Cryobiotechnology of Plants: A Hot Topic Not Only for Gene Banks
Abstract
:1. Introduction
2. Cryopreservation of Plants
2.1. Plant Cryopreservation Methods
2.1.1. Classical Cryopreservation Methods
2.1.2. Vitrification
2.1.3. Encapsulation-Dehydration
2.1.4. Cryo-Plate Methods
3. Pathogen-Free Plant Material
3.1. Convential Methods for Pathogen Eradication
3.2. Cryotherapy
3.2.1. Mechanism
3.2.2. Merits and Demerits
4. Cryobiotechnology of Malus (Apple)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaviani, B. Conservation of Plant Genetic Resources by Cryopreservation. Aust. J. Crop Sci. 2011, 5, 778–800. [Google Scholar]
- Engelmann, F.; Engels, J.M.M. Technologies and strategies for ex situ conservation. In Managing Plant Genetic Diversity; Engels, J.M.M., Ramanatha Rao, V., Brown, A.H.D., Jackson, M.T., Eds.; CABI: Wallingford, UK, 2002; pp. 89–103. [Google Scholar]
- Höfer, M.; Hanke, M.-V. Cryopreservation of fruit germplasm. Vitr. Cell. Dev. Biol.-Plant 2017, 53, 372–381. [Google Scholar] [CrossRef]
- Walters, C.; Volk, G.M.; Stanwood, P.C.; Towill, L.E.; Koster, K.L.; Forsline, P.L. Long-term survival of cryopreserved germplasm: Contributing factors and assessments from thirty year old experiments. Acta Hortic. 2011, 1, 113–120. [Google Scholar] [CrossRef]
- Sakai, A. Survival of plant tissue of super-low temperatures. Plant Physiol. 1956, 14, 17. [Google Scholar]
- Panis, B. Sixty years of plant cryopreservation: From freezing hardy mulberry twigs to establishing reference crop collections for future generations. Acta Hortic. 2019, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kalaiselvi, R.; Rajasekar, M.; Gomathi, S. Cryopreservation of plant materials—A review. IJCS 2017, 5, 560–564. [Google Scholar]
- Kaya, E.; Galatali, S.; Guldag, S.; Celik, O. A New Perspective on Cryotherapy: Pathogen Elimination Using Plant Shoot Apical Meristem via Cryogenic Techniques. In Plant Stem Cells Methods and Protocols; Naseem, M., Dandekar, T., Eds.; Humana: New York, NY, USA, 2020; pp. 137–148. [Google Scholar]
- Panis, B.; Helliot, B.; Strosse, H.; Remy, S.; Lepoivre, P.; Swennen, R. Germplasm conservation, virus eradication and safe storage of transformation competent cultures in banana: The importance of cryopreservation. Acta Hortic. 2005, 1, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A. Survival of Plant Tissue at Super-Low Temperature III. Relation between Effective Prefreezing Temperatures and the Degree of Front Hardiness. Plant Physiol. 1965, 40, 882–887. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.M. Plant cryopreservation: A continuing requirement for food and ecosystem security. Vitr. Cell. Dev. Biol.-Plant 2017, 53, 285–288. [Google Scholar] [CrossRef]
- Reed, B.M. Implementing cryogenic storage of clonally propagated plants. Cryo Lett. 2001, 22, 97–104. [Google Scholar]
- Volk, G.M.; Walters, C. Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection. Cryobiology 2006, 52, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Lamb, J. Air drying behavior of fresh and osmotically dehydrated pineapple. J. Food Process. Eng. 1991, 14, 163–171. [Google Scholar] [CrossRef]
- Kumu, Y.; Harada, T.; Yakuwa, T. Development of a whole plant from a shoot tip of Asparagus officinalis L. frozen down to −196 degrees centigrade. J. Fac. Agric. Hokkaido Univ. 1983, 61, 285–294. [Google Scholar]
- Grout, B.W.W.; Henshaw, G.G. Freeze Preservation of Potato Shoot-tip Cultures. Ann. Bot. 1978, 42, 1227–1229. [Google Scholar] [CrossRef]
- Taylor, M.J.; Song, Y.C.; Brockbank, K.G.M. Vitrification in Tissue Preservation: New Developments. In Life in the Frozen State; Fuller, B.J., Lane, N., Benson, E.E., Eds.; CRC Press: London, UK, 2004; pp. 603–644. ISBN 978-0-203-64707-3. [Google Scholar]
- Teixeira, A.S.; Faltus, M.; Zámečník, J.; González-Benito, M.E.; Molina-García, A.D. Glass transition and heat capacity behaviors of plant vitrification solutions. Thermochim. Acta 2014, 593, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Towill, L. Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Rep. 1990, 9, 9. [Google Scholar] [CrossRef]
- Watanabe, K.; Steponkus, P.L. Vitrification of Oryza sativa L. cell suspensions. Cryo Lett. 1995, 16, 255–262. [Google Scholar]
- Sakai, A.; Kobayashi, S.; Oiyama, I. Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep. 1990, 9, 9. [Google Scholar] [CrossRef]
- Matsumoto, T. Cryopreservation of plant genetic resources: Conventional and new methods. Rev. Agric. Sci. 2017, 5, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Sakai, A.; Takahashi, C.; Yamada, K. Cryopreservation of in vitro-grown apical meristems of wasabi (Wasabia japonica) by encapsulation-vitrification method. Cryo Lett. 1995, 16, 189–196. [Google Scholar]
- Kartha, K.K.; Leung, N.L.; Mroginski, L.A. In vitro Growth Responses and Plant Regeneration from Cryopreserved Meristems of Cassava (Manihot esculenta Crantz). Z. Pflanzenphysiol. 1982, 107, 133–140. [Google Scholar] [CrossRef]
- Leunufna, S.; Keller, E.R.J. Investigating a new cryopreservation protocol for yams (Dioscorea spp.). Plant Cell Rep. 2003, 21, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Fabre, J.; Dereuddre, J. Encapsulation Dehydration—A New Approach to Cryopreservation of Solanum Shoot-Tips. Cryo Lett. 1990, 11, 413–426. [Google Scholar]
- Yamamoto, S.; Rafique, T.; Priyantha, W.S.; Fukui, K.; Matsumoto, T.; Niino, T. Development of a Cryopreservation Procedure Using Aluminium Cryo-plates. Cryo Lett. 2011, 32, 256–265. [Google Scholar]
- Niino, T.; Yamamoto, S.I.; Fukui, K.; Castillo Martinez, C.R.; Arizaga, M.V.; Matsumoto, T.; Engelmann, F. Dehydration improves cryopreservation of mat rush (Juncus decipiens Nakai) basal stem buds on cryo-plates. Cryo Lett. 2013, 34, 549–560. [Google Scholar]
- Yamamoto, S.; Fukui, K.; Rafique, T.; Khan, N.I.; Castillo Martinez, C.R.; Sekizawa, K.; Matsumoto, T.; Niino, T. Cryopreservation of in vitro-grown shoot tips of strawberry by the vitrification method using aluminium cryo-plates. Plant Genet. Res. 2012, 10, 14–19. [Google Scholar] [CrossRef]
- Rafique, T.; Yamamoto, S.; Fukui, K.; Mahmood, Z.; Niino, T. Cryopreservation of sugarcane using the V cryo-plate technique. Cryo Lett. 2015, 36, 51–59. [Google Scholar]
- Salma, M.; Fki, L.; Engelmann-Sylvestre, I.; Niino, T.; Engelmann, F. Comparison of droplet-vitrification and D-cryoplate for cryopreservation of date palm (Phoenix dactylifera L.) polyembryonic masses. Sci. Hortic. 2014, 179, 91–97. [Google Scholar] [CrossRef]
- Niino, T.; Wunna; Watanabe, K.; Nohara, N.; Rafique, T.; Yamamoto, S.; Fukui, K.; Arizaga, M.V.; Martinez, C.R.C.; Matsumoto, T.; et al. Cryopreservation of mat rush lateral buds by air dehydration using aluminum cryo-plate. Plant Biotechnol. 2014, 31, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Wunna; Rafique, T.; Arizaga, M.V.; Fukui, K.; Gutierrez, E.J.C.; Martinez, C.R.C.; Watanabe, K.; Niino, T. The Aluminum Cryo-plate Increases Efficiency of Cryopreservation Protocols for Potato Shoot Tips. Am. J. Potato Res. 2015, 92, 250–257. [Google Scholar] [CrossRef]
- Waterworth, H.E.; Hadidi, A. Economocal losses due to plant viruses. In Plant Virus Disease Control; Hadidi, A., Khetarpal, R.K., Koganezawa, H., Eds.; APS Press: St Paul, MN, USA, 1998; pp. 1–13. [Google Scholar]
- Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: Political, ethical and technical challenges. Nat. Rev. Genet. 2005, 6, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Valkonen, J.P.T. Cryotherapy of shoot tips: Novel pathogen eradication method. Trends Plant Sci. 2009, 14, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Kassanis, B. Heat inactivation of leaf-roll virus in potato tubers. Ann. Appl. Biol. 1950, 37, 339–341. [Google Scholar] [CrossRef]
- Klein, R.E. Eradication of Potato Viruses X and S from Potato Shoot-Tip Cultures with Ribavirin. Phytopathology 1983, 73, 1049. [Google Scholar] [CrossRef]
- Faccioli, V.C.; Marani, F. Virus elimination by meristem tipculture and tip micrografting. In Plant Virus Disease Control; Hadidi, A., Khetarpal, R.K., Koganezawa, H., Eds.; APS Press: St. Paul, MN, USA, 1998; pp. 346–380. [Google Scholar]
- Kidulile, C.E.; Miinda Ateka, E.; Alakonya, A.E.; Ndunguru, J.C. Efficacy of chemotherapy and thermotherapy in elimination of East African cassava mosaic virus from Tanzanian cassava landrace. J. Phytopathol. 2018, 166, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Vivek, M.; Modgil, M. Elimination of viruses through thermotherapy and meristem culture in apple cultivar ‘Oregon Spur-II’. Virus Dis. 2018, 29, 75–82. [Google Scholar] [CrossRef]
- Wang, M.-R.; Cui, Z.-H.; Li, J.-W.; Hao, X.-Y.; Zhao, L.; Wang, Q.-C. In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 2018, 14, 87. [Google Scholar] [CrossRef] [Green Version]
- Panattoni, A.; Luvisi, A.; Triolo, E. Review. Elimination of viruses in plants: Twenty years of progress. Span. J. Agric. Res. 2013, 11, 173. [Google Scholar] [CrossRef] [Green Version]
- Mink, G.I.; Wample, R.; Howell, W.E. Heat treatment of perennial plants to eliminate phytoplasms, viruses, and viroids while maintaining plant survival. In Plant Virus Disease Control; Hadidi, A., Khetarpal, R.K., Koganezawa, H., Eds.; APS Press: St. Paul, MN, USA, 1998; pp. 332–345. [Google Scholar]
- Hu, G.; Dong, Y.; Zhang, Z.; Fan, X.; Ren, F.; Zhou, J. Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell Tissue Organ. Cult. 2015, 121, 435–443. [Google Scholar] [CrossRef]
- James, D.; Trytten, P.A.; Mackenzie, D.J.; Towers, G.H.N.; French, C.J. Elimination of apple stem grooving virus by chemotherapy and development of an immunocapture RT-PCR for rapid sensitive screening. Ann. Appl. Biol. 1997, 131, 459–470. [Google Scholar] [CrossRef]
- Paprštein, F.; Sedlák, J.; Svobodová, L.; Polák, J.; Gadiou, S. Results of in vitro chemotherapy of apple cv. Fragrance—Short communication. Hort. Sci. 2013, 40, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Brison, M.; De Boucaud, M.-T.; Pierronnet, A.; Dosba, F. Effect of cryopreservation on the sanitary state of a cv Prunus rootstock experimentally contaminated with Plum Pox Potyvirus. Plant Sci. 1997, 123, 189–196. [Google Scholar] [CrossRef]
- Feng, C.; Wang, R.; Li, J.; Wang, B.; Yin, Z.; Cui, Z.; Li, B.; Bi, W.; Zhang, Z.; Li, M.; et al. Production of Pathogen-Free Horticultural Crops by Cryotherapy of In vitro-Grown Shoot Tips. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants; Lambardi, M., Ozudogru, E.A., Jain, S.M., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 994, pp. 463–482. [Google Scholar]
- Wang, Q.C.; Panis, B.; Engelmann, F.; Lambardi, M.; Valkonen, J.P.T. Cryotherapy of shoot tips: A technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Ann. Appl. Biol. 2009, 154, 351–363. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Xie, Y.; You, M. Cryotherapy of Potato Shoot Tips for Efficient Elimination of Potato Leafroll Virus (PLRV) and Potato Virus Y (PVY). Potato Res. 2006, 49, 119–129. [Google Scholar] [CrossRef]
- Wang, Q.C.; Valkonen, J.P.T. Efficient elimination of sweetpotato little leaf phytoplasma from sweetpotato by cryotherapy of shoot tips. Plant Pathol. 2008, 57, 338–347. [Google Scholar] [CrossRef]
- Helliot, B.; Panis, B.; Poumay, Y.; Swennen, R.; Lepoivre, P.; Frison, E. Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana (Musa spp.). Plant Cell Rep. 2002, 20, 1117–1122. [Google Scholar] [CrossRef]
- Wang, Q.; Valkonen, J.P.T. Improved recovery of cryotherapy-treated shoot tips following thermotherapy of in vitro-grown stock shoots of raspberry (Rubus idaeus L.). Cryo Lett. 2009, 30, 170–182. [Google Scholar]
- Pathirana, R.; McLachlan, A.; Hedderley, D.; Carra, A.; Carimi, F.; Panis, B. Removal of Leafroll viruses from infected grapevine plants by droplet vitrification. Acta Hortic. 2015, 1, 491–498. [Google Scholar] [CrossRef]
- Bi, W.-L.; Hao, X.-Y.; Cui, Z.-H.; Pathirana, R.; Volk, G.M.; Wang, Q.-C. Shoot tip cryotherapy for efficient eradication of Grapevine leafroll-associated virus-3 from diseased grapevine in vitro plants. Ann. Appl. Biol. 2018, 173, 261–270. [Google Scholar] [CrossRef]
- Li, B.-Q.; Feng, C.-H.; Wang, M.-R.; Hu, L.-Y.; Volk, G.; Wang, Q.-C. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. J. Biotechnol. 2015, 214, 182–191. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Costa, M.D.; Souza, J.A.; Volk, G.M.; Nickel, O.; Da Silva, F.N.; Kretzschmar, A.A. Cryotherapy by encapsulation-dehydration is effective for in vitro eradication of latent viruses from ‘Marubakaido’ apple rootstock. J. Biotechnol. 2018, 269, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bettoni, J.C.; Souza, J.A.; Volk, G.M.; Dalla Costa, M.; Da Silva, F.N.; Kretzschmar, A.A. Eradication of latent viruses from apple cultivar ‘Monalisa’ shoot tips using droplet-vitrification cryotherapy. Sci. Hortic. 2019, 250, 12–18. [Google Scholar] [CrossRef]
- Wang, Q.C.; Valkonen, J.P.T. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. J. Virol. Methods 2008, 154, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Yin, Z.; Ma, Y.; Zhang, Z.; Chen, L.; Wang, B.; Li, B.; Huang, Y.; Wang, Q. Cryopreservation of sweetpotato (Ipomoea batatas) and its pathogen eradication by cryotherapy. Biotechnol. Adv. 2011, 29, 84–93. [Google Scholar] [CrossRef]
- Wang, Q.; Mawassi, M.; Li, P.; Gafny, R.; Sela, I.; Tanne, E. Elimination of Grapevine virus A (GVA) by cryopreservation of in vitro-grown shoot tips of Vitis vinifera L. Plant Sci. 2003, 165, 321–327. [Google Scholar] [CrossRef]
- Vieira, R.L.; Da Silva, A.L.; Zaffari, G.R.; Steinmacher, D.A.; De Freitas Fraga, H.P.; Guerra, M.P. Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiol. Plant. 2015, 37, 1733. [Google Scholar] [CrossRef]
- Taglienti, A.; Tiberini, A.; Barba, M. Cryotherapy: A new tool for the elimination of artichoke viruses. J. Pathol. 2013, 95. [Google Scholar] [CrossRef]
- Wang, R.R.; Mou, H.Q.; Gao, X.X.; Chen, L.; Li, M.F.; Wang, Q.C. Cryopreservation for eradication of Jujube witches’ broom phytoplasma from Chinese jujube (Ziziphus jujuba): Cryopreservation for phytoplasma eradication. Ann. Appl. Biol. 2015, 166, 218–228. [Google Scholar] [CrossRef]
- Ding, F.; Jin, S.; Hong, N.; Zhong, Y.; Cao, Q.; Yi, G.; Wang, G. Vitrification–cryopreservation, an efficient method for eliminating Candidatus Liberobacter asiaticus, the citrus Huanglongbing pathogen, from in vitro adult shoot tips. Plant Cell Rep. 2008, 27, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cuellar, W.J.; Rajamäki, M.-L.; Hirata, Y.; Valkonen, J.P.T. Combined thermotherapy and cryotherapy for efficient virus eradication: Relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Mol. Plant Pathol. 2008, 9, 237–250. [Google Scholar] [CrossRef]
- Benson, E.E. Cryopreservation of Phytodiversity: A Critical Appraisal of Theory & Practice. Crit. Rev. Plant Sci. 2008, 27, 141–219. [Google Scholar] [CrossRef]
- Gallard, A.; Mallet, R.; Chevalier, M.; Grapin, A. Limited elimination of two viruses by cryotherapy of pelargonium apices related to virus distribution. Cryo Lett. 2011, 32, 111–122. [Google Scholar]
- Wang, B.; Wang, R.-R.; Cui, Z.-H.; Bi, W.-L.; Li, J.-W.; Li, B.-Q.; Ozudogru, E.A.; Volk, G.M.; Wang, Q.-C. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnol. Adv. 2014, 32, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Feng, C.; Wang, B.; Wang, Q.; Engelmann, F.; Lambardi, M.; Panis, B. Cryotherapy of shoot tips: A newly emerging technique for efficient elimination of plant pathogens. Acta Hortic. 2011, 1, 373–384. [Google Scholar] [CrossRef]
- Engelmann, F. Plant cryopreservation: Progress and prospects. Vitr. Cell Dev. Biol. Plant 2004, 40, 427–433. [Google Scholar] [CrossRef]
- Benelli, C.; De Carlo, A.; Engelmann, F. Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol. Adv. 2013, 31, 175–185. [Google Scholar] [CrossRef]
- Jenderek, M.M.; Tanner, J.D.; Chao, C.T.; Blackburn, H. How applicable are dormant buds in cryopreservation of horticultural woody plant crops? The Malus case. Acta Hortic. 2019, 1, 317–322. [Google Scholar] [CrossRef]
- Forsline, P.; Aldwinckle, H.S.; Dickson, E.; Luby, J.J.; Hokanson, S.C. Collection, maintenance, characterization, and utilization of wild apples of Central Asia. Hortic. Rev. 2003, 29, 1–62. [Google Scholar]
- Volk, G.M.; Richards, C.M.; Forsline, P.L. A comprehensive approach toward conserving Malus germplasm. Acta Hortic. 2010, 1, 177–182. [Google Scholar] [CrossRef]
- Michalak, M.; Plitta-Michalak, B.P.; Chmielarz, P. Desiccation tolerance and cryopreservation of wild apple (Malus sylvestris) seeds. Seed Sci. Technol. 2015, 43, 480–491. [Google Scholar] [CrossRef]
- Volk, G.M. Collecting pollen for genetic resources conservation. In Collecting Plant Genetic Diversity: Technical Guidelines 2011 Update; Guarino, L., Ramanatha Rao, V., Goldberg, E., Eds.; Bioversity International: Rome, Italy, 2011; pp. 1–10. [Google Scholar]
- Xu, J.; Li, B.; Liu, Q.; Shi, Y.; Peng, J.; Jia, M.; Liu, Y. Wide-scale pollen banking of ornamental plants through cryopreservation. Cryo Lett. 2014, 35, 312–319. [Google Scholar]
- Beltrán, R.; Valls, A.; Cebrián, N.; Zornoza, C.; García Breijo, F.; Reig Armiñana, J.; Garmendia, A.; Merle, H. Effect of temperature on pollen germination for several Rosaceae species: Influence of freezing conservation time on germination patterns. PeerJ 2019, 7, e8195. [Google Scholar] [CrossRef]
- Wang, M.-R.; Chen, L.; Teixeira da Silva, J.A.; Volk, G.M.; Wang, Q.-C. Cryobiotechnology of apple (Malus spp.): Development, progress and future prospects. Plant Cell Rep. 2018, 37, 689–709. [Google Scholar] [CrossRef] [PubMed]
- Stushnoff, C.; Seufferheld, M. Cryopreservation of Apple (Malus Species) Genetic Resources. In Cryopreservation of Plant Germplasm I; Bajaj, Y.P.S., Ed.; Biotechnology in Agriculture and Forestry; Springer: Heidelberg, Germany, 1995; Volume 32, pp. 87–101. ISBN 978-3-642-08184-2. [Google Scholar]
- Kuo, C.C.; Lineberger, B.D. Survival of in vitro culture tissues of Jonathan apples exposed to −196 °C. Hortic. Sci. 1985, 20, 764–767. [Google Scholar]
- Wu, Y.; Engelmann, F.; Zhao, Y.; Zhou, M.; Chen, S. Cryopreservation of apple shoot tips: Importance of cryopreservation technique and of conditioning of donor plants. Cryo Lett. 1999, 20, 121–130. [Google Scholar]
- Niino, T.; Sakai, A.; Yakuwa, H.; Nojiri, K. Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tissue Organ Cult. 1992, 28, 261–266. [Google Scholar] [CrossRef]
- Niino, T.; Sakai, A. Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci. 1992, 87, 199–206. [Google Scholar] [CrossRef]
- Paul, H.; Daigny, G.; Sangwan-Norreel, B.S. Cryopreservation of apple (Malus × Domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep. 2000, 19, 768–774. [Google Scholar] [CrossRef]
- Feng, C.-H.; Cui, Z.-H.; Li, B.-Q.; Chen, L.; Ma, Y.-L.; Zhao, Y.-H.; Wang, Q.-C. Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Cell Tissue Organ Cult. 2013, 112, 369–378. [Google Scholar] [CrossRef]
- Li, B.-Q.; Feng, C.-H.; Hu, L.-Y.; Wang, M.-R.; Wang, Q.-C. Shoot tip culture and cryopreservation for eradication of Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV) from apple rootstocks ‘M9’ and ‘M26’: Eradication of apple virus. Ann. Appl. Biol. 2015, 168, 142–150. [Google Scholar] [CrossRef]
- Halmagyi, A.; Deliu, C.; Isac, V. Cryopreservation of Malus cultivars: Comparison of two droplet protocols. Sci. Hortic. 2010, 124, 387–392. [Google Scholar] [CrossRef]
- Halmagyi, A.; Vălimăreanu, V.; Coste, A.; Deliu, C.; Isac, V. Cryopreservation of Malus shoot tips and subsequent plant regeneration. Rom. Biotechnol. Lett. 2010, 79–85. [Google Scholar]
- Sakai, A.; Nishiyama, Y. Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. Hortic. Sci. 1978, 13, 223–227. [Google Scholar]
- Forsline, P.L.; McFerson, J.R.; Lamboy, W.F.; Towill, L.E. Development of base and active collections of malus germplasm with cryopreserved dormant buds. Acta Hortic. 1998, 75–78. [Google Scholar] [CrossRef]
- Forsline, P.L.; Towill, L.E.; Waddell, J.W.; Stushnoff, C.; Lamboy, W.F.; McFerson, J.R. Recovery and Longevity of Cryopreserved Dormant Apple Buds. J. Am. Soc. Hortic. Sci. 1998, 123, 365–370. [Google Scholar] [CrossRef]
- Towill, L.E.; Ellis, D.D. Cryopreservation of Dormant Buds. In Plant Cryopreservation: A Practical Guide; Reed, B.M., Ed.; Springer: New York, NY, USA, 2008; pp. 421–442. [Google Scholar]
- Bilavcik, A.; Zamecnik, J.; Faltus, M. Cryotolerance of apple tree bud is independent of endodormancy. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Romadanova, N.V.; Mishustina, S.A.; Gritsenko, D.I.; Omasheva, M.Y.; Galiakparov, N.N.; Reed, B.M.; Kushnarenko, S.V. Cryotherapy as a method for reducing the virus infection of apples (Malus sp.). Cryo Lett. 2016, 37, 1–9. [Google Scholar] [CrossRef]
Method | Plant Species | Main Advantage | Main Disadvantage | Survival Rate | References |
---|---|---|---|---|---|
slow freezing | Asparagus officinalis | high survival rate | need of a programmable freezer | 100% | Kumu et al. 1983 [15] |
simple one-step freezing | Solanum goniocalyx | no special equipement required | low survival rate | 20% | Grout and Heneshaw 1978 [16] |
vitrification | Citrus sinensis Osb. (nucellar cells) | relatively easy to carry out | not suitable for all plant species (without additional osmoprotection) | 80% | Sakai et al. 1990 [21] |
encapsulation-vitrification | Wasabia japonica | better protection of encapsulated shoot tips | more laborious method | 95% | Matsumoto et al. 1995 [23] |
encapsulation-deyhdratation | Solanum phureja | no need of toxic cryoprotectants | time-consuming method | 40% | Fabre and Dereuddre 1990 [26] |
cryo-plate methods | Tanacetum cinerariifolium | easy method to carry out with more shoot tips | not suitable for all plant species (toxic cryoprotectants) | 77% | Yamamoto et al. 2011 [27] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiroutová, P.; Sedlák, J. Cryobiotechnology of Plants: A Hot Topic Not Only for Gene Banks. Appl. Sci. 2020, 10, 4677. https://doi.org/10.3390/app10134677
Jiroutová P, Sedlák J. Cryobiotechnology of Plants: A Hot Topic Not Only for Gene Banks. Applied Sciences. 2020; 10(13):4677. https://doi.org/10.3390/app10134677
Chicago/Turabian StyleJiroutová, Petra, and Jiří Sedlák. 2020. "Cryobiotechnology of Plants: A Hot Topic Not Only for Gene Banks" Applied Sciences 10, no. 13: 4677. https://doi.org/10.3390/app10134677
APA StyleJiroutová, P., & Sedlák, J. (2020). Cryobiotechnology of Plants: A Hot Topic Not Only for Gene Banks. Applied Sciences, 10(13), 4677. https://doi.org/10.3390/app10134677