The Impact of Thermal Treatment on Structural Changes of Teak and Iroko Wood Lignins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Thermal Modification
2.2. Lignin Isolation
2.3. Nitrobenzene Oxidation
2.4. Size Exclusion Chromatography (SEC)
2.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Klason and Dioxane Lignin Yields
3.2. Nitrobenzene Oxidation Products Analysis
3.3. Molecular Weight Determination
3.4. FTIR Spectra Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sandberg, D.; Kutnar, A.; Mantanis, G. Wood modification technologies—A review. iFor. Biogeosci. For. 2017, 10, 895–908. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, A.N. Advances in Wood Composites. Polymers 2020, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Sikora, A.; Kačík, F.; Gaff, M.; Vondrová, V.; Bubeníková, T.; Kubovský, I. Impact of thermal modification on color and chemical changes of spruce and oak wood. J. Wood Sci. 2018, 64, 406–416. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Hosseini, G.; Tarmian, A.; Papadopoulos, A.N. Fluid Flow in Nanosilver-Impregnated Heat-Treated Beech Wood in Different Mediums. Appl. Sci. 2020, 10, 1919. [Google Scholar] [CrossRef] [Green Version]
- Reinprecht, L.; Kmeťová, L.; Iždinský, J. Fungal decay and bending properties of beech plywood overlaid with tropical veneers. J. Trop. For. Sci. 2012, 24, 490–497. [Google Scholar]
- Darmawan, W.; Herliyana, E.N.; Gayatri, A.; Lumongga, D.; Hasanusi, A.; Gerardin, P. Microbial growths and checking on acrylic painted tropical woods and their static bending after three years of natural weathering. J. Mater. Res. Technol. 2019, 8, 3495–3503. [Google Scholar] [CrossRef]
- Laskowska, A.; Kozakiewicz, P.; Zbieć, M. Determination of the colour parameters of iroko wood subjected to artificial UV light irradiation. Ann. WULS SGGW For. Wood Technol. 2018, 102, 133–138. [Google Scholar]
- Richter, H.G.; Dallwitz, M.J. 2000 Onwards. Commercial Timbers: Descriptions, Illustrations, Identification, and Information Retrieval. Available online: http://delta-intkey.com (accessed on 9 April 2019).
- Wagenführ, R. Holzatlas (The Atlas of Wood), 6th ed.; Fachbuchverlag Leipzig im Carl Hanser Verlag: München, Germany, 2007; p. 816. ISBN 978-3-446-40649-0. [Google Scholar]
- Reinprecht, L.; Mamoňová, M.; Pánek, M.; Kačík, F. The impact of natural and artificial weathering on the visual, colour and structural changes of seven tropical woods. Eur. J. Wood Prod. 2018, 76, 175–190. [Google Scholar] [CrossRef]
- Passauer, L.; Prieto, J.; Müller, M.; Rössler, M.; Schubert, J.; Beyer, M. Novel color stabilization concepts for decorative surfaces of native dark wood and thermally modified timber. Prog. Org. Coat. 2015, 89, 314–322. [Google Scholar] [CrossRef]
- Garcia, R.A.; Lopes, J.O.; Nascimento, A.M.; Latorraca, J.V.F. Color stability of weathered heat-treated teak wood. Maderas Cienc. Tecnol. 2014, 16, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Priadi, T.; Suharjo, A.A.C.; Karlinasari, L. Dimensional stability and colour change of heat- treated young teak wood. Int. Wood Prod. J. 2019, 10, 119–125. [Google Scholar] [CrossRef]
- Gašparík, M.; Gaff, M.; Kačík, F.; Sikora, A. Color and chemical changes in teak (Tectona grandis L. f.) and meranti (Shorea spp.) wood after thermal treatment. BioResources 2019, 14, 2667–2683. [Google Scholar] [CrossRef]
- Icel, B.; Beram, A. Effects of industrial heat treatment on some physical and mechanical properties of iroko wood. Drvna Ind. 2017, 68, 229–239. [Google Scholar] [CrossRef]
- Kroupa, M.; Gaff, M.; Karlsson, O.; Myronycheva, O.; Sandberg, D. Effects of thermal modification on bending properties and chemical structure of Iroko and Padauk. In Proceedings of the 9th European Conference on Wood Modification, Burgers’ Zoo Arnhem, The Netherlands, 17–18 September 2018; Jos, C., Thomas, H., Bôke, T., Holger, M., Brigitte, J., Jos, G., Eds.; Wageningen: SHR Wageningen, The Netherlands, 2018; pp. 155–161, ISBN 978-90-829466-1-1. [Google Scholar]
- Chi, Z.; Hao, L.; Dong, H.; Yu, H.; Liu, H.; Wang, Z.; Yu, H. The innovative application of organosolv lignin for nanomaterial modification to boost its heavy metal detoxification performance in the aquatic environment. Chem. Eng. J. 2020, 382, 122789. [Google Scholar] [CrossRef]
- Morales, A.; Labidi, J.; Gullón, P. Assessment of green approaches for the synthesis of physically crosslinked lignin hydrogels. J. Ind. Eng. Chem. 2020, 81, 475–487. [Google Scholar] [CrossRef]
- Tjeerdsma, B.F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement. Holz als Roh-und Werkst. 1998, 56, 149–153. [Google Scholar] [CrossRef]
- Lourenço, A.; Araújo, S.; Gominho, J.; Pereira, H.; Evtuguin, D. Structural changes in lignin of thermally treated eucalyptus wood. J. Wood Chem. Technol. 2020, 40, 258–268. [Google Scholar] [CrossRef]
- Ditommaso, G.; Gaff, M.; Kačík, F.; Sikora, A.; Sethy, A.; Corleto, R.; Razaei, F.; Kaplan, L.; Kubš, J.; Das, S.; et al. Interaction of technical and technological factors on qualitative and energy/ecological/economic indicators in the production and processing of thermally modified merbau wood. J. Clean. Prod. 2020, 252, 119793. [Google Scholar] [CrossRef]
- ASTM. ASTM D1107-96: Standard Test Method for Ethanol-Toluene Solubility of Wood; American Society for Testing and Materials: Philadelphia, PA, USA, 2013. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Laboratory analytical procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2012; NREL/TP-510−42618.
- Kačík, F.; Luptáková, J.; Šmíra, P.; Nasswettrová, A.; Kačíková, D.; Vacek, V. Chemical alterations of pine wood lignin during heat sterilization. BioResources 2016, 11, 3442–3452. [Google Scholar] [CrossRef] [Green Version]
- Ďurkovič, J.; Kačík, F.; Mamoňová, M.; Kardošová, M.; Longauer, R.; Krajňáková, J. The effects of propagation techniques on cell wall chemistry and wood anatomy in micropropagated and grafted plants of the Dutch elm hybrid ‘Dodoens’. J. Am. Soc. Hortic. Sci. 2015, 140, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Evtuguin, D.V.; Neto, C.P.; Silva, A.M.S.; Domingues, P.M.; Amado, F.M.L.; Robert, D.; Faix, O. Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food Chem. 2001, 49, 4252–4261. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, M.G.; Ruiz, J.; Norambuena, M.; Mendonça, R.T. Structural features of dioxane lignin from Eucalyptus globulus and their relationship with the pulp yield of contrasting genotypes. Maderas Cienc. Tecnol. 2015, 17, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, A.; Pereira, H. Compositional Variability of Lignin in Biomass. Intech Open 2018, 2, 64–98. [Google Scholar] [CrossRef] [Green Version]
- Miranda, I.; Sousa, V.; Pereira, H. Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. J. Wood Sci. 2011, 57, 171–178. [Google Scholar] [CrossRef]
- Lukmandaru, G. Chemical characteristics of teak wood attacked by Neotermes tectonae. BioResources 2015, 10, 2094–2102. [Google Scholar] [CrossRef] [Green Version]
- Windeisen, E.; Klassen, A.; Wegener, G. On the chemical characterization of plantation teakwood from Panama. Holz als Roh-und Werkst. 2003, 61, 416–418. [Google Scholar] [CrossRef]
- Gaff, M.; Kačík, F.; Gašparík, M.; Todaro, L.; Jones, D.; Corleto, R.; Makovická Osvaldová, L.; Čekovská, H. The effect of synthetic and natural fire-retardants on burning and chemical characteristics of thermally modified teak (Tectona grandis L. f.) wood. Constr. Build. Mater. 2019, 551–558. [Google Scholar] [CrossRef]
- Esteves, B.; Pereira, H. Wood modification by heat treatment: A review. BioResources 2009, 4, 370–404. [Google Scholar] [CrossRef]
- Bubeníková, T.; Luptáková, J.; Kačíková, D.; Kačík, F. Characterization of macromolecular traits of lignin from heat treated spruce wood by size exclusion chromatography. Acta Fac. Xylologiae 2018, 60, 33–42. [Google Scholar] [CrossRef]
- Lourenço, A.; Neiva, D.; Gominho, J.; Marques, A.V.; Pereira, H. Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py-GC-MS/FID. Wood Sci. Technol. 2015, 49, 159–175. [Google Scholar] [CrossRef]
- Faix, O.; Meier, D.; Grobe, I. Studies on isolated lignins and lignins in woody materials by pyrolysis-gas chromatography-mass spectrometry and off-line pyrolysis-gas chromatography with flame ionization detection. J. Anal. Appl. Pyrolysis 1987, 11, 403–416. [Google Scholar] [CrossRef]
- Zikeli, F.; Vinciguerra, V.; D’Annibale, A.; Capitani, D.; Romagnoli, M.; Mugnozza, G.S. Preparation of Lignin Nanoparticles from Wood Waste for Wood Surface Treatment. Nanomaterials 2019, 9, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mvondo, R.R.N.; Meukam, P.; Jeong, J.; Meneses, D.D.S.; Nkeng, E.G. Influence of water content on the mechanical and chemical properties of tropical wood species. Results Phys. 2017, 7, 2096–2103. [Google Scholar] [CrossRef]
- Kim, J.Y.; Hwang, H.; Oh, S.; Kim, Y.S.; Kim, U.J.; Choi, J.W. Investigation of structural modification and thermal characteristics of lignin after heat treatment. Int. J. Biol. Macromol. 2014, 66, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Das, L.; Xu, S.; Shi, J. Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid. Front. Energy Res. 2017, 5, 21. [Google Scholar] [CrossRef]
- Davaritouchaee, M.; Hiscox, C.W.; Terrell, E.; Mancini, J.R.; Chen, S. Mechanistic studies of milled and Kraft lignin oxidation by radical species. Green Chem. 2020, 22, 1182–1197. [Google Scholar] [CrossRef]
- Cui, C.; Sadeghifar, H.; Sen, S.; Argyropoulos, D.S. Towards thermoplastic lignin polymers; Part II: Thermal & polymer characteristics of kraft lignin & derivatives. BioResources 2012, 8, 864–886. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.V.; Argyropoulos, D.S. Stable Organic Radicals in Lignin: A Review. ChemSusChem 2017, 10, 3284–3303. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- Faix, O. Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforschung 1991, 45, 21–27. [Google Scholar] [CrossRef]
- Lisperguer, J.; Perez, P.; Urizar, S. Structure and thermal properties of lignins: Characterization by infrared spectroscopy and differential scanning calorimetry. J. Chil. Chem. Soc. 2009, 54, 460–463. [Google Scholar] [CrossRef] [Green Version]
- Gerardin, P. New alternatives for wood preservation based on thermal and chemical modification of wood-a review. Ann. For. Sci. 2016, 73, 559–570. [Google Scholar] [CrossRef] [Green Version]
- Nada, A.M.A.; Youssef, M.A.; Shaffei, K.A.; Aalah, A.M. Infrared spectroscopy of some treated lignins. Polym. Degrad. Stab. 1998, 62, 157–163. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, S.J.; Ma, H.H.; Zhang, B.X.; Wang, Y.F.; Hu, X.M. Fractionation of corn stover into cellulose, hemicellulose and lignin using a series of ionic liquids. Ind. Crop. Prod. 2015, 76, 688–696. [Google Scholar] [CrossRef]
- Méndez-Mejías, L.D.; Moya, R. Effects on density, shrinking, color changing and chemical surface analysis through FTIR of Tectona grandis thermo-treated. Sci. For. 2016, 44, 811–820. [Google Scholar] [CrossRef]
- Popescu, M.C.; Popescu, C.M.; Lisa, G.; Sakata, Y. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J. Mol. Struct. 2011, 988, 65–72. [Google Scholar] [CrossRef]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas Cienc. Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, X.; Lin, F.; Zhang, H.; Xiao, R. Structural elucidation of industrial bioethanol residual lignin from corn stalk: A potential source of vinyl phenolics. Fuel Process. Technol. 2018, 169, 50–57. [Google Scholar] [CrossRef]
- Liu, C.; Hu, J.; Zhang, H.; Xiao, R. Thermal conversion of lignin to phenols: Relevance between chemical structure and pyrolysis behaviors. Fuel 2016, 182, 864–870. [Google Scholar] [CrossRef] [Green Version]
- Kotilainen, R.; Toivannen, T.; Alén, R. FTIR monitoring of chemical changes in softwood during heating. J. Wood Chem. Technol. 2000, 20, 307–320. [Google Scholar] [CrossRef]
- Vartanian, E.; Barres, O.; Roque, C. FTIR spectroscopy of woods: A new approach to study the weathering of the carving face of a sculpture. Spectrochim. Acta Part A 2015, 136, 1255–1259. [Google Scholar] [CrossRef]
- Özgenç, Ö.; Durmaz, S.; Boyaci, I.H.; Eksi-Kocak, H. Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim. Acta Part A 2017, 171, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Cheng, S.C.; Li, D.; Wang, S.N.; Huang, A.M.; Sun, S.Q. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chin. Chem. Lett. 2015, 26, 221–225. [Google Scholar] [CrossRef]
- González-Peña, M.M.; Curling, S.F.; Hale, M.D. On the effect of heat on the chemical composition and dimensions of thermally modified wood. Polym. Degrad. Stab. 2009, 94, 2184–2193. [Google Scholar] [CrossRef]
- Popescu, M.C.; Froidevaux, J.; Navi, P.; Popescu, C.M. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J. Mol. Struct. 2013, 1033, 176–186. [Google Scholar] [CrossRef]
- Rodrigues, J.; Faix, O.; Pereira, H. Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung 1998, 52, 46–50. [Google Scholar] [CrossRef]
- Müller, G.; Schöpper, C.; Vos, H.; Kharazipour, A.; Polle, A. FTIR-ATR spectroscopic analysis of changes in wood properties during particle and fibreboard production of hard and softwood trees. BioResources 2009, 4, 49–71. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, Y.; Liu, Y.; Gao, J.; Chen, Y.; Fan, Y. Heat-Induced Discoloration of Chromophore Structures in Eucalyptus Lignin. Materials 2018, 11, 1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, R.; Erdocia, X.; Llano-Ponte, R.; Labidi, J. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties. J. Anal. Appl. Pyrolysis 2014, 107, 256–266. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Li, X.J.; Xu, K.; Huang, Q.T.; Sun, H.N.; Wu, Y.Q. Effect of Thermal Treatment on Functional Groups and Degree of Cellulose Crystallinity of Eucalyptus Wood (Eucalyptus grandis × Eucalyptus urophylla). Forest Prod. J. 2017, 67, 135–140. [Google Scholar] [CrossRef]
- Watkins, D.; Nuruddin, M.D.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 2015, 4, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Erdocia, X.; Prado, R.; Corcuera, M.Á.; Labidi, J. Effect of different organosolv treatments on the structure and properties of olive tree pruning lignin. J. Ind. Eng. Chem. 2014, 20, 1103–1108. [Google Scholar] [CrossRef]
- Ion, S.; Opris, C.; Cojocaru, B.; Tudorache, M.; Zgura, I.; Galca, A.C.; Bodescu, A.M.; Enache, M.; Maria, G.M.; Parvulescu, V.I. One-Pot Enzymatic Production of Lignin-Composites. Front. Chem. 2018, 6, 124. [Google Scholar] [CrossRef] [Green Version]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H. Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef] [PubMed]
Wood | 20 °C | 160 °C | 180 °C | 210 °C |
---|---|---|---|---|
Teak—KL | 35.42 ± 0.04 | 39.30 ± 0.15 | 39.52 ± 0.04 | 40.52 ± 0.06 |
Iroko—KL | 29.03 ± 0.25 | 29.00 ± 0.11 | 29.90 ± 0.18 | 36.92 ± 0.19 |
Teak—DL | 8.64 ± 0.11 | 11.38 ± 0.14 | 15.32 ± 0.23 | 18.32 ± 0.25 |
Iroko—DL | 4.13 ± 0.05 | 4.52 ± 0.06 | 4.72 ± 0.11 | 7.20 ± 0.10 |
Wood | 20 °C | 160 °C | 180 °C | 210 °C |
---|---|---|---|---|
p-Hydroxybenzoic acid | 0.09 ± 0.03 | 0.12 ± 0.00 | 0.11 ± 0.01 | 0.11 ± 0.00 |
p-Hydroxybenzaldehyde | 0.81 ± 0.22 | 1.10 ± 0.02 | 1.24 ± 0.03 | 0.98 ± 0.02 |
Vanillic acid | 0.21 ± 0.03 | 0.27 ± 0.04 | 0.51 ± 0.16 | 0.20 ± 0.01 |
Vanilline | 13.13 ± 1.20 | 18.30 ± 0.72 | 22.66 ± 0.54 | 23.93 ± 0.30 |
Syringic acid | 3.10 ± 0.45 | 2.45 ± 0.16 | 3.74 ± 0.15 | 3.20 ± 0.04 |
Syringaldehyde | 9.02 ± 0.61 | 13.31 ± 0.30 | 15.14 ± 0.15 | 11.92 ± 0.15 |
Total yield on DL | 26.36 ± 2.46 | 35.55 ± 1.41 | 43.40 ± 0.41 | 40.34 ± 0.22 |
S/G ratio | 0.91 ± 0.00 | 0.85 ± 0.01 | 0.81 ± 0.01 | 0.63 ± 0.01 |
Wood | 20 °C | 160 °C | 180 °C | 210 °C |
---|---|---|---|---|
p-Hydroxybenzoic acid | 0.16 ± 0.00 | 0.19 ± 0.01 | 0.19 ± 0.02 | 0.16 ± 0.00 |
p-Hydroxybenzaldehyde | 1.42 ± 0.03 | 1.60 ± 0.03 | 1.74 ± 0.06 | 1.46 ± 0.03 |
Vanillic acid | 0.23 ± 0.02 | 0.35 ± 0.04 | 0.52 ± 0.08 | 0.30 ± 0.04 |
Vanilline | 20.69 ± 0.68 | 20.55 ± 0.37 | 20.77 ± 0.68 | 19.03 ± 0.95 |
Syringic acid | 1.56 ± 0.06 | 2.45 ± 0.11 | 2.89 ± 0.11 | 1.22 ± 0.06 |
Syringaldehyde | 15.95 ± 0.16 | 18.04 ± 0.31 | 19.14 ± 0.93 | 16.50 ± 0.53 |
Total yield on DL | 40.01 ± 0.78 | 43.18 ± 0.44 | 45.25 ± 1.74 | 38.67 ± 1.81 |
S/G ratio | 0.84 ± 0.02 | 0.98 ± 0.04 | 1.03 ± 0.04 | 0.92 ± 0.01 |
T (°C) | Mw (g·mol−1) | Mn (g·mol−1) | Mz (g·mol−1) | PD |
---|---|---|---|---|
20 | 7145 ± 76 | 1929 ± 24 | 44,401 ± 2435 | 3.70 ± 0.07 |
160 | 6076 ± 159 | 1740 ± 37 | 28,668 ± 2240 | 3.49 ± 0.15 |
180 | 6632 ± 259 | 1691 ± 23 | 34,131 ± 2232 | 3.92 ± 0.15 |
210 | 7531 ± 230 | 1874 ± 35 | 35,901 ± 1618 | 4.02 ± 0.14 |
T (°C) | Mw (g·mol−1) | Mn (g·mol−1) | Mz (g·mol−1) | PD |
---|---|---|---|---|
20 | 4463 ± 37 | 2136 ± 31 | 9994 ± 239 | 2.09 ± 0.02 |
160 | 4576 ± 38 | 2207 ± 37 | 11,029 ± 575 | 2.07 ± 0.04 |
180 | 4034 ± 49 | 1998 ± 31 | 9133 ± 456 | 2.02 ± 0.03 |
210 | 3359 ± 23 | 1835 ± 31 | 8320 ± 80 | 2.10 ± 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kačíková, D.; Kubovský, I.; Ulbriková, N.; Kačík, F. The Impact of Thermal Treatment on Structural Changes of Teak and Iroko Wood Lignins. Appl. Sci. 2020, 10, 5021. https://doi.org/10.3390/app10145021
Kačíková D, Kubovský I, Ulbriková N, Kačík F. The Impact of Thermal Treatment on Structural Changes of Teak and Iroko Wood Lignins. Applied Sciences. 2020; 10(14):5021. https://doi.org/10.3390/app10145021
Chicago/Turabian StyleKačíková, Danica, Ivan Kubovský, Nikoleta Ulbriková, and František Kačík. 2020. "The Impact of Thermal Treatment on Structural Changes of Teak and Iroko Wood Lignins" Applied Sciences 10, no. 14: 5021. https://doi.org/10.3390/app10145021
APA StyleKačíková, D., Kubovský, I., Ulbriková, N., & Kačík, F. (2020). The Impact of Thermal Treatment on Structural Changes of Teak and Iroko Wood Lignins. Applied Sciences, 10(14), 5021. https://doi.org/10.3390/app10145021