Power Transformer Fault Diagnosis Based on Dissolved Gas Analysis by Correlation Coefficient-DBSCAN
Abstract
:1. Introduction
2. DBSCAN Method
- (1)
- For any object q, if the core object p∈C and the object q is density reachable from the core object p, then the object q∈C.
- (2)
- For any object p, q∈C, object p and object q are density connected.
3. Improved CCDBSCAN Algorithm
3.1. Introduction of Correlation Coefficient
3.2. Chaotic Sequence Optimization
3.3. Improved CCDBSCAN Diagnosis Method
4. Example Analysis and Results
4.1. CCDBSCAN Algorithm Steps
- (1)
- Data initialization: calculate the content percentage data from the DGA gas content data to be collected. The equation used for data initialization is
- (2)
- Using chaotic sequence to get its amplification coefficient.
- (3)
- Pattern classification with CCDBSCAN method.
- (4)
- Fault diagnosis of fault transformer data.
4.2. Analysis of Chaos Sequence Optimization Results
4.3. CCDBSCAN Method Classification Result Analysis
4.4. Analysis of Fault Diagnosis Results
5. Conclusions
- (1)
- The method proposed in this paper is different from the traditional Dissolved Gas Analysis in oil; we introduce the concept of correlation coefficient into cluster analysis, and the aggregation coefficient is constructed to represent the similarity degree of the data. Through the optimized amplification coefficient, some gas which is important but less in content gets amplified, successfully making the correlation coefficient of dissolved gas in oil with the same fault higher than before.
- (2)
- By introducing the correlation coefficient into the DBSCAN method, the accuracy of clustering is improved by 31%, which successfully solved the problem of low accuracy of DBSCAN method in clustering. When used in fault diagnosis, the similarity between test set and each fault can be represented by the correlation coefficient instead of a simple diagnosis result, which is more in line with the engineering practice.
- (3)
- Using the correlation coefficient to represent the similarity degree of data, and the CCDBSCAN method for clustering, the accuracy of fault diagnosis is significantly improved compared with the iec60599-2015 method, providing a better prospect for application.
Author Contributions
Funding
Conflicts of Interest
References
- Bagheri, M.; Naderi, M.S.; Blackburn, T. Advanced Transformer Winding Deformation Diagnosis: Moving from Off-line to On-line. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 1860–1870. [Google Scholar] [CrossRef]
- Faiz, J.; Soleimani, M. Dissolved Gas Analysis Evaluation in Electric Power Transformers using Conventional Methods a Review. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1239–1248. [Google Scholar] [CrossRef]
- IEEE. C57.104-2008-IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; (Revision of IEEE Std C57104-1991); IEEE: Toulouse, France, 2009; pp. 1–36. [Google Scholar]
- Abu-Siada, A.; Islam, S. A Novel Online Technique to Detect Power Transformer Winding Faults. IEEE Trans. Power Deliv. 2012, 27, 849–857. [Google Scholar] [CrossRef]
- Senoussaoui, M.E.; Brahami, M.; Fofana, I. Combining and comparing various machine-learning algorithms to improve dissolved gas analysis interpretation. IET Gener. Transm. Distrib. 2018, 12, 3673–3679. [Google Scholar] [CrossRef]
- Rogers, R.R. IEEE and IEC Codes to Interpret Incipient Faults in Transformers, Using Gas in Oil Analysis. IEEE Trans. Electr. Insul. 1978, 13, 349–354. [Google Scholar] [CrossRef]
- Duval, M. A review of faults detectable by gas-in-oil analysis in transformers. IEEE Electr. Insul. Mag. 2002, 18, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Duval, M. The Duval Triangle for Load Tap Changers, Non-Mineral Oils and Low Temperature Faults in Transformers. IEEE Electr. Insul. Mag. 2008, 24, 22–29. [Google Scholar] [CrossRef]
- Duval, M.; Lamarre, L. The Duval Pentagon-A New Complementary Tool for the Interpretation of Dissolved Gas Analysis in Transformers. IEEE Electr. Insul. Mag. 2014, 30, 9–12. [Google Scholar]
- Khan, S.A.; Equbal, M.D.; Islam, T. A Comprehensive Comparative Study of DGA Based Transformer Fault Diagnosis Using Fuzzy Logic and ANFIS Models. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 590–596. [Google Scholar] [CrossRef]
- Ghoneim, S.S.M.; Taha, I.B.M.; Elkalashy, N.I. Integrated ANN-Based Proactive Fault Diagnostic Scheme for Power Transformers Using Dissolved Gas Analysis. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1838–1845. [Google Scholar] [CrossRef]
- Noori, M.; Effatnejad, R.; Hajihosseini, P. Using dissolved gas analysis results to detect and isolate the internal faults of power transformers by applying a fuzzy logic method. IET Gener. Transm. Distrib. 2017, 11, 2721–2729. [Google Scholar] [CrossRef]
- Chen, W.G.; Pan, C.; Yun, Y.X.; Liu, Y.L. Wavelet Networks in Power Transformers Diagnosis Using Dissolved Gas Analysis. IEEE Trans. Power Deliv. 2009, 24, 187–194. [Google Scholar] [CrossRef]
- Lin, C.H.; Wu, C.H.; Huang, P.Z. Grey clustering analysis for incipient fault diagnosis in oil-immersed transformers. Expert Syst. Appl. 2009, 36, 1371–1379. [Google Scholar] [CrossRef]
- Bacha, K.; Souahlia, S.; Gossa, M. Power transformer fault diagnosis based on dissolved gas analysis by support vector machine. Electr. Power Syst. Res. 2012, 83, 73–79. [Google Scholar] [CrossRef]
- Tamilselvan, P.; Wang, P.F. Failure diagnosis using deep belief learning based health state classification. Reliab. Eng. Syst. Saf. 2013, 115, 124–135. [Google Scholar] [CrossRef]
- Zou, H.L. Clustering Algorithm and Its Application in Data Mining. Wirel. Pers. Commun. 2020, 110, 21–30. [Google Scholar] [CrossRef]
- Huang, Y.C.; Sun, H.C. Dissolved Gas Analysis of Mineral Oil for Power Transformer Fault Diagnosis Using Fuzzy Logic. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 974–981. [Google Scholar] [CrossRef]
- Li, J.A.; Liao, R.J.; Grzybowski, S.; Yang, L.J. Oil-paper Aging Evaluation by Fuzzy Clustering and Factor Analysis to Statistical Parameters of Partial Discharges. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 756–763. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.O. CUBN: A Clustering Algorithm Based Ondensity and Distance; IEEE: New York, NY, USA, 2003; pp. 108–112. [Google Scholar]
- Amini, A.; Teh, Y.W.; Saboohi, H. On Density-Based Data Streams Clustering Algorithms: A Survey. J. Comput. Sci. Technol. 2014, 29, 116–141. [Google Scholar] [CrossRef]
- Fahad, A.; Alshatri, N.; Tari, Z.; Alamri, A.; Khalil, I.; Zomaya, A.Y.; Foufou, S.; Bouras, A. A Survey of Clustering Algorithms for Big Data: Taxonomy and Empirical Analysis. IEEE Trans. Emerg. Top. Comput. 2014, 2, 267–279. [Google Scholar] [CrossRef]
- Hou, T.C.; Liu, J.W.; Liu, Y.W. Algorithmic clustering of LiDAR point cloud data for textural damage identifications of structural elements. Measurement 2017, 108, 77–90. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Z.S.; Liu, P.; Wang, Z.P. DBSCAN-Based Thermal Runaway Diagnosis of Battery Systems for Electric Vehicles. Energies 2019, 12, 15. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, W.; Huang, P.; Li, Q.Z. Fault diagnosis of rolling bearing using symmetrized dot pattern and density-based clustering. Measurement 2020, 152, 13. [Google Scholar] [CrossRef]
- Hahsler, M.; Piekenbrock, M.; Doran, D. dbscan: Fast Density-Based Clustering with R. J. Stat. Softw. 2019, 91, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Duval, M.; Depablo, A. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases. IEEE Electr. Insul. Mag. 2001, 17, 31–41. [Google Scholar] [CrossRef]
- Pan, C.; Chen, G.; Tang, J.; Wu, K. Numerical Modeling of Partial Discharges in a Solid Dielectric-bounded Cavity: A Review. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 981–1000. [Google Scholar] [CrossRef] [Green Version]
- Irungu, G.K.; Akumu, A.O.; Munda, J.L. A New Fault Diagnostic Technique in Oil-Filled Electrical Equipment; the Dual of Duval Triangle. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3405–3410. [Google Scholar] [CrossRef]
- Dhini, A.; Faqih, A.; Kusumoputro, B.; Surjandari, I.; Kusiak, A. Data-driven Fault Diagnosis of Power Transformers using Dissolved Gas Analysis (DGA). Int. J. Technol. 2020, 11, 388–399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ding, X.; Liu, Y.; Griffin, P.J. An artificial neural network approach to transformer fault diagnosis. IEEE Trans. Power Deliv. 1996, 11, 1836–1841. [Google Scholar] [CrossRef] [Green Version]
- Griffin, P.J. Criteria for the Interpretation of Data for Dissolved Gases in Oil from Transformers (A Review). In Electrical Insulating Oils; ASTM International: West Conshohocken, PA, USA, 1988; pp. 89–107. [Google Scholar]
- Operation and Maintenance Department of State Grid Corporation of China. Typical Application Cases of Power Grid Equipment State Detection Technology; China Power Press: Beijing, China, 2014. [Google Scholar]
- Aslimani, N.; Ellaia, R. A new chaos optimization algorithm based on symmetrization and levelling approaches for global optimization. Numer Algorithms 2018, 79, 1021–1047. [Google Scholar] [CrossRef]
- IEC 60599:2015, Mineral Oil-Filled Electrical Equipment in Service-Guidance on the Interpretation of Dissolved and Free Gases Analysis; IEC Webstore: Geneva, Switzerland, 2015.
Fault Category | Category 1(T1) | Category 2(T2) | Category 3(T3) | Category 4(PD) | Category 5(D1) | Category 6(D2) |
---|---|---|---|---|---|---|
Aggregation coefficient | 37.98 | 42.75 | 42.43 | 31.14 | 32.42 | 35.68 |
Fault Category | Category 1(T1) | Category 2(T2) | Category 3(T3) | Category 4(PD) | Category 5(D1) | Category 6(D2) |
---|---|---|---|---|---|---|
Aggregation coefficient | 37.59 | 42.24 | 44.43 | 37.99 | 35.61 | 40.58 |
Category 1(T1) | Category 2(T2) | Category 3(T3) | Category 4(PD) | Category 5(D1) | Category 6(D2) | Precision | |
---|---|---|---|---|---|---|---|
Cluster1 | 8 | 0 | 0 | 0 | 0 | 0 | 100 |
Cluster2 | 0 | 8 | 0 | 0 | 0 | 0 | 100 |
Cluster3 | 0 | 0 | 9 | 0 | 0 | 0 | 100 |
Cluster4 | 0 | 0 | 0 | 2 | 1 | 0 | 66.7 |
Cluster5 | 0 | 0 | 0 | 6 | 0 | 0 | 0 |
Cluster6 | 0 | 0 | 0 | 0 | 6 | 8 | 57.1 |
Noise | 2 | 2 | 1 | 2 | 3 | 2 | |
Recall | 80 | 80 | 90 | 20 | 0 | 80 |
Category 1(T1) | Category 2(T2) | Category 3(T3) | Category 4(PD) | Category 5(D1) | Category 6(D2) | Precision | |
---|---|---|---|---|---|---|---|
Cluster1 | 10 | 1 | 0 | 1 | 0 | 0 | 83.3 |
Cluster2 | 0 | 9 | 0 | 0 | 0 | 0 | 100 |
Cluster3 | 0 | 0 | 10 | 0 | 1 | 0 | 90.9 |
Cluster4 | 0 | 0 | 0 | 9 | 0 | 1 | 90 |
Cluster5 | 0 | 0 | 0 | 0 | 8 | 1 | 88.9 |
Cluster6 | 0 | 0 | 0 | 0 | 1 | 8 | 88.9 |
Recall | 100 | 90 | 100 | 90 | 80 | 80 |
Number | H2(ul/l) | CH4(ul/l) | C2H6(ul/l) | C2H4(ul/l) | C2H2(ul/l) | IEC60599 | Fault Category |
---|---|---|---|---|---|---|---|
1 | 54.54 | 71.93 | 9.72 | 93.37 | 6.58 | T3 | T3 |
2# 1 | 5760 | 540 | 40.5 | 1000 | 2760 | D1 | D2 |
3 | 20 | 80.2 | 24.6 | 68.6 | 0 | T2 | T2 |
4 | 15.9 | 55.98 | 22.33 | 137.25 | 0.21 | T3 | T3 |
5# | 40 | 102.6 | 32.3 | 183.3 | 0.2 | T3 | D2 |
6 | 2.369 | 119.69 | 21.891 | 20.15 | 0 | T1 | T1 |
7# | 87.17 | 17.26 | 3.94 | 12.87 | 32.81 | D1 | D1 |
8# | 605 | 1586 | 655 | 1901 | 2.3 | T2 | T3 |
9 | 462 | 212.4 | 31.6 | 0 | 0 | Missing | PD |
10 | 131.7 | 116.55 | 19.4 | 183.97 | 0.32 | Missing | T3 |
11 | 21 | 2.01 | 0.46 | 1.48 | 5.61 | D1 | D1 |
12 | 73.8 | 148 | 38.9 | 181 | 1.76 | T3 | T3 |
13 | 18.19 | 21.99 | 6.58 | 46.92 | 3.97 | T3 | 3 |
14# | 1.6 | 1 | 0.1 | 0.9 | 1.6 | D2 | D1 |
15 | 116.17 | 180.83 | 52.48 | 278.18 | 5.36 | T3 | T3 |
16 | 50.18 | 171.12 | 74.7 | 148.69 | 0 | T2 | T2 |
17 | 28.97 | 10.94 | 1.64 | 6.96 | 4.36 | T3 | T3 |
18 | 7238.97 | 695.16 | 231.6 | 2394.3 | 2308.92 | D2 | D2 |
19# | 47.6 | 19.1 | 4.21 | 27 | 0.72 | T3 | T1 |
20 | 50.35 | 65.58 | 21.05 | 99.13 | 0.96 | T3 | T3 |
21 | 120.45 | 210.91 | 35.7 | 285.39 | 15.86 | T3 | T3 |
22 | 5.48 | 48.82 | 96.81 | 489.57 | 0.3 | T3 | T3 |
23 | 1.96 | 2.1 | 0.5 | 0.67 | 1.59 | Missing | D1 |
24 | 25.4 | 54.97 | 8.72 | 77.84 | 10.47 | T3 | T3 |
25 | 7911.85 | 947.43 | 96.93 | 907.19 | 4844.48 | D1 | D1 |
26 | 676.74 | 969.55 | 570.57 | 2483.26 | 17.48 | T3 | T3 |
27 | 101.5 | 24.45 | 8.97 | 128.37 | 0 | Missing | T3 |
28 | 34.76 | 5.52 | 2.09 | 4.97 | 10.36 | D1 | D1 |
29 | 20.4 | 59.8 | 45.2 | 80.5 | 0 | T2 | T2 |
30 | 110.4 | 112 | 32.5 | 80.8 | 0 | T1 | T1 |
Number | Cluster1 | Cluster2 | Cluster3 | Cluster4 | Cluster5 | Cluster6 | Cluster Type |
---|---|---|---|---|---|---|---|
1 | 0.66 | 0.82 | 0.95 | 0.02 | −0.23 | 0.13 | T3 |
2 | −0.06 | −0.60 | −0.28 | 0.76 | 0.87 | 0.94 | D2 |
3 | 0.62 | 0.95 | 0.89 | −0.30 | -0.61 | −0.33 | T2 |
4 | 0.47 | 0.92 | 0.98 | -0.25 | −0.39 | -0.11 | T3 |
5 | 0.54 | 0.93 | 0.99 | −0.21 | -0.40 | −0.10 | T3 |
6 | 0.88 | 0.85 | 0.13 | -0.39 | −0.62 | −0.61 | T1 |
7 | 0.07 | −0.59 | −0.30 | 0.86 | 0.80 | 0.93 | D2 |
8 | 0.60 | 0.97 | 0.96 | −0.24 | −0.55 | −0.24 | T2 |
9 | 0.50 | −0.36 | −0.27 | 0.91 | 0.35 | 0.61 | PD |
10 | 0.71 | 0.79 | 0.93 | 0.16 | −0.19 | 0.22 | T3 |
11 | 0.15 | −0.57 | −0.31 | 0.93 | 0.91 | 0.90 | D1 |
12 | 0.64 | 0.92 | 0.97 | −0.13 | −0.42 | −0.08 | T3 |
13 | 0.53 | 0.86 | 0.98 | −0.10 | −0.26 | 0.06 | T3 |
14 | −0.32 | −0.43 | −0.08 | 0.23 | 0.82 | 0.72 | D1 |
15 | 0.62 | 0.91 | 0.98 | −0.10 | −0.36 | −0.01 | T3 |
16 | 0.62 | 0.97 | 0.88 | −0.31 | −0.69 | −0.41 | T2 |
17 | 0.53 | −0.21 | 0.02 | 0.94 | 0.50 | 0.84 | PD |
18 | 0.25 | −0.25 | 0.08 | 0.83 | 0.70 | 0.95 | D2 |
19 | 0.92 | 0.38 | 0.59 | 0.69 | 0.14 | 0.61 | T1 |
20 | 0.66 | 0.90 | 0.98 | −0.03 | −0.35 | 0.02 | T3 |
21 | 0.61 | 0.87 | 0.97 | −0.10 | −0.31 | 0.02 | T3 |
22 | 0.37 | 0.89 | 0.96 | −0.28 | −0.37 | −0.12 | T3 |
23 | −0.29 | −0.74 | −0.54 | 0.33 | 0.75 | 0.58 | 1 |
24 | 0.52 | 0.86 | 0.96 | −0.19 | −0.29 | −0.01 | T3 |
25 | −0.24 | −0.73 | −0.43 | 0.65 | 0.90 | 0.87 | D1 |
26 | 0.52 | 0.92 | 0.99 | −0.17 | −0.38 | −0.07 | T3 |
27 | 0.62 | 0.69 | 0.89 | 0.27 | −0.04 | 0.37 | T3 |
28 | 0.17 | −0.52 | −0.25 | 0.92 | 0.92 | 0.93 | D1 |
29 | 0.67 | 0.96 | 0.72 | −0.34 | −0.45 | −0.37 | T2 |
30 | 0.91 | 0.58 | 0.67 | 0.51 | 0.31 | 0.49 | T1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Song, B.; Wang, L.; Gao, J.; Xu, R. Power Transformer Fault Diagnosis Based on Dissolved Gas Analysis by Correlation Coefficient-DBSCAN. Appl. Sci. 2020, 10, 4440. https://doi.org/10.3390/app10134440
Liu Y, Song B, Wang L, Gao J, Xu R. Power Transformer Fault Diagnosis Based on Dissolved Gas Analysis by Correlation Coefficient-DBSCAN. Applied Sciences. 2020; 10(13):4440. https://doi.org/10.3390/app10134440
Chicago/Turabian StyleLiu, Yongxin, Bin Song, Linong Wang, Jiachen Gao, and Rihong Xu. 2020. "Power Transformer Fault Diagnosis Based on Dissolved Gas Analysis by Correlation Coefficient-DBSCAN" Applied Sciences 10, no. 13: 4440. https://doi.org/10.3390/app10134440
APA StyleLiu, Y., Song, B., Wang, L., Gao, J., & Xu, R. (2020). Power Transformer Fault Diagnosis Based on Dissolved Gas Analysis by Correlation Coefficient-DBSCAN. Applied Sciences, 10(13), 4440. https://doi.org/10.3390/app10134440