346 |
CO2 80% + CH4 20% | 22,015 |
CO2 70% + CH4 30% | 22,622 |
Parameters | Values |
---|---|
Depth (m) | 2811 |
Initial reservoir pressure (kPa) | 27,579 |
Reservoir temperature (°C) | 63 |
Permeability (m2) | 1.0 × 10−13 |
Porosity (%) | 0.25 |
Initial oil saturation, So (fraction) | 0.7 |
Connate water saturation, Sw (fraction) | 0.3 |
Producing bottom hole pressure (kPa) | 13,789 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.; Park, G.; Kwon, S.; Lee, K.S.; Lee, H.S.; Min, B. Compositional Modeling to Analyze the Effect of CH4 on Coupled Carbon Storage and Enhanced Oil Recovery Process. Appl. Sci. 2020, 10, 4272. https://doi.org/10.3390/app10124272
Cho J, Park G, Kwon S, Lee KS, Lee HS, Min B. Compositional Modeling to Analyze the Effect of CH4 on Coupled Carbon Storage and Enhanced Oil Recovery Process. Applied Sciences. 2020; 10(12):4272. https://doi.org/10.3390/app10124272
Chicago/Turabian StyleCho, Jinhyung, Gayoung Park, Seoyoon Kwon, Kun Sang Lee, Hye Seung Lee, and Baehyun Min. 2020. "Compositional Modeling to Analyze the Effect of CH4 on Coupled Carbon Storage and Enhanced Oil Recovery Process" Applied Sciences 10, no. 12: 4272. https://doi.org/10.3390/app10124272
APA StyleCho, J., Park, G., Kwon, S., Lee, K. S., Lee, H. S., & Min, B. (2020). Compositional Modeling to Analyze the Effect of CH4 on Coupled Carbon Storage and Enhanced Oil Recovery Process. Applied Sciences, 10(12), 4272. https://doi.org/10.3390/app10124272