Listeria Monocytogenes in Soft Spreadable Salami: Study of the Pathogen Behavior and Growth Prediction During Manufacturing Process and Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Cultures and Inoculum Preparation
2.2. Salami Production
2.3. Preparation of Samples
2.4. Storage Conditions and Sampling
2.5. Microbial Analysis
2.5.1. Enumeration and Isolation of Viable Lactic Acid Bacteria
2.5.2. Detection and Enumeration of Listeria Monocytogenes
2.6. Physicochemical Determination
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mamber, S.; Mohr, T.; Leathers, C.; Mbandi, E.; Bronstein, P.A.; Barlow, K.; Silverman, M.; Aston, C.; Izsak, Y.; Saini, N. Occurrence of Listeria monocytogenes in Ready-to-eat Meat and Poultry Product Verification Testing Samples from United States Department of Agriculture-regulated Producing Establishments, 2005–2017. J. Food Prot. 2020. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rodríguez, F.; Carrasco, E.; Bover-Cid, S.; Jofré, A.; Valero, A. Closing gaps for performing a risk assessment on Listeria monocytogenes in ready-to-eat (RTE) foods: Activity 2, a quantitative risk characterization on L. monocytogenes in RTE foods; starting from the retail stage. EFSA Support. Publ. 2017, 14, 1252E. [Google Scholar] [CrossRef]
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar]
- Ortenzi, R.; Branciari, R.; Primavilla, S.; Ranucci, D.; Valiani, A. Behaviour of Listeria monocytogenes in artisanal raw milk Pecorino Umbro cheese: A microbiological challenge test. Ital. J. Food Saf. 2015, 4, 5370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, A.N.; Anyoha, A.; Madoff, L.C.; Lassmann, B. Changing epidemiology of Listeria monocytogenes outbreaks, sporadic cases, and recalls globally: A review of ProMED reports from 1996 to 2018. Int. J. Infect. Dis. 2019, 84, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.M.; Tau, N.P.; Smouse, S.L.; Allam, M.; Ismail, A.; Ramalwa, N.R.; Disenyeng, B.; Ngomane, M.; Thomas, J.; Thomas, J. Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory activities and experiences associated with whole-genome sequencing analysis of isolates. Foodborne Pathog. Dis. 2019, 16, 524–530. [Google Scholar] [CrossRef] [Green Version]
- Buchanan, R.L.; Gorris, L.G.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 2017, 75, 1–13. [Google Scholar] [CrossRef]
- 8. European Food Safety Authority and European Panel on Biological Hazards (BIOHAZ). Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018, 16, e05134.
- Simon, K.; Simon, V.; Rosenzweig, R.; Barroso, R.; Gillmor-Kahn, M. Listeria, Then and Now: A Call to Reevaluate Patient Teaching Based on Analysis of US Federal Databases, 1998–2016. J. Midwifery Wom. Heal. 2018, 63, 301–308. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Osaili, T.M.; Shaker, R.R.; Olaimat, A.N.; Jaradat, Z.W.; Elabedeen, N.A.Z.; Holley, R.A. Effects of osmotic pressure, acid, or cold stresses on antibiotic susceptibility of Listeria monocytogenes. Food Microbiol. 2015, 46, 154–160. [Google Scholar] [CrossRef]
- Bucur, F.I.; Grigore-Gurgu, L.; Crauwels, P.; Riedel, C.U.; Nicolau, A.I. Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Front. Microbiol. 2018, 9, 2700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mataragas, M.; Rantsiou, K.; Alessandria, V.; Cocolin, L. Estimating the non-thermal inactivation of Listeria monocytogenes in fermented sausages relative to temperature, pH and water activity. Meat Sci. 2015, 100, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Gómez, D.; Iguácel, L.P.; Rota, M.; Carramiñana, J.J.; Ariño, A.; Yangüela, J. Occurrence of Listeria monocytogenes in ready-to-eat meat products and meat processing plants in Spain. Foods 2015, 4, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colagiorgi, A.; Bruini, I.; Di Ciccio, P.A.; Zanardi, E.; Ghidini, S.; Ianieri, A. Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 2017, 6, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindqvist, R.; Lindblad, M. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage. Int. J. Food Microbiol. 2009, 129, 59–67. [Google Scholar] [CrossRef]
- Mataragas, M.; Bellio, A.; Rovetto, F.; Astegiano, S.; Decastelli, L.; Cocolin, L. Risk-based control of food-borne pathogens Listeria monocytogenes and Salmonella enterica in the Italian fermented sausages Cacciatore and Felino. Meat Sci. 2015, 103, 39–45. [Google Scholar] [CrossRef]
- Nyhan, L.; Begley, M.; Mutel, A.; Qu, Y.; Johnson, N.; Callanan, M. Predicting the combinatorial effects of water activity, pH and organic acids on Listeria growth in media and complex food matrices. Food Microbiol. 2018, 74, 75–85. [Google Scholar] [CrossRef]
- Christieans, S.; Picgirard, L.; Parafita, E.; Lebert, A.; Gregori, T. Impact of reducing nitrate/nitrite levels on the behavior of Salmonella typhimurium and Listeria monocytogenes in French dry fermented sausages. Meat Sci. 2018, 137, 160–167. [Google Scholar] [CrossRef]
- Meloni, D. Presence of Listeria monocytogenes in Mediterranean-style dry fermented sausages. Foods 2015, 4, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Tirloni, E.; Di Pietro, V.; Rizzi, G.; Pomilio, F.; Cattaneo, P.; Bernardi, C.; Stella, S. Non-thermal inactivation of Listeria spp. in a typical dry-fermented sausage “Bergamasco” salami. Ital. J. Food Saf. 2019, 8, 8112. [Google Scholar] [CrossRef]
- Ranucci, D.; Miraglia, D.; Branciari, R.; Morganti, G.; Roila, R.; Zhou, K.; Jiang, H.; Braconi, P. Frankfurters made with pork meat, emmer wheat (Triticum dicoccum Schübler) and almonds nut (Prunus dulcis Mill.): Evaluation during storage of a novel food from an ancient recipe. Meat Sci. 2018, 145, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Dourou, D.; Porto-Fett, A.C.; Shoyer, B.; Call, J.E.; Nychas, G.J.E.; Illg, E.K.; Luchansky, J.B. Behavior of Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella typhimurium in teewurst, a raw spreadable sausage. Int. J. Food Microbiol. 2009, 130, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranucci, D.; Branciari, R.; Acuti, G.; Della Casa, G.; Trabalza-Marinucci, M.; Miraglia, D. Quality traits of Ciauscolo salami from meat of pigs fed rosemary extract enriched diet. Ital. J. Food Saf. 2013, 2, e16. [Google Scholar] [CrossRef]
- Branciari, R.; Balzano, M.; Pacetti, D.; Trabalza-Marinucci, M.; Della Casa, G.; Miraglia, D.; Capotorti, A.; Ranucci, D. Dietary CLA supplementation of pigs confers higher oxidative stability to Ciauscolo and Fabriano salami produced from their meat with no negative impact on physico-chemical, microbiological and sensorial characteristics. Eur. J. Lipid. Sci. Technol. 2016, 118, 1475–1485. [Google Scholar] [CrossRef]
- Federici, S.; Ciarrocchi, F.; Campana, R.; Ciandrini, E.; Blasi, G.; Baffone, W. Identification and functional traits of lactic acid bacteria isolated from Ciauscolo salami produced in Central Italy. Meat Sci. 2014, 98, 575–584. [Google Scholar] [CrossRef]
- Petruzzelli, A.; Blasi, G.; Masini, L.; Calza, L.; Duranti, A.; Santarelli, S.; Fisichella, S.; Pezzotti, G.; Aquilanti, L.; Osimani, A.; et al. Occurrence of Listeria monocytogenes in salami manufactured in the Marche Region (central Italy). J. Vet. Med. Sci. 2010. [Google Scholar] [CrossRef] [Green Version]
- Spanu, C.; Scarano, C.; Ibba, M.; Pala, C.; Spanu, V.; De Santis, E.P.L. Microbiological challenge testing for Listeria monocytogenes in ready-to-eat food: A practical approach. Ital. J. Food Saf. 2014, 3, 4518. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Regulation (EC) No. 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union L 2015, 338, 1–26. [Google Scholar]
- Branciari, R.; Valiani, A.; Franceschini, R.; Ranucci, D.; Lupattelli, A.; Urbani, E.; Ortenzi, R. Thermal inactivation and growth potential of Listeria monocytogenes in smoked tench. Ital. J. Food Saf. 2016, 5, 5974. [Google Scholar] [CrossRef] [Green Version]
- Dalzini, E.; Cosciani-Cunico, E.; Pavoni, E.; Bertasi, B.; Daminelli, P.; Finazzi, G.; Losio, M.N.; Varisco, G. Study of growth potential of Listeria monocytogenes in low fat salami: An innovative Italian meat product. Ital. J. Food Saf. 2014, 3, 2112. [Google Scholar] [CrossRef] [Green Version]
- European Union Reference Laborator. Technical guidance document for conducting shelf-life studies on Listeria monocytogenes in ready-to-eat foods. In Proceedings of the European Union Reference Laboratory for Listeria monocytogenes, Maisons–Alfort, France, 6 June 2014.
- European Commission. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Off. J. Eur. Communities 2008, 50, 18. [Google Scholar]
- ISO 15214: 1998. Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Numeration of Mesophilic Lactic Acid Bacteria. Colony-Count Technique At 30 °C. Available online: https://www.iso.org/standard/26853.html (accessed on 26 June 2020).
- Jaworska, D.; Neffe, K.; Kołożyn-Krajewska, D.; Dolatowski, Z. Survival during storage and sensory effect of potential probiotic lactic acid bacteria Lactobacillus acidophilus Bauer and Lactobacillus casei Bif3′/IV in dry fermented pork loins. Int. J. Food Sci Tech. 2011, 46, 2491–2497. [Google Scholar] [CrossRef]
- AFNOR CERTIFICATION VALIDATION STUDY OF THE METHOD VIDAS Listeria monocytogenes II(LMO2 Ref.30122)BIO12/11 -03/04 for the detection of Listeria monocytogenes. Available online: https://nf-validation.afnor.org/wp-content/uploads/sites/2/2014/03/BIO-12-11-03-04_en.pdf (accessed on 26 June 2020).
- UNI EN ISO 11290-2: 2005. Microbiology of food and animal feeding stuffs—Horizontal method for the detection and enumeration of Listeria monocytogenes—Part 2: Enumeration method. Available online: https://www.iso.org/standard/25570.html (accessed on 26 June 2020).
- Association of Official Analytical Chemists Inc. Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 2000. [Google Scholar]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994 23, 277–294. [CrossRef]
- Dalzini, E.; Cosciani-Cunico, E.; Bernini, V.; Bertasi, B.; Losio, M.N.; Daminelli, P.; Varisco, G. Behaviour of Escherichia coli O157 (VTEC), Salmonella typhimurium and Listeria monocytogenes during the manufacture, ripening and shelf life of low fat salami. Food Control. 2015, 47, 306–311. [Google Scholar] [CrossRef]
- Aquilanti, L.; Santarelli, S.; Silvestri, G.; Osimani, A.; Petruzzelli, A.; Clementi, F. The microbial ecology of a typical Italian salami during its natural fermentation. Int. J. Food Microbiol. 2007, 120, 136–145. [Google Scholar] [CrossRef]
- Novelli, E.; Dal Santo, L.; Balzan, S.; Cardazzo, B.; Spolaor, D.; Lombardi, A.; Carraro, L.; Fasolato, L. Analysis of process factors of dry fermented salami to control Listeria monocytogenes. Ital. J. Food Saf. 2017, 6, 6184. [Google Scholar] [CrossRef] [Green Version]
- Baranyi, J.; Tamplin, M.L. ComBase: A common database on microbial responses to food environments. J. Food Prot. 2004, 67, 1967–1971. [Google Scholar] [CrossRef]
- Aguirre, J.S.; Rodríguez, M.R.; de Fernando, G.D.G. Effects of electron beam irradiation on the variability in survivor number and duration of lag phase of four food-borne organisms. Int. J. Food Microbiol. 2011, 149, 236–246. [Google Scholar] [CrossRef]
- Fridman, O.; Goldberg, A.; Ronin, I.; Shoresh, N.; Balaban, N.Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 2014, 513, 418–421. [Google Scholar] [CrossRef]
- Li, B.; Qiu, Y.; Shi, H.; Yin, H. The importance of lag time extension in determining bacterial resistance to antibiotics. Analyst 2016, 141, 3059–3067. [Google Scholar] [CrossRef] [Green Version]
- Ross, T.; Dalgaard, P.; Tienungoon, S. Predictive modelling of the growth and survival of Listeria in fishery products. Int. J. Food Microbiol. 2000, 62, 231–245. [Google Scholar] [CrossRef]
- Cole, M.B.; Jones, M.V.; Holyoak, C. The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J. Appl. Bacteriol. 1990, 69, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Sabatakou, O.; Watso, E.; Mantis, F.; Ramantanis, S. Classification of Greek meat products on the basis of pH and aw values. Fleischwirtschaft (Frankfurt) 2001, 81, 91–95. [Google Scholar]
- Nyachuba, D.G.; Donnelly, C.W.; Howard, A.B. Impact of nitrite on detection of Listeria monocytogenes in selected ready-to-eat (RTE) meat and seafood products. J. Food Sci. 2007, 72, M267–M275. [Google Scholar] [CrossRef] [PubMed]
- Devlieghere, F.; Geeraerd, A.H.; Versyck, K.J.; Vandewaetere, B.; Van Impe, J.; Debevere, J. Growth of Listeria monocytogenes in modified atmosphere packed cooked meat products: A predictive model. Food Microbiol. 2001, 18, 53–66. [Google Scholar] [CrossRef]
- Faleiro, M.L.; Andrew, P.W.; Power, D. Stress response of Listeria monocytogenes isolated from cheese and other foods. Int. J. Food Microbiol. 2003, 84, 207–216. [Google Scholar] [CrossRef]
- Reis, J.A.; Paula, A.T.; Casarotti, S.N.; Penna, A.L.B. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng. Rev. 2012, 4, 124–140. [Google Scholar] [CrossRef]
- Ranucci, D.; Roila, R.; Andoni, E.; Braconi, P.; Branciari, R. Punica granatum and Citrus spp. Extract Mix Affects Spoilage Microorganisms Growth Rate in Vacuum-Packaged Cooked Sausages Made from Pork Meat, Emmer Wheat (Triticum dicoccum Schübler), Almond (Prunus dulcis Mill.) and Hazelnut (Corylus avellana L.). Foods 2019, 8, 664. [Google Scholar] [CrossRef] [Green Version]
- Rowan, N.J.; Anderson, J.G.; Smith, J.E. Potential infective and toxic microbiological hazards associated with the consumption of fermented foods. In Microbiology of Fermented Foods; Springer: Boston, MA, USA, 1998; pp. 812–837. [Google Scholar]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Foulquié Moreno, M.R.; Callewaert, R.; Devreese, B.; Van Beeumen, J.; De Vuyst, L. Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J. Appl. Microbiol. 2003, 94, 214–229. [Google Scholar] [CrossRef]
- Al-Zeyara, S.A.; Jarvis, B.; Mackey, B.M. The inhibitory effect of natural microflora of food on growth of Listeria monocytogenes in enrichment broths. Int. J. Food Microbiol. 2011, 145, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Cornu, M.; Billoir, E.; Bergis, H.; Beaufort, A.; Zuliani, V. Modeling microbial competition in food: Application to the behavior of Listeria monocytogenes and lactic acid flora in pork meat products. Food Microbiol. 2011, 28, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Belfiore, C.; Fadda, S.; Raya, R.; Vignolo, G. Molecular basis of the adaption of the anchovy isolate Lactobacillus sakei CRL1756 to salted environments through a proteomic approach. Food Res. Int. 2013 54, 1334–1341. [CrossRef]
- Aquilanti, L.; Garofalo, C.; Osimani, A.; Clementi, F. Ecology of lactic acid bacteria and coagulase negative cocci in fermented dry sausages manufactured in Italy and other Mediterranean countries: An overview. Int. Food Res. J. 2016, 23, 429–445. [Google Scholar]
- Martinez, R.C.R.; Staliano, C.D.; Vieira, A.D.S.; Villarreal, M.L.M.; Todorov, S.D.; Saad, S.M.I.; de Melo Franco, B.D.G. Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subsp. sakei 2a in a potentially synbiotic cheese spread. Food Microbiol. 2015, 48, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Amadoro, C.; Rossi, F.; Piccirilli, M.; Colavita, G. Features of Lactobacillus sakei isolated from Italian sausages: Focus on strains from Ventricina del Vastese. Ital. J. Food Saf. 2015, 4, 5449. [Google Scholar] [CrossRef] [Green Version]
- Fontana, C.; Cocconcelli, P.S.; Vignolo, G.; Saavedra, L. Occurrence of antilisterial structural bacteriocins genes in meat borne lactic acid bacteria. Food Control 2015, 47, 53–59. [Google Scholar] [CrossRef]
- Casaburi, A.; Di Martino, V.; Ferranti, P.; Picariello, L.; Villani, F. Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control. 2016, 59, 31–45. [Google Scholar] [CrossRef]
- Jones, R.J.; Zagorec, M.; Brightwell, G.; Tagg, J.R. Inhibition by Lactobacillus sakei of other species in the flora of vacuum packaged raw meats during prolonged storage. Food Microbiol. 2009, 26, 876–881. [Google Scholar] [CrossRef]
- Nyquist, O.L.; McLeod, A.; Brede, D.A.; Snipen, L.; Aakra, Å.; Nes, I.F. Comparative genomics of Lactobacillus sakei with emphasis on strains from meat. Mol. Genet. Genom. 2011, 285, 297–311. [Google Scholar] [CrossRef]
- Müller, D.M.; Carrasco, M.S.; Tonarelli, G.G.; Simonetta, A.C. Characterization and purification of a new bacteriocin with a broad inhibitory spectrum produced by Lactobacillus plantarum lp 31 strain isolated from dry-fermented sausage. J. Appl. Microbiol. 2009, 106, 2031–2040. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, D.S.; Cho, G.S.; Hanak, A.; Huch, M.; Franz, C.M.; Arneborg, N. The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytogenes single cells. Int. J. Food Microbiol. 2010, 141, S53–S59. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.S.; Todorov, S.D.; Ivanova, I.V.; Belguesmia, Y.; Choiset, Y.; Rabesona, H.; Chobert, J.M.; Haertlè, T.; Franco, B.D.G.D.M. Characterization of a two-peptide plantaricin produced by Lactobacillus plantarum MBSa4 isolated from Brazilian salami. Food Control. 2016, 60, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, A.; Ruiz-Barba, J.L.; Jiménez-Díaz, R. Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Appl. Environ. Microbiol. 2003, 69, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Kingcha, Y.; Tosukhowong, A.; Zendo, T.; Roytrakul, S.; Luxananil, P.; Chareonpornsook, K.; Valyansevi, R.; Sonomoto, K.; Visessanguan, W. Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control. 2012, 25, 190–196. [Google Scholar] [CrossRef]
- Leistner, L. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 2000, 55, 181–186. [Google Scholar] [CrossRef]
- Branciari, R.; Avellini, P.; Sukasi-Sangamayya, R.; Di Antonio, E.; Rea, S. PCR-RFLP analysis (Polymerase chain reaction-restriction fragment. Ind. Aliment. 2000, 39, 313–318. [Google Scholar]
Production Process | Storage | SEM | P value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | Y | SxT | ||||||||||
Days | 0 | 1 | 2 | 5 | 10 | 40 | 70 | |||||
pH | CTRFBO | 5.82w | 5.76w | 5.31v | 5.35v | 5.27v | 5.39v | 5.44v | 0.066 | 0.597 | <0.001 | 0.968 |
CTR | 5.82x | 5.74x | 5.39vw | 5.30v | 5.28vw | 5.43vw | 5.50w | |||||
aw | CTRFBO | 0.961y | 0.961y | 0.959y | 0.949x | 0.948x | 0.938w | 0.931v | 0.001 | 0.454 | <0.001 | 0.420 |
CTR | 0.961y | 0.961y | 0.959y | 0.951x | 0.946x | 0.938w | 0.934v | |||||
NaCl | CTRFBO | 2.47v | 2.84vw | 2.95wx | 3.09xy | 3.23xy | 3.23xy | 3.39y | 0.084 | 0.899 | <0.001 | 0.981 |
CTR | 2.47v | 2.76w | 2.97wx | 3.15xy | 3.20xy | 3.29xy | 3.41y | |||||
LAB (Log CFU/g) | CTRFBO | 4.06v | 6.56w | 7.80x | 8.97y | 8.94y | 8.57y | 7.92x | 0.103 | 0.857 | <0.001 | 0.995 |
CTR | 4.06v | 6.53w | 7.72x | 8.94x | 8.91x | 8.59y | 7.99x |
Batch | Day | Concentration (Log CFU/g) | SD (Standard Deviation) | Median | Growth Potential (δ) per Batch | Highest δ among the 3 Batches |
---|---|---|---|---|---|---|
A | ||||||
1 | 0 | 2.15 | 0.02 | 2.15 | 2.28−2.15 = 0.13 | |
2.18 | ||||||
2.15 | ||||||
10 | 2.3 | 0.14 | 2.28 | |||
2.28 | ||||||
2.04 | ||||||
2 | 0 | 2.23 | 0.09 | 2.23 | 2.63−2.23 = 0.40 | 0.40 |
2.3 | ||||||
2.11 | ||||||
10 | 2.08 | 0.48 | 2.63 | |||
2.63 | ||||||
3.04 | ||||||
3 | 0 | 2.10 | 0.04 | 2.10 | 2.50−2.10 = 0.40 | |
2.13 | ||||||
2.05 | ||||||
10 | 2.50 | 0.08 | 2.50 | |||
2.40 | ||||||
2.56 | ||||||
B | ||||||
1 | 0 | 2.3 | 0.14 | 2.28 | <1−2.28 = >−1.28 | |
2.28 | ||||||
2.04 | ||||||
70 | <1 | 0 | <1 | |||
<1 | ||||||
<1 | ||||||
2 | 0 | 2.08 | 0.48 | 2.63 | 1.00−2.63 = −1.63 | −1.28 |
2.63 | ||||||
3.04 | ||||||
70 | 1.48 | 0.28 | 1 | |||
1 | ||||||
1 | ||||||
3 | 0 | 2.50 | 0.08 | 2.50 | 1.10−2.50 = −1.28 | |
2.40 | ||||||
2.56 | ||||||
70 | 1.17 | 0.09 | 1.10 | |||
1.00 | ||||||
1.10 |
Batch | µmax (Log CFU/h) | Lag (h) | SE | R2 |
---|---|---|---|---|
Batch 1 | -0.0019 | 1032 | 0.25 | 0.743 |
Batch 2 | -0.0013 | 780 | 0.22 | 0.792 |
Batch 3 | -0.0014 | 776 | 0.18 | 0.864 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branciari, R.; Ortenzi, R.; Roila, R.; Miraglia, D.; Ranucci, D.; Valiani, A. Listeria Monocytogenes in Soft Spreadable Salami: Study of the Pathogen Behavior and Growth Prediction During Manufacturing Process and Shelf Life. Appl. Sci. 2020, 10, 4438. https://doi.org/10.3390/app10134438
Branciari R, Ortenzi R, Roila R, Miraglia D, Ranucci D, Valiani A. Listeria Monocytogenes in Soft Spreadable Salami: Study of the Pathogen Behavior and Growth Prediction During Manufacturing Process and Shelf Life. Applied Sciences. 2020; 10(13):4438. https://doi.org/10.3390/app10134438
Chicago/Turabian StyleBranciari, Raffaella, Roberta Ortenzi, Rossana Roila, Dino Miraglia, David Ranucci, and Andrea Valiani. 2020. "Listeria Monocytogenes in Soft Spreadable Salami: Study of the Pathogen Behavior and Growth Prediction During Manufacturing Process and Shelf Life" Applied Sciences 10, no. 13: 4438. https://doi.org/10.3390/app10134438
APA StyleBranciari, R., Ortenzi, R., Roila, R., Miraglia, D., Ranucci, D., & Valiani, A. (2020). Listeria Monocytogenes in Soft Spreadable Salami: Study of the Pathogen Behavior and Growth Prediction During Manufacturing Process and Shelf Life. Applied Sciences, 10(13), 4438. https://doi.org/10.3390/app10134438