Investigation on Tunneling-based Ternary CMOS with Ferroelectric-Gate Field Effect Transistor Using TCAD Simulation
Abstract
:1. Introduction
2. Experiments and Simulation Methods
3. Results and Discussion
3.1. Tunneling-Based Ternary CMOS with Ferroelectric-Gate Field Effect Transistor
3.2. Operation Characteristics of FE-TCMOS
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeong, J.W.; Choi, Y.-E.; Kim, W.-S.; Park, J.-H.; Kim, S.; Shin, S.; Lee, K.; Chang, J.; Kim, S.-J.; Kim, K.R. Tunnelling-based ternary metal–oxide–semiconductor technology. Nat. Electron. 2019, 2, 307–312. [Google Scholar] [CrossRef]
- Shin, S.; Jang, E.; Jeong, J.W.; Park, B.; Kim, K.R. Compact design of low power standard ternary inverter based on OFF-state current mechanism using nano-CMOS technology. IEEE Trans. Electron. Devices 2015, 62, 2396–2403. [Google Scholar] [CrossRef]
- Shin, S.; Jeong, J.W.; Jang, E.; Kim, K.R. Ultra-low standby power and static noise-immune standard ternary inverter based on nanoscale ternary CMOS technology. In Proceedings of the 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO), Pittsburgh, PA, USA, 25–28 July 2017; pp. 13–16. [Google Scholar]
- Wu, X.W.; Prosser, F.P. CMOS ternary logic circuits. IEE Proc. G-Circuits Devices Syst. 1990, 137, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Kim, Y.; Lombardi, F. A novel CNTFET-based ternary logic gate design. In Proceedings of the 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun, Mexico, 2–5 August 2009; pp. 435–438. [Google Scholar]
- Heo, S.; Kim, S.; Kim, K.; Lee, H.; Kim, S.; Kim, Y.J.; Kim, S.M.; Lee, H.; Lee, S.; Kim, K.R.; et al. Ternary full adder using multi-threshold voltage graphene barristors. IEEE Electron. Device Lett. 2018, 39, 1948–1951. [Google Scholar] [CrossRef]
- Heung, A.; Mouftah, H.T. Depletion/enhancement CMOS for a lower power family of three-valued logic circuits. IEEE J. Solid-State Circuits 1985, 20, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Mouftah, J. Design of ternary COS/MOS memory and sequential circuits. IEEE Trans. Comput. 1977, C-26, 281–288. [Google Scholar] [CrossRef]
- Raychowdhury, A.; Roy, K. Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol. 2005, 4, 168–179. [Google Scholar] [CrossRef]
- Karmakar, S. Ternary logic gates using Quantum Dot Gate FETs (QDGFETs). Silicon 2014, 6, 169–178. [Google Scholar] [CrossRef]
- Shim, J.; Oh, S.; Kang, D.-H.; Jo, S.-H.; Ali, M.H.; Choi, W.-Y.; Heo, K.; Jeon, J.; Lee, S.; Kim, M.; et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 2016, 7, 13413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.J.; Kim, S.-Y.; Noh, J.; Shim, C.H.; Jung, U.; Lee, S.K.; Chang, K.E.; Cho, C.; Lee, B.H. Demonstration of complementary ternary graphene field-effect transistors. Sci. Rep. 2016, 6, 39353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Steiner, M.; Aziz, A.; Narayanan, V.; Datta, S.; Gupta, S.K. Device-circuit analysis of ferroelectric FETs for low-power logic. IEEE Trans. Electron. Devices 2017, 64, 3092–3100. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, H.; Zhao, Y.; Yang, M.; Liang, Z.; Zhu, K.; Huang, R. New understanding of negative capacitance devices for low-power logic applications. In Proceedings of the 2019 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 18–19 March 2019; pp. 1–3. [Google Scholar]
- Lee, K.; Lee, J.; Kim, S.; Lee, R.; Kim, S.; Kim, M.; Lee, J.; Kim, S.; Park, B. Negative capacitance effect on MOS structure: Influence of electric field variation. IEEE Trans. Nanotechnol. 2020, 19, 168–171. [Google Scholar] [CrossRef]
- Lee, M.H.; Wei, Y.-T.; Lin, J.-C.; Chen, C.-W.; Tu, W.-H.; Tang, M. Ferroelectric gate tunnel field-effect transistors with low-power steep turn-on. AIP Adv. 2014, 4, 107117. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Lee, J.; Kim, S.; Park, E.; Lee, R.; Kim, H.-M.; Kim, S.; Park, B.-G. Tunnel field effect transistor with ferroelectric gate insulator. J. Nanosci. Nanotechnol. 2019, 19, 6095–6098. [Google Scholar] [CrossRef] [PubMed]
- Bo, J.; Zurcher; Jones; Gillespie; Lee. Computationally efficient ferroelectric capacitor model for circuit simulation. In Proceedings of the 1997 Symposium on VLSI Technology, Kyoto, Japan, 10–12 June 1997; pp. 141–142. [Google Scholar]
- Mueller, S.; Slesazeck, S.; Henker, S.; Flachowsky, S.; Polakowski, P.; Paul, J.; Smith, E.; Müller, J.; Mikolajick, T. Correlation between the macroscopic ferroelectric material properties of Si:HfO2 and the statistics of 28 nm FeFET memory arrays. Ferroelectrics 2016, 497, 42–51. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
LG | Gate Length | 1 μm |
NS | Source Doping Concentration | 1020 cm−3 (Arsenic) |
ND | Drain Doping Concentration | 1020 cm−3 (Arsenic) |
NB | Body Doping Concentration | 1017 cm−3 (Boron) |
NT | Tunneling Layer Doping Concentration | 5×1019 cm−3 (Arsenic) |
TTNL | Tunneling Layer Thickness | 20 nm |
TOX | Interfacial layer Thickness | 1 nm |
TFE | Ferroelectric Thickness | 10 nm |
Ps | Saturation Polarization | 18 μC/cm2 |
Pr | Remanent Polarization | 30 μC/cm2 |
Ec | Coercive Field | 0.75 MV/cm |
τp | Relaxation Time for Polarization | 250 ns |
εb | Permittivity Constant of Ferroelectric Material | 25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Kim, S.; Kwon, D.; Park, B.-G. Investigation on Tunneling-based Ternary CMOS with Ferroelectric-Gate Field Effect Transistor Using TCAD Simulation. Appl. Sci. 2020, 10, 4977. https://doi.org/10.3390/app10144977
Lee K, Kim S, Kwon D, Park B-G. Investigation on Tunneling-based Ternary CMOS with Ferroelectric-Gate Field Effect Transistor Using TCAD Simulation. Applied Sciences. 2020; 10(14):4977. https://doi.org/10.3390/app10144977
Chicago/Turabian StyleLee, Kitae, Sihyun Kim, Daewoong Kwon, and Byung-Gook Park. 2020. "Investigation on Tunneling-based Ternary CMOS with Ferroelectric-Gate Field Effect Transistor Using TCAD Simulation" Applied Sciences 10, no. 14: 4977. https://doi.org/10.3390/app10144977
APA StyleLee, K., Kim, S., Kwon, D., & Park, B. -G. (2020). Investigation on Tunneling-based Ternary CMOS with Ferroelectric-Gate Field Effect Transistor Using TCAD Simulation. Applied Sciences, 10(14), 4977. https://doi.org/10.3390/app10144977