Digital Field Mapping and Drone-Aided Survey for Structural Geological Data Collection and Seismic Hazard Assessment: Case of the 2016 Central Italy Earthquakes
Abstract
:1. Introduction
1.1. Study Area
1.2. Distribution of the Coseismic Ruptures
1.3. Selection of Sample Areas
2. Materials and Methods
2.1. Field Mapping
2.2. Georeferenced Field Images Dataset
2.3. Remotely Acquired Images and Data
2.3.1. Instruments Calibration and Pre-Drone Survey
2.3.2. Drone Survey
2.3.3. Photogrammetric Processing
2.3.4. Extraction of Fault Slip Data from Cloud Compare
2.3.5. High-Resolution Topographic Profiling
3. Results
3.1. Study Area 1—Colli Alti e Bassi Fault (CAB)
3.1.1. Topographic Analysis of CAB
3.1.2. Structural and Kinematics Analysis of the CAB
3.2. Study Area 2—Prate Pala Fault (PTP)
Topographic Analysis of PTP
3.3. Accuracy and Precision
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Buckley, S.J.; Ringdal, K.; Naumann, N.; Dolva, B.; Kurz, T.H.; Howell, J.A.; Dewez, T.J.B. LIME: Software for 3-D visualization, interpretation, and communication of virtual geoscience models. Geosphere 2019, 15, 222–235. [Google Scholar] [CrossRef]
- Bonali, F.L.; Tibaldi, A.; Marchese, F.; Fallati, L.; Russo, E.; Corselli, C.; Savini, A. UAV-based surveying in volcano-tectonics: An example from the Iceland rift. J. Struct. Geol. 2019, 121, 46–64. [Google Scholar] [CrossRef]
- Barlow, J.; Gilham, J.; Ibarra Cofrã, I. Kinematic analysis of sea cliff stability using UAV photogrammetry. Int. J. Remote Sens. 2017, 38, 16. [Google Scholar] [CrossRef]
- Cawood, A.J.; Bond, C.E.; Howell, J.A.; Butler, R.W.H.; Totake, Y. LiDAR UAV or compass-clinometer? Accuracy; coverage and the effects on structural models. J. Struct. Geol. 2017, 98, 67–82. [Google Scholar] [CrossRef]
- Corradetti, A.; McCaffrey, K.; De Paola, N.; Tavani, S. Evaluating roughness scaling properties of natural active fault surfaces by mean of multi-view photogrammetry. Tectonophysics 2017, 717, 599–606. [Google Scholar] [CrossRef]
- Tavani, S.; Corradetti, A.; Billi, A. High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology. J. Struct. Geol. 2016, 86, 200–210. [Google Scholar] [CrossRef]
- Vollgger, S.A.; Cruden, A.R. Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. J. Struct. Geol. 2016, 86, 168–187. [Google Scholar] [CrossRef]
- Bistacchi, A.; Balsamo, F.; Storti, F.; Mozafari, M.; Swennen, R.; Solum, J.; Tueckmantel, C.; Taberner, C. Photogrammetric digital outcrop reconstruction, visualization with textured surfaces, and three-dimensional structural analysis and modeling: Innovative methodologies applied to fault-related dolomitization (Vajont Limestone, Southern Alps, Italy). Geosphere 2015, 11, 2031–2048. [Google Scholar] [CrossRef]
- Bemis, S.P.; Micklethwaite, S.; Turner, D.; James, M.R.; Akciz, S.; Thiele, S.T.; Bangash, H.A. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 2014, 69, 163–178. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.; Nissen, E.; Saripalli, S.; Arrowsmith, J.R.; McGarey, P.; Scharer, K.; Williams, P.; Blisniuk, K. Rapid mapping of ultrafine fault zone topography with structure from motion. Geosphere 2014, 10, 969–986. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward reconstruction of 3d surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Earth Surf. 2012, 117, 17. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, K.J.W.; Jones, R.R.; Holdsworth, R.E.; Wilson, R.W.; Clegg, P.; Imber, J.; Holliman, N.; Trinks, I. Unlocking the spatial dimension: Digital technologies and the future of geoscience fieldwork. J. Geol. Soc. Lond. 2005, 162, 927–938. [Google Scholar] [CrossRef] [Green Version]
- Brozzetti, F.; Boncio, P.; Cirillo, D.; Ferrarini, F.; de Nardis, R.; Testa, A. High-resolution field mapping and analysis of the August–October 2016 coseismic surface faulting (central Italy earthquakes): Slip distribution, parameterization, and comparison with global earthquakes. Tectonics 2019, 38, 417–439. [Google Scholar] [CrossRef] [Green Version]
- Galadini, F.; Galli, P. Paleoseismology of silent faults in the Central Apennines (Italy): The Mt. Vettore and Laga Mts. Faults. Ann. Geophys. 2003, 46, 815–836. [Google Scholar] [CrossRef]
- Koopman, A. Detachment tectonics in the central Apennines, Italy. Geol. Eltraiectina 1983, 30, 1–155. [Google Scholar]
- Lavecchia, G. Il sovrascorrimento dei Monti Sibillini: Analisi cinematica e strutturale. Boll. Soc. Geol. Ital. 1985, 104, 161–194. [Google Scholar]
- Bally, A.W.; Burbi, L.; Cooper, C.; Ghelardoni, R. Balanced cross-sections and seismic reflection profiles across the central Apennines. Mem. Della Soc. Geol. Ital. 1986, 35, 257–310. [Google Scholar]
- Barchi, M. Integration of a seismic profile with surface and subsurface geology in a cross-section through the Umbria-Marche Apennines. Boll. Soc. Geol. Ital. 1991, 110, 469–479. [Google Scholar]
- Calamita, F.; Pizzi, A.; Roscioni, M. I “fasci” di faglie recenti ed attive di M. Vettore-M. Bove e di M. Castello-M. Cardosa (Appennino umbro-marchigiano). Studi Geol. Camerti 1992, 81–95. [Google Scholar] [CrossRef]
- Coltorti, M.; Consoli, M.; Dramis, F.; Gentili, B.; Pambianchi, G. Evoluzione geomorfologica delle piane alluvionali delle Marche centro-meridionali Geogr. Fis. Dinam. Quat. 1991, 14, 87–100. [Google Scholar]
- Blumetti, A.M.; Dramis, F.; Michetti, A.M. Fault-generated mountain fronts in the central Apennines (Central Italy): Geomorphological features and seismotectonic implications. Earth Surf. Process. Landf. 1993, 18, 203–223. [Google Scholar] [CrossRef]
- Pizzi, A.; Calamita, F.; Coltorti, M.; Pieruccini, P. Quaternary normal faults, intramontane basins and seismicity in the Umbria-Marche-Abruzzi Apennine Ridge (Italy): Contribution of neotectonic analysis to seismic hazard assessment. Boll. Soc. Geol. Ital. 2002, 1, 923–929. [Google Scholar]
- Brozzetti, F.; Lavecchia, G. Seismicity and related extensional stress field: The case of the Norcia seismic zone. Ann. Tecton. 1994, 8, 38–57. [Google Scholar]
- Calamita, F.; Pizzi, A. Recent and active extensional tectonics in the southern Umbro-Marchean Apennines (Central Italy). Mem. Soc. Geol. Ital. 1994, 48, 541–548. [Google Scholar]
- Cavinato, G.P.; De Celles, P.G. Extensional basins in the tectonically bimodal central Apennines fold-thrust belt, Italy: Response to corner flow above a subducting slab in retrograde motion. Geology 1999, 27, 955–958. [Google Scholar] [CrossRef]
- Galadini, F.; Galli, P. Active tectonics in the central Apennines (Italy); input data for seismic hazard assessment. Nat. Hazards 2000, 22, 225–270. [Google Scholar] [CrossRef]
- Pierantoni, P.; Deiana, G.; Galdenzi, S. Stratigraphic and structural features of the Sibillini Mountains (Umbria-Marche Apennines, Italy). Ital. J. Geosci. 2013, 132, 497–520. [Google Scholar] [CrossRef]
- Biella, G.; Lavecchia, G.; Lozei, A.; Pialli, G.; Scarascia, S. In Primi risultati di un’indagine geofisica e interpretazione geologica del piano di S. In Scolastica e del Piano Grande (Norcia, pg), I Convegno Annuale G.N.G.T.S.; Atti 1° Convegno Gruppo Naz. Geof. Terra Solida Roma; 1981; pp. 293–308. Available online: https://ricerca.unich.it/handle/11564/505514?mode=full.23#.XyDyzecRVPZ (accessed on 20 July 2020).
- Villani, F.; Sapia, V.; Baccheschi, P.; Civico, R.; Di Giulio, G.; Vassallo, M.; Marchetti, M.; Pantosti, D. Geometry and structure of a fault-bounded extensional basin by integrating geophysical surveys and seismic anisotropy across the 30 October 2016 Mw 6.5 earthquake fault (central Italy): The pian grande di Castelluccio basin. Tectonics 2019, 38, 26–48. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Cattaneo, M.; De Gori, P.; Chiarabba, C.; Monachesi, G.; et al. The 2016 Central Italy Seismic Sequence: A First Look at the Mainshocks, Aftershocks, and Source Models. Seismol. Res. Lett. 2017, 88, 757–771. [Google Scholar] [CrossRef]
- Michele, M.; Di Stefano, R.; Chiaraluce, L.; Cattaneo, M.; De Gori, P.; Monachesi, G.; Latorre, D.; Marzorati, S.; Valoroso, L.; Ladina, C.; et al. The Amatrice 2016 seismic sequence: A preliminary look at the mainshock and aftershocks distribution. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Lavecchia, G.; Castaldo, R.; de Nardis, R.; De Novellis, V.; Ferrarini, F.; Pepe, S.; Brozzetti, F.; Solaro, G.; Cirillo, D.; Bonano, M.; et al. Ground deformation and source geometry of the August 24, 2016 Amatrice earthquake (Central Italy) investigated through analytical and numerical modeling of DInSAR measurements and structural-geological data. Geophys. Res. Lett. 2016, 43, 12389–12398. [Google Scholar] [CrossRef]
- Pucci, S.; De Martini, P.M.; Civico, R.; Villani, F.; Nappi, R.; Ricci, T.; Azzaro, R.; Brunori, C.A.; Caciagli, M.; Cinti, F.R.; et al. Coseismic ruptures of the 24 august 2016, Mw 6.0 Amatrice earthquake (central Italy). Geophys. Res. Lett. 2017, 44, 2138–2147. [Google Scholar] [CrossRef]
- Open EMERGEO Working Group; Villani, F.; Civico, R.; Pucci, S.; Pizzimenti, L.; Nappi, R.; De Martini, P.M.; Agosta, F.; Alessio, G.; Alfonsi, L.; et al. A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy. Sci. Data Nat. 2018, 5, 180049. [Google Scholar] [CrossRef] [Green Version]
- Open EMERGEO Working Group; Civico, R.; Pucci, S.; Villani, F.; Pizzimenti, L.; De Martini, P.M.; Nappi, R.; Agosta, F.; Alessio, G.; Alfonsi, L.; et al. Surface ruptures following the 30 October 2016 Mw 6.5 Norcia earthquake; central Italy. J. Maps 2018, 14, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Livio, F.; Michetti, A.M.; Vittori, E.; Gregory, L.; Wedmore, L.; Piccardi, L.; Tondi, E.; Roberts, G. Central Italy Earthquake Working Group Surface faulting during the August 24, 2016, central Italy earthquake (Mw 6.0): Preliminary results. Ann. Geophys. 2016, 59, 1–7. [Google Scholar] [CrossRef]
- Pizzi, A.; Di Domenica, A.; Gallovič, F.; Luzi, L.; Puglia, R. Fault segmentation as constraint to the occurrence of the mainshocks of the 2016 central Italy seismic sequence. Tectonics 2017, 36, 2370–2387. [Google Scholar] [CrossRef]
- Marzocchi, W.; Taroni, M.; Falcone, G. Earthquake forecasting during the complex Amatrice-Norcia seismic sequence. Sci. Adv. 2017, 3, e1701239. [Google Scholar] [CrossRef] [Green Version]
- Iezzi, F.; Mildon, Z.; Walker, J.F.; Roberts, G.; Goodall, H.; Wilkinson, M.; Robertson, J. Coseismic throw variation across along-strike bends on active normal faults: Implications for displacement versus length scaling of earthquake ruptures. J. Geophys. Res. Solid Earth 2018, 123, 9817–9841. [Google Scholar] [CrossRef]
- Fieldmove user guide Midland Valley-Petroleum Experts. Available online: https://www.petex.com/media/2578/fieldmove_user_guide.pdf (accessed on 20 July 2020).
- Dewez, T.J.B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J. Facets: A cloudcompare plugin to extract geological planes from unstructured 3d point clouds. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, XLI-B5, 799–804. [Google Scholar] [CrossRef]
- Villani, F.; Sapia, V. The shallow structure of a surface-rupturing fault in unconsolidated deposits from multi-scale electrical resistivity data: The 30 October 2016Mw 6.5 central Italy earthquake case study. Tectonophysics 2017, 717, 628–644. [Google Scholar] [CrossRef]
- Manighetti, I. Evidence for self-similar, triangular slip distributions on earthquakes: Implications for earthquake and fault mechanics. J. Geophys. Res. 2005, 110, 25. [Google Scholar] [CrossRef]
- Cappa, F.; Perrin, C.; Manighetti, I.; Delor, E. Off-fault long-term damage: A condition to account for generic, triangular earthquake slip profiles. Geochem. Geophys. Geosyst. 2014, 15, 1476–1493. [Google Scholar] [CrossRef]
- Tao, Z.; Alves, T.M. Impacts of data sampling on the interpretation of normal fault propagation and segment linkage. Tectonophysics 2019, 762, 79–96. [Google Scholar] [CrossRef]
- Iezzi, F.; Roberts, G.; Walker, J.F.; Papanikolaou, I. Occurrence of partial and total coseismic ruptures of segmented normal fault systems: Insights from the central Apennines, Italy. J. Struct. Geol. 2019, 126, 83–99. [Google Scholar] [CrossRef]
- Galli, P.; Castenetto, S.; Peronace, E. The macroseismic intensity distribution of the 30 October 2016 earthquake in central Italy (Mw 6.6): Seismotectonic implications. Tectonics 2017, 36, 2179–2191. [Google Scholar] [CrossRef]
- Galli, P.; Galderisi, A.; Peronace, E.; Giaccio, B.; Hajdas, I.; Messina, P.; Polpetta, F. Quante volte figliola? Confessioni Sibilline di una giovane faglia. In Proceedings of the Riassunti Estesi della Comunicazione, 36° Convegno Nazionale Gruppo Nazionale di Geofisica della Terra Solida, Trieste, Italy, 14–16 November 2017; pp. 41–45, ISBN 978-88-940442-5-6. [Google Scholar]
- Bignami, C.; Valerio, E.; Carminati, E.; Doglioni, C.; Tizzani, P.; Lanari, R. Volume unbalance on the 2016 Amatrice-Norcia (central Italy) seismic sequence and insights on normal fault earthquake mechanism. Sci. Rep. 2019, 9, 4250. [Google Scholar] [CrossRef] [Green Version]
- Brozzetti, F.; Mondini, A.C.; Pauselli, C.; Mancinelli, P.; Cirillo, D.; Guzzetti, F.; Lavecchia, G. Mainshock Anticipated by Intra-Sequence Ground Deformations: Insights from Multiscale Field and SAR Interferometric Measurements. Geosciences 2020, 10, 186. [Google Scholar] [CrossRef]
- Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S.; Avallone, A.; Bignami, C.; Bonano, M.; Calcaterra, S.; et al. Geodetic model of the 2016 central Italy earthquake sequence inferred from insar and gps data. Geophys. Res. Lett. 2017, 44, 6778–6787. [Google Scholar] [CrossRef]
- De Guidi, G.; Vecchio, A.; Brighenti, F.; Caputo, R.; Carnemolla, F.; Di Pietro, A.; Lupo, M.; Maggini, M.; Marchese, S.; Messina, D.; et al. Brief communication co-seismic displacement on October 26 and 30, 2016 (Mw 5.9 and 6.5)-earthquakes in central Italy from the analysis of a local GNSS network. Nat. Hazards Earth Syst. Sci. 2017, 17, 1885–1892. [Google Scholar] [CrossRef] [Green Version]
- De Luca, G.; Di Carlo, G.; Tallini, M. A record of changes in the Gran Sasso groundwater before, during and after the 2016 Amatrice earthquake, central Italy. Sci. Rep. 2018, 8, 15982. [Google Scholar] [CrossRef] [PubMed]
- Di Naccio, D.; Kastelic, V.; Carafa, M.M.C.; Esposito, C.; Milillo, P.; Di Lorenzo, C. Gravity versus tectonics: The case of 2016 Amatrice and Norcia (central Italy) earthquakes surface coseismic fractures. J. Geophys. Res. Earth Surf. 2019, 124, 994–1017. [Google Scholar] [CrossRef]
- Durante, M.G.; Di Sarno, L.; Zimmaro, P.; Stewart, J.P. Damage to roadway infrastructure from 2016 central Italy earthquake sequence. Earthq. Spectra 2018, 34, 1721–1737. [Google Scholar] [CrossRef]
- Ercoli, M.; Forte, E.; Porreca, M.; Carbonell, R.; Pauselli, C.; Minelli, G.; Barchi, M.R. Using Seismic Attributes in seismotectonic research: An application to the Norcia Mw = 6.5 earthquake (30th October 2016) in Central Italy. Solid Earth 2020, 11, 329–348. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, M.F.; Livio, F. Characterizing the distributed faulting during the 30 October 2016, central Italy earthquake: A reference for fault displacement hazard assessment. Tectonics 2018, 37, 1256–1273. [Google Scholar] [CrossRef]
- Galadini, F.; Falcucci, E.; Gori, S.; Zimmaro, P.; Cheloni, D.; Stewart, J.P. Active faulting in source region of 2016–2017 central Italy event sequence. Earthq. Spectra 2018, 34, 1557–1583. [Google Scholar] [CrossRef]
- Galderisi, A.; Galli, P. Offset component and fault-block motion during the 2016 central Italy earthquake (Mw 6.6, Monte Vettore fault system). J. Struct. Geol. 2020, 134, 11. [Google Scholar] [CrossRef]
- Galli, P.; Galderisi, A.; Peronace, E.; Giaccio, B.; Hajdas, I.; Messina, P.; Pileggi, D.; Polpetta, F. The awakening of the dormant mount Vettore fault (2016 central Italy earthquake, Mw 6.6): Paleoseismic clues on its millennial silences. Tectonics 2019, 38, 687–705. [Google Scholar] [CrossRef]
- Gentili, S.; Di Giovambattista, R.; Peresan, A. Seismic quiescence preceding the 2016 central italy earthquakes. Phys. Earth Planet. Inter. 2017, 272, 27–33. [Google Scholar] [CrossRef]
- Huang, M.-H.; Fielding, E.J.; Liang, C.; Milillo, P.; Bekaert, D.; Dreger, D.; Salzer, J. Coseismic deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in italy. Geophys. Res. Lett. 2017, 44, 1266–1274. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zheng, Y.; Xie, Z.; Xiong, X. Rupture features of the 2016 mw 6.2 Norcia earthquake and its possible relationship with strong seismic hazards. Geophys. Res. Lett. 2017, 44, 1320–1328. [Google Scholar] [CrossRef]
- Masi, A.; Chiauzzi, L.; Santarsiero, G.; Manfredi, V.; Biondi, S.; Spacone, E.; Del Gaudio, C.; Ricci, P.; Manfredi, G.; Verderame, G.M. Seismic response of rc buildings during the Mw 6.0 august 24, 2016 central Italy earthquake: The Amatrice case study. Bull. Earthq. Eng. 2017, 2019, 5631–5654. [Google Scholar] [CrossRef]
- Mazzoni, S.; Castori, G.; Galasso, C.; Calvi, P.; Dreyer, R.; Fischer, E.; Fulco, A.; Sorrentino, L.; Wilson, J.; Penna, A.; et al. 2016–2017 central Italy earthquake sequence: Seismic retrofit policy and effectiveness. Earthq. Spectra 2018, 34, 1671–1691. [Google Scholar] [CrossRef]
- Mildon, Z.K.; Roberts, G.P.; Faure Walker, J.P.; Iezzi, F. Coulomb stress transfer and fault interaction over millennia on non-planar active normal faults: The Mw 6.5–5.0 seismic sequence of 2016–2017, central italy. Geophys. J. Int. 2017, 210, 1206–1218. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Ganas, A.; Agalos, A.; Papageorgiou, A.; Triantafyllou, I.; Kontoes, C.; Papoutsis, I.; Diakogianni, G. Earthquake triggering inferred from rupture histories, DINSAR ground deformation and stress-transfer modelling: The case of central Italy during august 2016–January 2017. Pure Appl. Geophys. 2017, 174, 3689–3711. [Google Scholar] [CrossRef]
- Picozzi, M.; Bindi, D.; Brondi, P.; Di Giacomo, D.; Parolai, S.; Zollo, A. Rapid determination of P wave-based energy magnitude: Insights on source parameter scaling of the 2016 central Italy earthquake sequence. Geophys. Res. Lett. 2017, 44, 4036–4045. [Google Scholar] [CrossRef]
- Polcari, M.; Montuori, A.; Bignami, C.; Moro, M.; Stramondo, S.; Tolomei, C. Using multi-band insar data for detecting local deformation phenomena induced by the 2016–2017 central Italy seismic sequence. Remote Sens. Environ. 2017, 201, 234–242. [Google Scholar] [CrossRef]
- Porreca, M.; Minelli, G.; Ercoli, M.; Brobia, A.; Mancinelli, P.; Cruciani, F.; Giorgetti, C.; Carboni, F.; Mirabella, F.; Cavinato, G.; et al. Seismic reflection profiles and subsurface geology of the area interested by the 2016–2017 earthquake sequence (central Italy). Tectonics 2018, 37, 1116–1137. [Google Scholar] [CrossRef]
- Porreca, M.; Fabbrizzi, A.; Azzaro, S.; Pucci, S.; Del Rio, L.; Pierantoni, P.P.; Giorgetti, C.; Roberts, G.; Barchi, M.R. 3D geological reconstruction of the M. Vettore seismogenic fault system (Central Apennines, Italy): Cross-cutting relationship with the M. Sibillini thrust. J. Struct. Geol. 2020, 131, 14. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, H.; Wen, R. Imprint of rupture directivity from ground motions of the 24 august 2016 Mw 6.2 central Italy earthquake. Tectonics 2017, 36, 3178–3191. [Google Scholar] [CrossRef] [Green Version]
- Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.; Dreger, D. Complex fault geometry and rupture dynamics of the Mw 6.5, 30 October 2016, central Italy earthquake. J. Geophys. Res. Solid Earth 2018, 123, 2943–2964. [Google Scholar] [CrossRef]
- Sextos, A.; De Risi, R.; Pagliaroli, A.; Foti, S.; Passeri, F.; Ausilio, E.; Cairo, R.; Capatti, M.C.; Chiabrando, F.; Chiaradonna, A.; et al. Local site effects and incremental damage of buildings during the 2016 central Italy earthquake sequence. Earthq. Spectra 2018, 34, 1639–1669. [Google Scholar] [CrossRef] [Green Version]
- Smeraglia, L.; Billi, A.; Carminati, E.; Cavallo, A.; Doglioni, C. Field- to nano-scale evidence for weakening mechanisms along the fault of the 2016 Amatrice and Norcia earthquakes, Italy. Tectonophysics 2017, 712–713, 156–169. [Google Scholar] [CrossRef]
- Stewart, J.P.; Zimmaro, P.; Lanzo, G.; Mazzoni, S.; Ausilio, E.; Aversa, S.; Bozzoni, F.; Cairo, R.; Capatti, M.C.; Castiglia, M.; et al. Reconnaissance of 2016 central Italy earthquake sequence. Earthq. Spectra 2018, 34, 1547–1555. [Google Scholar] [CrossRef] [Green Version]
- Suteanu, C.; Liucci, L.; Melelli, L. The central Italy seismic sequence (2016): Spatial patterns and dynamic fingerprints. Pure Appl. Geophys. 2017, 175, 1–24. [Google Scholar] [CrossRef]
- Testa, A.; Boncio, P.; Di Donato, M.; Mataloni, G.; Brozzetti, F.; Cirillo, D. Mapping the geology of the 2016 Central Italy earthquake fault (Mt. Vettore–Mt. Bove fault, Sibillini Mts.): Geological details on the Cupi–Ussita and Mt. Bove–Mt. Porche segments and overall pattern of coseismic surface faulting. Geol. Field Trips Maps 2019. [Google Scholar] [CrossRef]
- Tinti, E.; Scognamiglio, L.; Michelini, A.; Cocco, M. Slip heterogeneity and directivity of the ml 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion. Geophys. Res. Lett. 2016, 43, 10745–10752. [Google Scholar] [CrossRef]
- Tung, S.; Masterlark, T. Delayed poroelastic triggering of the 2016 october visso earthquake by the august Amatrice earthquake, Italy. Geophys. Res. Lett. 2018, 45, 2221–2229. [Google Scholar] [CrossRef]
- Tung, S.; Masterlark, T. Resolving source geometry of the 24 August 2016 Amatrice, central Italy, earthquake from insar data and 3d finite-element modeling. Bull. Seismol. Soc. Am. 2018, 108, 553–572. [Google Scholar] [CrossRef]
- Valentini, A.; Pace, B.; Boncio, P.; Visini, F.; Pagliaroli, A.; Pergalani, F. Definition of seismic input from fault-based PSHA: Remarks after the 2016 central Italy earthquake sequence. Tectonics 2019, 38, 595–620. [Google Scholar] [CrossRef]
- Valerio, E.; Tizzani, P.; Carminati, E.; Doglioni, C.; Pepe, S.; Petricca, P.; De Luca, C.; Bignami, C.; Solaro, G.; Castaldo, R.; et al. Ground deformation and source geometry of the 30 October 2016 Mw 6.5 Norcia earthquake (central Italy) investigated through seismological data, dinsar measurements, and numerical modelling. Remote Sens. 2018, 10, 1901. [Google Scholar] [CrossRef] [Green Version]
- Walters, R.J.; Gregory, L.C.; Wedmore, L.N.J.; Craig, T.J.; McCaffrey, K.; Wilkinson, M.; Chen, J.; Li, Z.; Elliott, J.R.; Goodall, H.; et al. Dual control of fault intersections on stop-start rupture in the 2016 central Italy seismic sequence. Earth Planet. Sci. Lett. 2018, 500, 1–14. [Google Scholar] [CrossRef]
- Wang, L.; Gao, H.; Feng, G.; Xu, W. Source parameters and triggering links of the earthquake sequence in central Italy from 2009 to 2016 analyzed with gps and insar data. Tectonophysics 2018, 744, 285–295. [Google Scholar] [CrossRef]
- Whitney, R. Approximate recovery of residual displacement from the strong motion recordings of the 24 August 2016 Amatrice, Italy earthquake. Bull. Earthq. Eng. 2017, 16, 1847–1868. [Google Scholar] [CrossRef]
- Wilkinson, M.W.; McCaffrey, K.J.W.; Jones, R.R.; Roberts, G.P.; Holdsworth, R.E.; Gregory, L.C.; Walters, R.J.; Wedmore, L.; Goodall, H.; Iezzi, F. Near-field fault slip of the 2016 Vettore Mw 6.6 earthquake (central Italy) measured using low-cost GNSS. Sci. Rep. 2017, 7, 4612. [Google Scholar] [CrossRef]
- Xu, G.; Xu, C.; Wen, Y.; Jiang, G. Source parameters of the 2016–2017 central italy earthquake sequence from the sentinel-1, alos-2 and gps data. Remote Sens. 2017, 9, 1182. [Google Scholar] [CrossRef] [Green Version]
- Zimmaro, P.; Scasserra, G.; Stewart, J.P.; Kishida, T.; Tropeano, G.; Castiglia, M.; Pelekis, P. Strong ground motion characteristics from 2016 central Italy earthquake sequence. Earthq. Spectra 2018, 34, 1611–1637. [Google Scholar] [CrossRef] [Green Version]
- Franke, K.W.; Lingwall, B.N.; Zimmaro, P.; Kayen, R.E.; Tommasi, P.; Chiabrando, F.; Santo, A. Phased reconnaissance approach to documenting landslides following the 2016 central Italy earthquakes. Earthq. Spectra 2018, 34, 1693–1719. [Google Scholar] [CrossRef]
- Gori, S.; Falcucci, E.; Galadini, F.; Zimmaro, P.; Pizzi, A.; Kayen, R.E.; Lingwall, B.N.; Moro, M.; Saroli, M.; Fubelli, G.; et al. Surface Faulting Caused by the 2016 Central Italy Seismic Sequence: Field Mapping and LiDAR/UAV Imaging. Earthq. Spectra 2018, 34, 1585–1610. [Google Scholar] [CrossRef]
- Pavlides, S.; Chatzipetros, A.; Papathanasiou, G.; Georgiadis, G.; Sboras, S.; Valkaniotis, S. Ground deformation and fault modeling of the 2016 sequence (24 August–30 October) in central Apennines (central Italy). Bull. Geol. Soc. Greece 2017, 51, 76. [Google Scholar] [CrossRef] [Green Version]
- Perouse, E.; Benedetti, L.; Fleury, J.; Rizza, M.; Puliti, I.; Billant, J.; Woerd, J.V.d.; Feuillet, N.; Jacques, E.; Pace, B. Coseismic slip vectors of 24 August and 30 October 2016 earthquakes in Central Italy: Oblique slip and regional kinematic implications. Tectonics 2018, 37, 3760–3781. [Google Scholar] [CrossRef] [Green Version]
- Tarquini, S.; Vinci, S.; Favalli, M.; Doumaz, F.; Fornaciai, A.; Nannipieri, L. Release of a 10-m-resolution DEM for the Italian territory: Comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput. Geosci. 2012, 38, 168–170. [Google Scholar] [CrossRef] [Green Version]
- Scarsella, F. La carta geologica d’Italia–scala 1:100.000. In Foglio Geologico n. 132; Foglio: Norcia, Italy, 1941; Available online: http://193.206.192.231/carta_geologica_italia/tavoletta.php?foglio=132 (accessed on 20 July 2020).
Colli Alti e Bassi Fault—CAB | |||||
---|---|---|---|---|---|
FAULT ATTITUDE | |||||
INSTRUMENTS | DIP AZIMUTH Min-Max value | DIP ANGLE | STRIAE TREND Min-Max value | MEAN RESULTANT PLANE ORIENTATION | STRIAE TREND |
Hand Compass | N220-N260 | 66–72 | N180-N240 | N237/68° | N204 |
Fieldmove App | N220-N260 | 67–73 | N180-N240 | N235/70° | N206 |
Drone Survey | N220-N240 | 66–74 | N180-N220 | N233/70° | N207 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirillo, D. Digital Field Mapping and Drone-Aided Survey for Structural Geological Data Collection and Seismic Hazard Assessment: Case of the 2016 Central Italy Earthquakes. Appl. Sci. 2020, 10, 5233. https://doi.org/10.3390/app10155233
Cirillo D. Digital Field Mapping and Drone-Aided Survey for Structural Geological Data Collection and Seismic Hazard Assessment: Case of the 2016 Central Italy Earthquakes. Applied Sciences. 2020; 10(15):5233. https://doi.org/10.3390/app10155233
Chicago/Turabian StyleCirillo, Daniele. 2020. "Digital Field Mapping and Drone-Aided Survey for Structural Geological Data Collection and Seismic Hazard Assessment: Case of the 2016 Central Italy Earthquakes" Applied Sciences 10, no. 15: 5233. https://doi.org/10.3390/app10155233
APA StyleCirillo, D. (2020). Digital Field Mapping and Drone-Aided Survey for Structural Geological Data Collection and Seismic Hazard Assessment: Case of the 2016 Central Italy Earthquakes. Applied Sciences, 10(15), 5233. https://doi.org/10.3390/app10155233