A Linear Programming Method for Finding a Minimal Set of Axial Lines Representing an Entire Geometry of Building and Urban Layout
Abstract
:1. Introduction
2. Background
2.1. Axial Line Analysis Computation
2.2. Linear Programming
3. Methods
4. Problem Formulation
5. Implementation
5.1. Problem-Solution Procedure
5.2. Modified Problem-Solution Procedure
6. Computation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Peponis, J.; Wineman, J.; Bafna, S.; Rashid, M.; Kim, S.H. On the generation of linear representation of spatial configuration. Environ. Plan. B Plan. Des. 1998, 25, 5595–5676. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.; Penn, A.; Hillier, B. An algorithmic definition of the axial map. Environ. Plan. B Plan. Des. 2005, 32, 4254–4344. [Google Scholar] [CrossRef]
- Batty, M.; Rana, S. The automatic definition and generation of axial lines and axial maps. Environ. Plan. B Plan. Des. 2004, 31, 6156–6240. [Google Scholar] [CrossRef]
- Jiang, B.; Liu, X. Automatic generation of the axial lines of urban environments to capture what we perceive. Int. J. Geogr. Inf. Sci. 2010, 24, 5455–5458. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Jiang, B. Defining and generating axial lines from street center lines for better understanding of urban morphologies. Int. J. Geogr. Inf. Sci. 2012, 26, 15211–15232. [Google Scholar] [CrossRef]
- Hillier, B.; Penn, A. Dense civilisations: The shape of cities in the 21st century. Appl. Energy 1992, 43, 416–426. [Google Scholar] [CrossRef]
- Penn, A.; Desyllas, J.; Vaughan, L. The space of innovation: Interaction and communication in the work environment. Environ. Plan. B Plan. Des. 1999, 26, 1932–2018. [Google Scholar] [CrossRef] [Green Version]
- Flemming, U. Wall representations of rectangular dissections and their use in automated space allocation. Environ. Plan. B Plan. Des. 1978, 5, 2152–2232. [Google Scholar] [CrossRef]
- Anderssen, R.S.; Ive, J.R. Exploiting structure in linear-programming formulations for land-use planning. Environ. Plan. B Plan. Des. 1982, 9, 3313–3339. [Google Scholar] [CrossRef]
- Anderssen, R.S.; Cocks, K.D.; Ive, J.R. Implications of the generalized upper bounding structure in land-use allocation. Environ. Plan. B Plan. Des. 1983, 10, 2072–2117. [Google Scholar] [CrossRef]
- Erkut, E.; Francis, R.L.; Lowe, T.J. A multi-median problem with inter-distance constraints. Environ. Plan. B Plan. Des. 1988, 15, 1811–1890. [Google Scholar] [CrossRef]
- ReVelle, C.; Snyder, S. A shortest path model for the optimal timing of forest harvest decisions. Environ. Plan. B Plan. Des. 1996, 23, 1651–1675. [Google Scholar] [CrossRef]
- Turner, J.; Wineman, J.; Psarra, S.; Jung, S.K.; Senske, N. Syntax 2D 1.3.7; Computer Software; University of Michigan: Ann Arbor, MI, USA, 2006. [Google Scholar]
Cases | Number of Axial Lines | Data Preparation and Problem Formulation (ms) | Solution (ms) |
---|---|---|---|
Building 1 | 692 | 110 | 30 |
Building 2 | 184 | 10 | <1 |
Building 3 | 225 | 10 | 10 |
Gassin | 1124 | 532 | 1722 |
Apt | 1296 | 740 | 124,389 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.K.; Kim, Y. A Linear Programming Method for Finding a Minimal Set of Axial Lines Representing an Entire Geometry of Building and Urban Layout. Appl. Sci. 2020, 10, 4273. https://doi.org/10.3390/app10124273
Jung SK, Kim Y. A Linear Programming Method for Finding a Minimal Set of Axial Lines Representing an Entire Geometry of Building and Urban Layout. Applied Sciences. 2020; 10(12):4273. https://doi.org/10.3390/app10124273
Chicago/Turabian StyleJung, Sung Kwon, and Youngchul Kim. 2020. "A Linear Programming Method for Finding a Minimal Set of Axial Lines Representing an Entire Geometry of Building and Urban Layout" Applied Sciences 10, no. 12: 4273. https://doi.org/10.3390/app10124273
APA StyleJung, S. K., & Kim, Y. (2020). A Linear Programming Method for Finding a Minimal Set of Axial Lines Representing an Entire Geometry of Building and Urban Layout. Applied Sciences, 10(12), 4273. https://doi.org/10.3390/app10124273